首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
While the mechanisms by which adult terrestrial plants deploy constitutive and induced responses to grazing pressure are well known, the means by which young aquatic plants defend themselves from herbivory are little studied. This study addresses nitrogen transport in the aquatic angiosperm Myriophyllum spicatum in response to herbivore exposure. Nitrogen tracers were used to monitor nitrogen uptake and reallocation in young plants in response to grazing by the generalist insect herbivore Acentria ephemerella. Total nitrogen content (N%) and patterns of nitrogen uptake and allocation (δ15N) were assessed in various plant tissues after 24 and 48 h. Following 24 h exposure to herbivore damage (Experiment 1), nitrogen content of plant apices was significantly elevated. This rapid early reaction may be an adaptation allowing the grazer to be sated as fast as possible, or indicate the accumulation of nitrogenous defense chemicals. After 48 h (Experiment 2), plants' tips showed depletion in nitrogen levels of ca. 60‰ in stem sections vulnerable to grazing. In addition, nitrogen uptake by grazed and grazing‐prone upper plant parts was reduced and nutrient allocation into the relatively secure lower parts increased. The results point to three conclusions: (1) exposure to an insect herbivore induces a similar response in immature M. spicatum as previously observed in mature terrestrial species, namely a rapid (within 48 h) reduction in the nutritional value (N%) of vulnerable tissues, (2) high grazing intensity (100% of growing tips affected) did not limit the ability of young plants to induce resistance; and (3) young plants exposed to herbivory exhibit different patterns of nutrient allocation in vulnerable and secure tissues. These results provide evidence of induced defense and resource reallocation in immature aquatic macrophytes which is in line with the responses shown for mature aquatic macrophytes and terrestrial plants.  相似文献   

2.
Selection for plant traits important for agriculture can come at a high cost to plant defenses. While selecting for increased growth rate and yield, domestication and subsequent breeding may lead to weakened defenses and greater susceptibility of plants to herbivores. We tested whether expression of defense genes differed among maize, Zea mays ssp. mays L. (Poaceae), and its wild relatives Zea mays ssp. parviglumis Iltis & Doebley and Zea diploperennis Iltis et al. We used two populations of Z. mays ssp. parviglumis: one expected to express high levels of an herbivore resistance gene, wound‐inducible protein (wip1), and another expected to have low expression of wip1. To test whether maize and wild Zea differed in induction of defenses against Spodoptera frugiperda (Smith) (Lepidoptera: Noctuidae), we quantified expression of several genes involved in plant defense: wip1, maize protease inhibitor (mpi), pathogenesis‐related protein (PR‐1), and chitinase. Moreover, we compared growth, development, and survival of caterpillars on maize and wild Zea plants. We found that maize expressed low levels of all but one of the genes when attacked by caterpillars, whereas the wild relatives of maize expressed induced defense genes at high levels. Expression of wip1, in particular, was much greater in the Z. mays ssp. parviglumis population that we expected to naturally express high levels of wip1, with expression levels 29‐fold higher than in herbivore‐free plants. Elevated expression of defenses in wild plants was correlated with higher resistance to caterpillars. Larvae were 15–20% smaller on wild Zea compared with maize, developed 20% slower, and only 22% of them survived to pupation on Z. mays ssp. parviglumis with high levels of wip1. Our results suggest that domestication has inadvertently reduced the resistance of maize, and it is likely that expression of wip1 and other genes associated with defenses play an important role in this reduction in resistance.  相似文献   

