首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 15 毫秒
1.
Understanding plant‐mediated interactions in agricultural systems may facilitate the development of novel and improved management practices, which is important, as management of these insects is currently heavily reliant on insecticides. The fall armyworm, Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae, Prodeniini), is a sporadic pest of rice fields in the southern USA. In southwestern Louisiana, this defoliating insect typically attacks rice early in the growth season, before fields are flooded. Defoliation by fall armyworm larvae may trigger increased expression of plant defenses, which may result in increased resistance to subsequent herbivores. The rice water weevil (RWW), Lissorhoptrus oryzophilus Kuschel (Coleoptera: Curculionidae, Stenopelmini), enters rice fields as an adult both before and after flooding, but oviposition and larval infestation occur only after fields are flooded. RWW may be affected by changes in plant resistance caused by fall armyworm defoliation before flooding. The objectives of this study were to investigate the plant‐mediated effects of natural and artificial defoliation on population densities of RWW larvae after flooding and on the ability of rice plants to compensate for root injury by RWW larvae. In the 2015 season, fall armyworm defoliation before flooding resulted in reduced RWW densities after flooding. However, in 2016 no significant effects of fall armyworm defoliation on densities of RWW larvae were detected. Similarly, mechanical defoliation of rice before flooding did not affect RWW densities after flooding. Although lowest yields were observed in plots subjected to both root injury and defoliation, there was little evidence of a greater than additive reduction in yields from simultaneous injury. These results suggest a lack of plant‐mediated interactions among these two pests in rice in the southern USA.  相似文献   

2.
Applied research on host‐plant resistance to arthropod pests has been guided over the past 60 years by a framework originally developed by Reginald Painter in his 1951 book, Insect Resistance in Crop Plants. Painter divided the “phenomena” of resistance into three “mechanisms,” nonpreference (later renamed antixenosis), antibiosis, and tolerance. The weaknesses of this framework are discussed. In particular, this trichotomous framework does not encompass all known mechanisms of resistance, and the antixenosis and antibiosis categories are ambiguous and inseparable in practice. These features have perhaps led to a simplistic approach to understanding arthropod resistance in crop plants. A dichotomous scheme is proposed as a replacement, with a major division between resistance (plant traits that limit injury to the plant) and tolerance (plant traits that reduce amount of yield loss per unit injury), and the resistance category subdivided into constitutive/inducible and direct/indirect subcategories. The most important benefits of adopting this dichotomous scheme are to more closely align the basic and applied literatures on plant resistance and to encourage a more mechanistic approach to studying plant resistance in crop plants. A more mechanistic approach will be needed to develop novel approaches for integrating plant resistance into pest management programs.  相似文献   

3.
The role of wildland weeds that serve as alternate hosts for insect pests has not been directly examined for the potential to sustain pest populations or facilitate pest outbreaks. The development of weed biological control programmes is also complicated by weed species that are closely related to economically important or native plants, especially rare or special status species. In recent surveys in southern California, USA, we found a newly introduced insect pest of cole crops, Bagrada hilaris Burmeister (Bagrada bug), feeding on Brassicaceae weeds in riparian areas adjacent to agricultural fields where cole crops are routinely grown. Insect populations grew to levels well over action thresholds and caused severe damage to populations of the invasive weed, Lepidium latifolium (perennial pepperweed). The numerical response of B. hilaris on L. latifolium and other Brassicaceae weeds in natural areas may pose a significant challenge to effectively managing pest populations in crops. However, the accidental introduction of this insect provides the opportunity to examine plant–insect interactions with important implications for development of biologically based control methods for weeds.  相似文献   

4.
Maize [Zea mays L. ssp. mays (Poaceae)] was domesticated from Balsas teosinte (Zea mays ssp. parviglumis Iltis & Doebley) in present‐day Mexico. Fall armyworm, Spodoptera frugiperda JE Smith (Lepidoptera: Noctuidae), is among the most important pests of maize in Mexico and Central America. We compared the strength of plant defenses against fall armyworm between micro‐sympatric landrace maize and Balsas teosinte in the field and laboratory. The field comparison, conducted in Mexico, consisted of comparing the frequency of fall armyworm infestation between young maize and Balsas teosinte plants in dryland agricultural fields in which Balsas teosinte grew as a weed. The laboratory comparison contrasted the performance of fall armyworm larvae provided a diet of leaf tissue excised from maize or Balsas teosinte plants that were intact or had been primed by larval feeding. In the field, maize plants were more frequently infested with fall armyworm than Balsas teosinte plants: over 3 years and three fields, maize was infested at a ca. 1.8‐fold greater rate than Balsas teosinte. In the laboratory, larval growth, but not survivorship, was differently affected by feeding on maize vs. Balsas teosinte, and on primed vs. intact plants. Specifically, survivorship was ca. 98%, and did not differ between maize and Balsas teosinte, nor between primed and intact plants. Larvae grew less on intact vs. primed maize, and similarly on intact vs. primed Balsas teosinte; overall, growth was 1.2‐fold greater on maize compared to Balsas teosinte, and on primed compared to intact plants. Parallel observations showed that the differences in growth could not be attributed to the amount of leaf tissue consumed by larvae. We discuss our results in relation to differences in the strength of plant defenses between crops and their ancestors, the relevance of unmanaged Balsas teosinte introgression in the context of fall armyworm defenses in maize, and whether greater growth of larvae on primed vs. intact plants signifies herbivore offense.  相似文献   

