共查询到20条相似文献,搜索用时 15 毫秒
1.
Equilibrium isotope exchange kinetics have been used to reinvestigate the kinetic mechanism of Escherichia coli aspartate transcarbamylase (aspartate carbamoyl-transferase) at pH 7.0, 30 degrees C. Keq = 5.9 (+/- 0.6) X 10(3), allowing variation of substrate concentrations above and below their Km values in all experiments, a condition not possible at pH 7.8 [F. C. Wedler and F. J. Gasser (1974) Arch. Biochem. Biophys. 163, 57-68]. The rate of the [14C]Asp in equilibrium N-carbamoyl L-aspartate (C-Asp) exchange reaction was five times faster than that of [32P]carbamyl phosphate (C-P) in equilibrium Pi, which argues strongly against the rapid equilibrium random mechanism previously proposed by E. Heyde, A. Nagabhushanam, and J. F. Morrison [Biochemistry 12, 4718-4726 (1973]. Substrate concentrations were varied either as reactant-product pairs (holding the other pair constant) or together simultaneously in constant ratio at equilibrium. The resulting kinetic saturation patterns were most consistent with a preferred order random kinetic mechanism, with C-P binding prior to Asp and with C-Asp being released before Pi. Weak inhibition effects at high substrate levels could be accounted for by multiple weak dead-end complexes or ionic strength effects. Computer-based simulations have led to a set of rate constants that fit the experimental data, are in agreement with rate constants measured previously by pre-steady-state methods, and predict the correct initial velocities in the forward and reverse directions. Simulations also show that rate constants consistent with any of the various alternative mechanisms do not provide good fit to the experimental data. A model for the kinetic mechanism is considered, in which the binding of Asp prior to C-P may restrict access of C-P to the active site, but C-P binding prior to Asp potentiates the enzyme for the allosteric (T-R) transition, centered entirely upon the Asp binding process. 相似文献
2.
Aspartate transcarbamylase from Escherichia coli is one of the most extensively studied regulatory enzymes as a model of cooperativity and allostery. Numerous methods are used to engineer variants of this molecule: random and site-directed mutagenesis, dissociation and reassociation of the catalytic and regulatory subunits and chains, construction of hybrids made from normal and modified subunits or chains, interspecific hybrids and construction of chimeric enzymes. These methods provide detailed information on the regions, domains, interfaces and aminoacid residues which are involved in the mechanism of co-operativity between the catalytic sites, and of regulation by the antagonistic effectors CTP and ATP. These effectors induce the transmission of intramolecular signals whose pathways begin to be delineated. 相似文献
3.
Studies with aspartate transcarbamylase 总被引:1,自引:0,他引:1
4.
We present direct calculations on aspartate transcarbamylase (ATCase) kinetics. New knowledge about ATCase quaternary structure are considered. “Decorated” Ising model is used for evaluating the statistical properties. Comparison with experimental data is considered. The theoretical results agree very well with experimental data. 相似文献
5.
Subunit structure of aspartate transcarbamylase from Escherichia coli 总被引:22,自引:0,他引:22
6.
7.
B P Jarry 《European journal of biochemistry》1978,87(3):533-540
A purification procedure is described by which aspartate transcarbamylase was obtained from cultured cells of Drosophila melanogaster as part of a high-molecular-weight enzyme complex. The complex is shown to contain several polypeptides. An antiserum directed against the complex enzyme inhibited in vitro the activity of aspartate transcarbamylase, carbamylphosphate synthetase and dihydro-orotase which were shown to copurify on a sucrose gradient and by gel electrophoresis. A fast preparation procedure using this antiserum yielded a 220 000-molecular-weight protein in addition to the polypeptides present in the complex. A purification procedure is also described to obtain aspartate transcarbamylase from second instar larvae of Drosophila. At this stage, the enzyme is not complexed with carbamylphosphate synthetase and dihydro-orotase but exhibits the same molecular weight as the aspartate transcarbamylase moiety found in the high-molecular-weight complex of cultured cells. 相似文献
8.
9.
Subunit interactions in aspartate transcarbamylase 总被引:1,自引:0,他引:1
R A Cook 《Biochemistry》1972,11(20):3792-3797
10.
Aspartate transcarbamylase (carbamoyl-phosphate: L-aspartate carbamoyltransferase, EC 2.1.3.2) has been purified from Mycobacterium smegmatis TMC 1546 using streptomycin sulphate precipitation, ammonium sulphate precipitation, DE-52 chromatography, second ammonium sulphate precipitation, Sephadex G-200 gel filtration, and aspartate-linked CNBr-activated Sepharose 4B affinity chromatography in successive order. The enzyme was purified 231.6-fold, and the preparation was found to be homogeneous on column chromatography and polyacrylamide gel electrophoresis. The purified enzyme had a molecular weight of 246,000 and was composed of two asymmetrical subunits. The kinetic and regulatory properties of aspartate transcarbamylase from M. smegmatis were also studied. The enzyme was found to be an allosteric in nature with carbamyl phosphate showing positive cooperativity and UMP exhibiting a negative cooperativity. CTP was found to be the most potent inhibitor among nucleotides. Phosphate acted as a non-competitive product inhibitor with respect to aspartate. Succinate and maleate exerted a competitive inhibition when aspartate was the variable substrate. 相似文献
11.