3.
Plant anti‐herbivore defenses are known to be affected by life‐history evolution, as well as by domestication and breeding in the case of crop species. A suite of plants from the maize genus Zea (Poaceae) and the specialist herbivore Dalbulus maidis (DeLong & Wolcott) (Hemiptera: Cicadellidae) were used to test the hypothesis that anti‐herbivore defenses are affected by plant life‐history evolution and human intervention through domestication and breeding for high yield. The suite of plants included a maize (Zea mays ssp. mays L.) commercial hybrid, a maize landrace, two populations of the annual Balsas teosinte (Z. mays ssp. parviglumis Iltis & Doebley), and perennial teosinte (Z. diploperennis Iltis, Doebley & Guzman). Leaf toughness, pubescence, and oviposition preference were compared among the suite of host plants looking for effects of transitions in life history (i.e., from perennial to annual life cycle), domestication (i.e., from wild annual to domesticated annual), and breeding (i.e., from landrace to hybrid maize) on defense against D. maidis. Results on leaf toughness suggested that the life‐history and domestication transitions weakened the plant's resistance to penetration by the mouthparts and ovipositor of D. maidis, whereas results on pubescence suggested that this putative defense was strengthened with the breeding transition, contrary to expectations. Results on oviposition preference of D. maidis coincided with the expectation that life‐history and domestication transitions would lead to preference for Balsas teosinte over perennial teosinte, and of landrace maize over Balsas teosinte. Also, a negative correlation suggested that oviposition preference is significantly influenced by leaf toughness. Overall, the results suggested that Zea defenses against the specialist herbivore D. maidis were variably affected by plant life‐history evolution, domestication, and breeding, and that chemical defense may play a role in Zea defense against D. maidis because leaf toughness and pubescence only partially explained its host preferences.  相似文献   

4.
Variation in plant communities is likely to modulate the feeding and oviposition behavior of herbivorous insects, and plant‐associated microbes are largely ignored in this context. Here, we take into account that insects feeding on grasses commonly encounter systemic and vertically transmitted (via seeds) fungal Epichloë endophytes, which are regarded as defensive grass mutualists. Defensive mutualism is primarily attributable to alkaloids of fungal origin. To study the effects of Epichloë on insect behavior and performance, we selected wild tall fescue (Festuca arundinacea) and red fescue (Festuca rubra) as grass–endophyte models. The plants used either harbored the systemic endophyte (E+) or were endophyte‐free (E?). As a model herbivore, we selected the Coenonympha hero butterfly feeding on grasses as larvae. We examined both oviposition and feeding preferences of the herbivore as well as larval performance in relation to the presence of Epichloë endophytes in the plants. Our findings did not clearly support the female's oviposition preference to reflect the performance of her offspring. First, the preference responses depended greatly on the grass–endophyte symbiotum. In F. arundinacea, C. hero females preferred E+ individuals in oviposition‐choice tests, whereas in F. rubra, the endophytes may decrease exploitation, as both C. hero adults and larvae preferred E? grasses. Second, the endophytes had no effect on larval performance. Overall, F. arundinacea was an inferior host for C. hero larvae. However, the attraction of C. hero females to E+ may not be maladaptive if these plants constitute a favorable oviposition substrate for reasons other than the plants' nutritional quality. For example, rougher surface of E+ plant may physically facilitate the attachment of eggs, or the plants offer greater protection from natural enemies. Our results highlight the importance of considering the preference of herbivorous insects in studies involving the endophyte‐symbiotic grasses as host plants.  相似文献   

5.
  • Plants are part of biodiverse communities and frequently suffer from attack by multiple herbivorous insects. Plant responses to these herbivores are specific for insect feeding guilds: aphids and caterpillars induce different plant phenotypes. Moreover, plants respond differentially to single or dual herbivory, which may cascade into a chain of interactions in terms of resistance to other community members. Whether differential responses to single or dual herbivory have consequences for plant resistance to yet a third herbivore is unknown.
  • We assessed the effects of single or dual herbivory by Brevicoryne brassicae aphids and/or Plutella xylostella caterpillars on resistance of plants from three natural populations of wild cabbage to feeding by caterpillars of Mamestra brassicae. We measured plant gene expression and phytohormone concentrations to illustrate mechanisms involved in induced responses.
  • Performance of both B. brassicae and P. xylostella was reduced when feeding simultaneously with the other herbivore, compared to feeding alone. Gene expression and phytohormone concentrations in plants exposed to dual herbivory were different from those found in plants exposed to herbivory by either insect alone. Plants previously induced by both P. xylostella and B. brassicae negatively affected growth of the subsequently arriving M. brassicae. Furthermore, induced responses varied between wild cabbage populations.
  • Feeding by multiple herbivores differentially activates plant defences, which has plant‐mediated negative consequences for a subsequently arriving herbivore. Plant population‐specific responses suggest that plant populations adapt to the specific communities of insect herbivores. Our study contributes to the understanding of plant defence plasticity in response to multiple insect attacks.
  相似文献   