5.
The sustainability of genetically engineered insecticidal Bacillus thuringiensis Berliner (Bt) maize, Zea mays L. (Poaceae), is threatened by the evolution of resistance by target pest species. Several Lepidoptera species have evolved resistance to Cry proteins expressed by Bt maize over the last decade, including the African maize stem borer, Busseola fusca (Fuller) (Lepidoptera: Noctuidae). The insect resistance management (IRM) strategy (i.e., the high‐dose/refuge strategy) deployed to delay resistance evolution is grounded on certain assumptions about the biology and ecology of a pest species, for example, the interactions between the insect pest and crop plants. Should these assumptions be violated, the evolution of resistance within pest populations will be rapid. This study evaluated the assumption that B. fusca adults and larvae select and colonize maize plants at random, and do not show any preference for either Bt or non‐Bt maize. Gravid female B. fusca moths of a resistant and susceptible population were subjected to two‐choice oviposition preference tests using stems of Bt and non‐Bt maize plants. Both the number of egg batches as well as the total number of eggs laid on each stem were recorded. The feeding preference of Bt‐resistant and susceptible neonate B. fusca larvae were evaluated in choice test bioassays with whorl leaf samples of specific maize cultivars. Although no differential oviposition preference was observed for either resistant or susceptible female moths, leaf damage ratings indicated that neonate larvae were able to detect Bt toxins and that they displayed feeding avoidance behaviour on Bt maize leaf samples.  相似文献   

6.
Host plant resistance and biological control are vital integrated pest management tools against the diamondback moth (DBM), Plutella xylostella (L.) (Lepidoptera: Plutellidae), but to date no study has investigated this system including the DBM parasitoid Oomyzus sokolowskii (Kurdjumov) (Hymenoptera: Eulophidae). We examined oviposition and development of P. xylostella exposed to two commercial cabbage cultivars (green ‘Chato de quintal’ and red ‘Roxo’) and possible effects upon O. sokolowskii. Under free‐choice tests, DBM females laid significantly more eggs on plants of the green cabbage, even though several population growth parameters showed that DBM developed better on the red cabbage. Furthermore, a laboratory free‐choice test with artificially green‐ and red‐painted kale leaf discs demonstrated a similar oviposition preference pattern, with green colour being preferred over red colour. The preference was apparently visually mediated; olfactometer tests showed similar attraction of moths to both green and red cultivars in choice and non‐choice tests. Host plant cultivar had no statistically significant effect on female parasitoid behaviour towards DBM larvae, nor on parasitoid numbers or longevity. Moreover, wasps parasitizing DBM larvae reared on the green cultivar developed more quickly and in larger numbers per parasitized larva. Thus, feeding on green cabbage rather than red does not hinder, and potentially even enhances, control of DBM by O. sokolowskii. On a practical level, these results suggest that intercalating green cabbage cultivars as a trap crop might help protect more profitable red cultivars in growing fields.  相似文献   