6.
Phragmites or Common Reed (Phragmites australis) is a tall rhizomatous cosmopolitan grass. While native to Australia, it can be invasive in wetlands, forming dense monocultures and reducing their ecological integrity. We assessed the potential for the cutting of Phragmites reeds prior to planting to promote the establishment of indigenous shrubs that might ultimately outcompete Phragmites. We established ten 5 m × 5 m quadrats in an area dominated by Phragmites, brush‐cut the reeds to ground level in five of them and left five uncut as controls. Within each quadrat, we planted 20 plants (~40 cm tall) of each of five indigenous shrub species, unguarded (4 plants/m2). We surveyed the plants one month after planting and annually for the following four years for survival, height and browsing damage. Browsing damage to plants was common (>50%) and unaffected by cutting. After four years, overall plant survival rates were ~25% and mean plant heights for the five shrub species ranged between 120 and 174 cm. Cutting of Phragmites had no positive effect on plant survival or height. In fact, two Melaleuca species grew taller in the uncut quadrats. Cutting of Phragmites reed beds prior to planting is unlikely to promote the establishment of woody plantings. However, planting within established Phragmites with or without prior brush‐cutting is worthy of further trialling as a potential tool for reinstating native diversity at Phragmites‐dominated sites.  相似文献   

7.
1. As trees age, they undergo significant physiological and morphological changes. Nevertheless, tree ontogeny and its impacts on herbivores are often overlooked as determinants of plant–herbivore population dynamics and the strength of plant–herbivore interactions. 2. Juniperus (Cupressaceae) is a dominant, long‐lived conifer that serves as the sole host to a specialised assemblage of caterpillars. Over the past 150 years, several juniper species in western North America have expanded their geographic occupancy at local and regional scales, which has resulted in an increase in the number of immature trees on the landscape. Using assays in the laboratory, the effects of tree ontogeny on caterpillar performance and oviposition preference for two juniper specialist caterpillars, Callophrys gryneus (Lycaenidae) and Glena quinquelinearia (Geometridae), were examined. The study considered whether responses to tree ontogeny were consistent across caterpillar species and juniper host species. 3. Tree age was found to be a reliable predictor of caterpillar performance, with caterpillars developing more quickly and growing larger when fed foliage from young trees. Differences in the phytochemical diversity between foliage from trees of different ages might help to explain observed differences in caterpillar performance. Interestingly, the specialist butterfly, C. gryneus, displayed an oviposition preference for foliage from old‐growth Juniperus osteosperma trees, despite the fact that larvae of this species performed poorly on older trees. 4. It is concluded that young juniper trees are an important resource for the specialised Lepidopteran community and that tree ontogeny is an important component of intraspecific variation, which contributes to the structure of plant–herbivore communities.  相似文献   

8.
The diet breadth of insect herbivores influences their response to variation in plant quality, and these bitrophic interactions have implications for the higher‐level trophic interactions between herbivores and their natural enemies. In this comparative study, we examined the role of host plant species and plant secondary chemistry on the potential interactions between three species of nymphaline caterpillars and their natural enemies. The caterpillar species (all Lepidoptera: Nymphalidae) varied in their degree of specialization: the buckeye, Junonia coenia Hübner, is a specialist on plants that contain iridoid glycosides (IGs); the white peacock, Anartia jatrophae L., feeds on plants in five families, some of which contain IGs and some of which do not; and the painted lady, Vanessa cardui L., is a generalist, feeding on plants in at least 15 families. Each species was reared on leaves of an introduced host plant, Plantago lanceolata L. (Plantaginaceae), which produces two IGs, aucubin and catalpol, and on another plant species that is a common host plant. These alternate host plants were Plantago major L. (Plantaginaceae) for J. coenia, Bacopa monnieri (L.) Pennell (Plantaginaceae) for A. jatrophae, and Malva parviflora L. (Malvaceae) for V. cardui. We examined growth, sequestration, and immune response of these caterpillars on the different host plant species. Junonia coenia developed more rapidly and sequestered higher IG concentrations when reared on P. lanceolata, whereas both other species grew more slowly on P. lanceolata. Host plant did not influence immune response of J. coenia or A. jatrophae, whereas V. cardui immune response was weaker when reared on P. lanceolata. Junonia coenia was most efficient at IG sequestration and A. jatrophae was least efficient, when all three species were reared on P. lanceolata. These results indicate that diet breadth may play an important role in structuring tritrophic interactions, and this role should be further explored.  相似文献   

9.
The strength of plant‐herbivore interactions varies spatially and through plant ontogeny, which may result in variable selection on plant defense, both among populations and life‐history stages. To test whether populations have diverged in herbivore resistance at an early plant stage, we quantified oviposition preference and larval feeding by Plutella xylostella (L.) (Lepidoptera: Plutellidae) on young (5–6 weeks old) Arabidopsis lyrata (L.) O'Kane & Al‐Shehbaz (Brassicaceae) plants, originating from 12 natural populations, six from Sweden and six from Norway. Arabidopsis lyrata can be trichome‐producing or glabrous, with glabrous plants usually receiving more damage from insect herbivores in natural populations. We used the six populations polymorphic for trichome production to test whether resistance against P. xylostella differs between the glabrous and the trichome‐producing morph among young plants. There was considerable variation among populations in the number of eggs received and the proportion of leaf area consumed by P. xylostella, but not between regions (Sweden vs. Norway) or trichome morphs. Rosette size explained a significant portion of the variation in oviposition and larval feeding. The results demonstrate that among‐population variation in resistance to insect herbivory can be detected among very young individuals of the perennial herb A. lyrata. They further suggest that trichome densities are too low at this plant developmental stage to contribute to resistance, and that the observed among‐population variation in resistance is related to differences in other plant traits.  相似文献   

10.
Spider mites (Tetranychidae sp.) are widely occurring arthropod pests on cultivated plants. Feeding by the two‐spotted spider mite T. urticae, a generalist herbivore, induces a defense response in plants that mainly depends on the phytohormones jasmonic acid and salicylic acid (SA). On tomato (Solanum lycopersicum), however, certain genotypes of T. urticae and the specialist species T. evansi were found to suppress these defenses. This phenomenon occurs downstream of phytohormone accumulation via an unknown mechanism. We investigated if spider mites possess effector‐like proteins in their saliva that can account for this defense suppression. First we performed an in silico prediction of the T. urticae and the T. evansi secretomes, and subsequently generated a short list of candidate effectors based on additional selection criteria such as life stage‐specific expression and salivary gland expression via whole mount in situ hybridization. We picked the top five most promising protein families and then expressed representatives in Nicotiana benthamiana using Agrobacterium tumefaciens transient expression assays to assess their effect on plant defenses. Four proteins from two families suppressed defenses downstream of the phytohormone SA. Furthermore, T. urticae performance on N. benthamiana improved in response to transient expression of three of these proteins and this improvement was similar to that of mites feeding on the tomato SA accumulation mutant nahG. Our results suggest that both generalist and specialist plant‐eating mite species are sensitive to SA defenses but secrete proteins via their saliva to reduce the negative effects of these defenses.  相似文献   

11.
Ravenna grass, Tripidium ravennae (L.) H. Scholz, is known to produce an abundance of biomass, but how plant density affects its biomass potential remains unknown. The objectives were to determine the effects of plant density on biomass yield; plant growth traits; biomass?carbon, nitrogen, and ash concentrations; heating value; nitrogen removal; and sucrose concentration in leaves and culms. The treatments consisted of five plant densities (1,250; 2,500; 5,000; 10,000; and 20,000 plants per hectare) in a randomized complete block design with four blocks. Plots were nonirrigated, unfertilized, and harvested once during the dormant season each year. Data were collected from 2015?2019. Dependent variables that varied with plant population density (p < .05) were biomass yield, number of reproductive culms per plant, reproductive culm diameter, reproductive culm sucrose concentration, and nitrogen removal with biomass. Biomass yield ranged from 5.6 to 16.3 Mg/ha for plant densities of 1,250–20,000 plants per hectare, respectively. Combined over years, nonlinear regression of the data showed the equation for biomass yield to plateau at 16.2 Mg/ha at a plant density of 10,640 plants per hectare. As plant density increased, the number of reproductive culms per plant, culm diameter, and culm sucrose concentration significantly decreased. At 1,250 plants per hectare, the number of reproductive culms per plant, culm diameter, and culm sucrose averaged 70, 10.2 mm, and 63.2 g/kg, respectively. Nitrogen removed with biomass significantly increased as biomass yield increased with plant density. At a density of 10,000 and 20,000 plants per hectare, the amount of nitrogen removed annually in the harvested biomass averaged 88 kg/ha. The data suggest that 10,000 plants per hectare would produce the greatest annual biomass yields; however, research is needed to determine the nutrient requirement for Ravenna grass to sustain biomass production at that density.  相似文献   