7.
The boll weevil, Anthonomus grandisBoheman (Coleoptera: Curculionidae), is a key pest of cotton, Gossypium hirsutumL. (Malvaceae). Knowledge about boll weevil feeding and oviposition behavior and its response to plant volatiles can underpin our understanding of host plant resistance, and contribute to improved monitoring and mass capture of this pest. Boll weevil oviposition preference and immature development in four cotton genotypes (CNPA TB90, TB85, TB15, and BRS Rubi) were investigated in the laboratory and greenhouse. Volatile organic compounds (VOCs) produced by TB90 and Rubi genotypes were obtained from herbivore‐damaged and undamaged control plants at two phenological stages – vegetative (prior to squaring) and reproductive (during squaring) – and four collection times – 24, 48, 72, and 96 h following herbivore damage. The boll weevil exhibited similar feeding and oviposition behavior across the four tested cotton genotypes. The chemical profiles of herbivore‐damaged plants of both genotypes across the two phenological stages were qualitatively similar, but differed in the amount of volatiles produced. Boll weevil response to VOC extracts was studied using a Y‐tube olfactometer. The boll weevil exhibited similar feeding and oviposition behavior at the four tested cotton genotypes, although delayed development and production of smaller adults was found when fed TB85. The chemical profile of herbivore‐damaged plants of both genotypes at the two phenological stages and time periods (24–96 h) was similar qualitatively, with 30 identified compounds, but differed in the amount of volatiles produced. Additionally, boll weevil olfactory response was positive to herbivory‐induced volatiles. The results help to understand the interaction between A. grandis and cotton plants, and why it is difficult to obtain cotton genotypes possessing constitutive resistance to this pest.  相似文献   

8.
In this study, we investigated whether the oviposition behaviour and performance of the beet armyworm, Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae), on the rose cultivar Rosa chinensis Jacq. (Rosaceae) were affected when the plants were infected by rose powdery mildew, Podosphaera pannosa (Wallr.: Fr.) de Bary (Erysiphales). The bioassays revealed that the moths significantly avoided ovipositing on mildew‐infected rose leaves when compared to healthy leaves. Pupal weights, emergence rates, and fecundity decreased when the caterpillars were fed mildewed rose leaves. Further laboratory bioassays aimed to elucidate the effects of two volatile headspace extracts (separately collected from healthy and mildewed rose plants) on the oviposition behaviour and performance of the moths. The moths clearly preferred to oviposit on healthy rose leaves that were not sprayed with additional volatiles rather than on healthy leaves sprayed with the volatile extracts from mildewed plants. The mean number of eggs laid on the former leaves was more than six times higher than that laid on the latter leaves. Olfactory bioassays demonstrated that ovipositing moths were significantly more attracted to volatiles emitted by healthy rose leaves than to those emitted by mildew‐infected leaves. Similar results were obtained when comparisons were made between the volatile extracts collected from healthy and mildewed rose plants. Thus, volatiles from mildew‐infected roses have a strong inhibitory effect against the moths. These results indicated that rose volatiles play a role in the oviposition behaviour of the moths, and that the volatiles induced by powdery mildew might be used for insect control.  相似文献   

9.
The red sunflower seed weevil, Smicronyx fulvus LeConte (Coleoptera: Curculionidae), is a primary seed-feeding pest of cultivated sunflowers, Helianthus annuus L., in North America. Host plant resistance is one tool available to complement insecticide-based management of S. fulvus. Artificial infestations of 30 adult weevils per head were used to determine whether variation for susceptibility to S. fulvus exists in previously released inbred lines, and how a new weevil-resistant line, HA 488, compares with other putative sources of resistance. Correcting for the number of seeds per head, 13 older inbred lines showed variation in per cent seed damage from 20% to 38%, with two lines (HA 412 HO, HA 821) being more damaged than most of the tested lines. Among four putative resistance sources, HA 488 was significantly less damaged (5%) than two previously identified open-pollinated varieties (PI 170424, PI 253417, with 13%–14% seed damage), while the source of the resistance in HA 488, PI 431542, was statistically intermediate (12%). The resistance available in HA 488 is a marked improvement, potentially reducing damage per weevil by two thirds or more, but additional work on genetic markers for resistance, economic thresholds and basic weevil biology (e.g. degree-day models for adult emergence) is needed to support implementation of integrated pest management for this key sunflower pest.  相似文献   

10.
Many plant viruses depend on aphids and other phloem‐feeding insects for transmission within and among host plants. Thus, viruses may promote their own transmission by manipulating plant physiology to attract aphids and increase aphid reproduction. Consistent with this hypothesis, Myzus persicae (green peach aphids) prefer to settle on Nicotiana benthamiana infected with Turnip mosaic virus (TuMV) and fecundity on virus‐infected N. benthamiana and Arabidopsis thaliana (Arabidopsis) is higher than on uninfected controls. TuMV infection suppresses callose deposition, an important plant defense, and increases the amount of free amino acids, the major source of nitrogen for aphids. To investigate the underlying molecular mechanisms of this phenomenon, 10 TuMV genes were over‐expressed in plants to determine their effects on aphid reproduction. Production of a single TuMV protein, nuclear inclusion a‐protease domain (NIa‐Pro), increased M. persicae reproduction on both N. benthamiana and Arabidopsis. Similar to the effects that are observed during TuMV infection, NIa‐Pro expression alone increased aphid arrestment, suppressed callose deposition and increased the abundance of free amino acids. Together, these results suggest a function for the TuMV NIa‐Pro protein in manipulating the physiology of host plants. By attracting aphid vectors and promoting their reproduction, TuMV may influence plant–aphid interactions to promote its own transmission.  相似文献   