12.
Auxin is a key plant growth regulator that also impacts plant–pathogen interactions. Several lines of evidence suggest that the bacterial plant pathogen Pseudomonas syringae manipulates auxin physiology in Arabidopsis thaliana to promote pathogenesis. Pseudomonas syringae strategies to alter host auxin biology include synthesis of the auxin indole‐3‐acetic acid (IAA) and production of virulence factors that alter auxin responses in host cells. The application of exogenous auxin enhances disease caused by P. syringae strain DC3000. This is hypothesized to result from antagonism between auxin and salicylic acid (SA), a major regulator of plant defenses, but this hypothesis has not been tested in the context of infected plants. We further investigated the role of auxin during pathogenesis by examining the interaction of auxin and SA in the context of infection in plants with elevated endogenous levels of auxin. We demonstrated that elevated IAA biosynthesis in transgenic plants overexpressing the YUCCA 1 (YUC1) auxin biosynthesis gene led to enhanced susceptibility to DC3000. Elevated IAA levels did not interfere significantly with host defenses, as effector‐triggered immunity was active in YUC1‐overexpressing plants, and we observed only minor effects on SA levels and SA‐mediated responses. Furthermore, a plant line carrying both the YUC1‐overexpression transgene and the salicylic acid induction deficient 2 (sid2) mutation, which impairs SA synthesis, exhibited additive effects of enhanced susceptibility from both elevated auxin levels and impaired SA‐mediated defenses. Thus, in IAA overproducing plants, the promotion of pathogen growth occurs independently of suppression of SA‐mediated defenses.  相似文献   

13.
Maize [Zea mays L. ssp. mays (Poaceae)] was domesticated from Balsas teosinte (Zea mays ssp. parviglumis Iltis & Doebley) in present‐day Mexico. Fall armyworm, Spodoptera frugiperda JE Smith (Lepidoptera: Noctuidae), is among the most important pests of maize in Mexico and Central America. We compared the strength of plant defenses against fall armyworm between micro‐sympatric landrace maize and Balsas teosinte in the field and laboratory. The field comparison, conducted in Mexico, consisted of comparing the frequency of fall armyworm infestation between young maize and Balsas teosinte plants in dryland agricultural fields in which Balsas teosinte grew as a weed. The laboratory comparison contrasted the performance of fall armyworm larvae provided a diet of leaf tissue excised from maize or Balsas teosinte plants that were intact or had been primed by larval feeding. In the field, maize plants were more frequently infested with fall armyworm than Balsas teosinte plants: over 3 years and three fields, maize was infested at a ca. 1.8‐fold greater rate than Balsas teosinte. In the laboratory, larval growth, but not survivorship, was differently affected by feeding on maize vs. Balsas teosinte, and on primed vs. intact plants. Specifically, survivorship was ca. 98%, and did not differ between maize and Balsas teosinte, nor between primed and intact plants. Larvae grew less on intact vs. primed maize, and similarly on intact vs. primed Balsas teosinte; overall, growth was 1.2‐fold greater on maize compared to Balsas teosinte, and on primed compared to intact plants. Parallel observations showed that the differences in growth could not be attributed to the amount of leaf tissue consumed by larvae. We discuss our results in relation to differences in the strength of plant defenses between crops and their ancestors, the relevance of unmanaged Balsas teosinte introgression in the context of fall armyworm defenses in maize, and whether greater growth of larvae on primed vs. intact plants signifies herbivore offense.  相似文献   

14.
The rice striped stem borer (SSB, Chilo suppressalis) is one of the most destructive pests of rice plants. Si‐mediated rice defense against various pests has been widely reported, and sodium silicate (SS) has been used as an effective source of silicon for application to plants. However, there is quite limited information about the direct effects of Si application on herbivorous insects. SSB larval performance and their insecticide tolerance were examined after they had been reared either on rice plants cultivated in nutrient solution containing 0.5 and 2.0 mM SS or on artificial diets with 0.1% and 0.5% SS. SS amendment in either rice culture medium or artificial diets significantly suppressed the enzymatic activities of acetylcholinesterase, glutathione S‐transferases, and levels of cytochrome P450 protein in the midgut of C. suppressalis larvae. Larvae fed on diets containing SS showed lower insecticide tolerance. Additionally, RNA‐seq analysis showed that SS‐mediated larval insecticide tolerance was closely associated with fatty acid biosynthesis and pyruvate metabolism pathways. Our results suggest that Si not only enhances plant resistance against insect herbivore, but also impairs the insect's capacity to detoxify the insecticides. This should be considered as another important aspect in Si‐mediated plant–insect interaction and may provide a novel approach of pest management.  相似文献   

15.
Below‐ground interactions between soil microbial communities and plants play important roles in shaping plant community structure, but are currently poorly understood. Understanding these processes has important practical implications, including for restoration. In this study, we investigated whether soil microbes from remnant areas can aid the restoration of old‐fields, and whether soil microbes from an old‐field encourages further invasive establishment. In a glasshouse experiment, we measured growth and survival of two native grasses (Austrostipa nodosa and Rytidosperma auriculatum) and an invasive grass (Lolium rigidum) grown in sterile soil inoculated with whole soil from three locations: an old‐field, a remnant grassland, and a seed orchard planted with native grasses 7 years ago. Plants grown in sterile, non‐inoculated soil acted as controls. The orchard inoculant was included to test whether soil microbes from an area cultivated with native grasses induced plant responses similar to remnant areas. The remnant treatment resulted in the highest biomass and no mortality for R. auriculatum. All inoculant types increased the biomass of the invasive species equally. The native grass, A. nodosa, was the most sensitive to the addition of inoculum, whereas the invasive L. rigidum suffered very low mortality across all treatments. Overall, mortality was highest in the old‐field treatment at 42.9%. These results give insights into how soil microbes can affect community structure and dynamics, e.g. the high mortality of natives with old‐field inoculant may be one mechanism that allows invasive species to dominate. Poorer performance of native species with the orchard inoculant suggests it would not make a suitable replacement for remnant soil; therefore, more work is needed to understand the requirements of target species and their interactions before this technique can be exploited to maximum benefit.  相似文献   

16.
Increasing evidence suggests that individuals of the same plant species occurring in different microhabitats often show a degree of phenotypic and phytochemical variation. Consequently, insect herbivores associated with such plant species must deal with environment‐mediated changes or variability in the traits of their host plants. In this study, we examined the effects of habitat condition (shaded vs. full‐sun habitats) on plant traits and leaf characteristics of the invasive alien plant, Chromolaena odorata (L.) King & Robinson (Asteraceae). In addition, the performance was evaluated in two generations of a specialist folivore, Pareuchaetes insulata (Walker) (Lepidoptera: Erebidae: Arctiinae), on leaves obtained from both shaded and full‐sun habitats. The study was done in an area where the insect was introduced as a biological control agent. Leaves growing in shade were less tough, had higher water and nitrogen content, and lower total non‐structural carbohydrate, compared with leaves growing in full sun. Plants growing in shade had longer leaves and were taller, but above‐ground biomass was significantly reduced compared with plants growing in full sun. In both generations (parents and offspring), P. insulata developed faster and had larger pupal mass, increased growth rate, and higher fecundity when reared on shaded foliage compared with full‐sun foliage. Although immature survival and adult longevity did not differ between habitats, Maw's host suitability index indicated that shaded leaves were more suitable for the growth and reproduction of P. insulata. We suggest that the benefits obtained by P. insulata feeding on shaded foliage are associated with reduced toughness and enhanced nitrogen and water content of leaves. These results demonstrate that light‐mediated changes in plant traits and leaf characteristics can affect insect folivore performance.  相似文献   