11.
Asparagus virus 1 (AV‐1) infects Asparagus officinalis L. (Asparagaceae) in the field worldwide. However, various wild relatives of A. officinalis are resistant to AV‐1. Here we study the behavior of the green peach aphid, Myzus persicae (Sulzer) (Hemiptera: Aphididae), on 19 AV‐1‐resistant wild relatives of A. officinalis. We focus on behavior that is associated with regular cell penetration, relevant for inoculation of AV‐1, and sieve element penetration to check for vector resistance and its potential influence on AV‐1 transmission. Parameters, relevant for the transmission of non‐persistent viruses and host plant acceptance, were obtained by the electrical penetration graph technique. Furthermore, phylloclade architecture of A. officinalis and its wild relatives was examined to study its influence on aphid behavior. Behavior of M. persicae displays many cell penetrations and long ingestion periods on A. officinalis, compared to the generally shorter cell penetrations (reduced potential for virus transmission) and reduced or no ingestion (phloem‐located aphid resistance) on wild relatives. Because effects on aphid behavior are not consistent throughout the group of the tested wild relatives of A. officinalis, with some wild relatives being susceptible to M. persicae, a common genetic background for AV‐1 and aphid resistance appears to be unlikely. However, the reduced potential of virus transmission as well as aphid resistance shown by some wild relatives may be useful for future breeding programs.  相似文献   

12.
  • Pedicularis is the largest genus in the Orobanchaceae (>300) with many species co‐occurring and co‐blooming in subalpine to alpine meadows in the Himalayas. Although it is well known that different Pedicularis species place pollen on different parts of the same bumblebee's body, thus reducing interspecific pollen transfer, it is not known whether post‐pollination components also contribute to reproductive isolation (RI).
  • In this study, we quantified the individual strengths and absolute contributions of six pre‐ and post‐pollination components of RI between three sympatric species in two pairs; Pedicularis gruina × Pedicularis tenuisecta (gru × ten) and Pedicularis comptoniifolia × Pedicularis tenuisecta (com × ten).
  • All three Pedicularis species shared the same Bombus species. Individual foragers showed a high, but incomplete, floral constancy for each species. Therefore, pre‐pollination barriers were potentially ‘leaky’ as Bombus species showed a low but consistent frequency of interspecific visitation. The RI strength of pre‐pollination was lower in com × ten than in gru × ten. In contrast, post‐pollination barriers completely blocked gene flow between both sets of species pairs. Two post‐pollination recognition sites were identified. Late acting rejection of interspecific pollen tube growth occurred in com♀ × ten♂, while seeds produced in bi‐directional crosses of gru × ten failed to germinate.
  • We propose that, although floral isolation based on pollen placement on pollinators in the genus Pedicularis is crucial to avoid interspecific pollen transfer, the importance of this mode of interspecific isolation may be exaggerated. Post‐pollination barriers may play even larger roles for currently established populations of co‐blooming and sympatric species in this huge genus in the Himalayas.
  相似文献   

13.
Trichomes are an important physical resistance mechanism of plants, as they reduce insect herbivore movement, feeding, and digestion. However, we know little about how trichomes influence herbivore distributions and populations. We conducted laboratory and field experiments to evaluate the preferences of Platyprepia virginalis (Boisduval) (Lepidoptera: Arctiidae) caterpillars to natural and manipulated densities of trichomes on their primary food, Lupinus arboreus Sims (Fabaceae). We then conducted field surveys to determine whether variation in trichome density among lupine bushes affected caterpillar spatial distribution on the landscape. Platyprepia virginalis caterpillars preferred lupine leaves with fewer trichomes in choice and no‐choice experiments. In the field, caterpillar feeding damage was found more often on leaves with fewer trichomes. These preferences scaled up to the level of bushes in the landscape such that more caterpillars were found on bushes with lower trichome densities than on bushes with higher trichome densities. This is one of few studies to show the potential for trichome density to influence herbivore population size and distribution in a natural system at a landscape level. The results are consistent with trichomes functioning as a resistance mechanism with consequences for herbivore choice, performance, and distribution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号