17.
Dwarf shrubs are a dominant plant type across many regions of the Earth and have hence a large impact on carbon and nutrient cycling rates. Climate change impacts on dwarf shrubs have been extensively studied in the Northern Hemisphere, and there appears to be large variability in response between ecosystem types and regions. In the Southern Hemisphere, less data are available despite dwarf shrub vegetation being a dominant feature of southern South America and mountainous regions of the Southern Hemisphere. Here, we present the response of an Empetrum rubrum dwarf shrub and a Poa grass community to 12 years of experimental climate manipulation achieved using open top chambers on the Falkland Islands, a cold temperate island group in the South Atlantic. The dwarf shrub and grass vegetation did not change significantly in cover, biomass or species richness over the 12 years period in response to climate warming scenarios of up to 1°C reflecting annual warming levels predicted in this region for the coming decades. The soil microarthropod community, however, responded with declines in abundance (37%) under warming conditions in the grass community, but no such changes were observed in the dwarf shrub community. Overall, our data indicate that dwarf shrub communities are resistant to the levels of climate warming predicted over the coming decades in the southern South America region and will, therefore, remain a dominant driver of local ecosystem properties.  相似文献   

18.
Black spot leads to great marigold losses worldwide. The disease is characterized by black spots on leaves and stems in its early stages, and the whole plant has black rot at the advanced stage. In this report, 6 of 217 Alternaria strains isolated from lesions of marigold plants in Beijing were randomly selected. The morphological characteristics and a pathogenic tree based on two protein‐coding genes (gpd and alt a 1) indicated that Alternaria tagetica is the causal agent of marigold black spot in Beijing. All six Alternaria strains could successfully re‐infect marigold, but they could not infect carrot or zinnia by either spore spray in a greenhouse or planting experiments in the epidemic area. This is the first report of the A. tagetica pathogen being isolated from marigold in Beijing.  相似文献   

19.
Grazing‐induced changes in plant quality have been suggested to drive the negative delayed density dependence exhibited by many herbivore species, but little field evidence exists to support this hypothesis. We tested a key premise of the hypothesis that reciprocal feedback between vole grazing pressure and the induction of anti‐herbivore silicon defenses in grasses drives observed population cycles in a large‐scale field experiment in northern England. We repeatedly reduced population densities of field voles (Microtus agrestis) on replicated 1‐ha grassland plots at Kielder Forest, northern England, over a period of 1 year. Subsequently, we tested for the impact of past density on vole life history traits in spring, and whether these effects were driven by induced silicon defenses in the voles’ major over‐winter food, the grass Deschampsia caespitosa. After several months of density manipulation, leaf silicon concentrations diverged and averaged 22% lower on sites where vole density had been reduced, but this difference did not persist beyond the period of the density manipulations. There were no significant effects of our density manipulations on vole body mass, spring population growth rate, or mean date for the onset of spring reproduction the following year. These findings show that grazing by field voles does induce increased silicon defenses in grasses at a landscape scale. However, at the vole densities encountered, levels of plant damage appear to be below those needed to induce changes in silicon levels large and persistent enough to affect vole performance, confirming the threshold effects we have previously observed in laboratory‐based studies. Our findings do not support the plant quality hypothesis for observed vole population cycles in northern England, at least over the range of vole densities that now prevail here.  相似文献   

20.
The Enemy Release Hypothesis posits that invasion of novel habitats can be facilitated by the absence of coevolved herbivores. However, a new environment and interactions with unfamiliar herbivores may impose selection on invading plants for traits that reduce their attractiveness to herbivores or for enhanced defenses compared to native host plants, leading to a pattern similar to enemy release but driven by evolutionary change rather than ecological differences. The Shifting Defense Hypothesis posits that plants in novel habitats will shift from specialized defense mechanisms to defense mechanisms effective against generalist herbivores in the new range. We tested these ideas by comparing herbivore preference and performance of native (Eurasia)‐ and invasive (New World)‐range Medicago polymorpha, using a generalist herbivore, the soybean looper, that co‐occurs with M. polymorpha in its New World invaded range. We found that soybean loopers varied in preference and performance depending on host genotype and that overall the herbivore preferred to consume plant genotypes from naïve populations from Eurasia. This potentially suggests that range expansion of M. polymorpha into the New World has led to rapid evolution of a variety of traits that have helped multiple populations become established, including those that may allow invasive populations to resist herbivory. Thus, enemy release in a novel range can occur through rapid evolution by the plant during invasion, as predicted by the Shifting Defense Hypothesis, rather than via historical divergence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号