Comparative modeling of mammalian aspartate transcarbamylase 总被引:1,自引:0,他引:1
Mammalian aspartate transcarbamylase (ATCase) is part of a 243 kDa multidomain polypeptide, called CAD, that catalyzes the first three steps in de novo pyrimidine biosynthesis. The structural organization of the mammalian enzyme is very different from E. coli ATCase, a dodecameric, monofunctional molecule comprised of six copies of separate catalytic and regulatory chains. Nevertheless, sequence similarities and other properties suggested that the mammalian ATCase domain and the E. coli ATCase catalytic chain have the same tertiary fold. A model of mammalian ATCase was built using the X-ray coordinates of the E. coli catalytic chain as a tertiary template. Five small insertions and deletions could be readily accommodated in the model structure. Following energy minimization the RMS difference in the alpha carbon positions of the mammalian and bacterial proteins was 0.93 A. A comparison of the hydrophobic energies, surface accessibility index, and the distribution of hydrophilic and hydrophobic residues of the CAD ATCase structure with correctly and incorrectly folded proteins and with several X-ray structures supported the validity of the model. The mammalian ATCase domain associates to form a compact globular trimer, a prerequisite for catalysis since the active site is comprised of residues from adjacent subunits. Interactions between the clearly defined aspartate and carbamyl phosphate subdomains of the monomer were largely preserved while there was appreciable remodeling of the trimeric interfaces. Several clusters of basic residues are located on the upper surface of the domain which account in part for the elevated isoelectric point (pI = 9.4) and may represent contact regions with other more acidic domains within the chimeric polypeptide. A long interdomain linker connects the monomer at its upper surface to the remainder of the polypeptide. The configuration of active site residues is virtually identical in the mammalian and bacterial enzymes. While the CAD ATCase domain can undergo the local conformational changes that accompany catalysis in the E. coli enzyme, the high activity, closed conformation is probably more stable in the mammalian enzyme. 相似文献
12.
13.
14.
Bruno O. Villoutreix Velin Z. Spassov Boris P. Atanasov Guy Herv Moncef M. Ladjimi 《Proteins》1994,19(3):230-243
In Saccharomyces cerevisiae the first two reactions of the pyrimidine pathway are catalyzed by a multifunctional protein which possesses carbamylphosphate synthetase and aspartate transcarbamylase activities. Genetic and proteolysis studies suggested that the ATCase activity is carried out by an independently folded domain. In order to provide structural information for ongoing mutagenesis studies, a model of the three-dimensional structure of this domain was generated on the basis of the known X-ray structure of the related catalytic subunit from E. coli ATCase. First, a model of the catalytic monomer was built and refined by energy minimization. In this structure, the conserved residues between the two proteins were found to constitute the hydrophobic core whereas almost all the mutated residues are located at the surface. Then, a trimeric structure was generated in order to build the active site as it lies at the interface between adjacent chains in the E. coli catalytic trimer. After docking a bisubstrate analog into the active site, the whole structure was energy minimized to regularize the interactions at the contact areas between subunits. The resulting model is very similar to that obtained for the E. coli catalytic trimer by X-ray crystallography, with a remarkable conservation of the structure of the active site and its vicinity. Most of the interdomain and intersubunit interactions that are essential for the stability of the E. coli catalytic trimer are maintained in the yeast enzyme even though there is only 42% identity between the two sequences. Free energy calculations indicate that the trimeric assembly is more stable than the monomeric form. Moreover an insertion of four amino acids is localized in a loop which, in E. coli ATCase, is at the surface of the protein. This insertion exposes hydrophobic residues to the solvent. Interestingly, such an insertion is present in all the eukaryotic ATCase genes sequenced so far, suggesting that this region is interacting with another domain of the multifunctional protein. © 1994 Wiley-Liss, Inc. 相似文献
15.
The reaction mechanism of Saccharomyces cerevisiae aspartate transcarbamylase was studied in permeabilized cells of a mutant in which this enzyme is not associated to carbamylphosphate synthetase. The results obtained indicate an ordered mechanism in which carbamylphosphate binds first, followed by aspartate, with dissociation of the products in the order phosphate then carbamylaspartate. Interestingly, this clear-cut mechanism differs from the more complex behavior shown by aspartate transcarbamylase when this enzyme is associated to carbamylphosphate synthetase in wild-type S. cerevisiae (B. Penverne and G. Hervé, Arch. Biochem. Biophys. (1983) 225, 562-575). This difference indicates that the association of the two enzymes within the multienzymatic complex alters the apparent kinetic properties of aspartate transcarbamylase. Such an enzyme-enzyme interaction might be related to the channeling of carbamylphosphate from one catalytic site to the other one. 相似文献
16.
A discontinuous, colorimetric method for the assay of aspartate transcarbamylase has been adapted for use with 96-well microtiter plates. The method is based on that of L.M. Prescott and M.E. Jones (1969 Anal. Biochem. 32, 408-419) for the detection of ureido compounds, using monoxime and antipyrine. The enzymatic reaction is carried out in a volume of 150 microliters and is stopped by the addition of 100 microliters of a color mix. After development, the absorbance at 460 nm is directly proportional to the quantity of N-carbamyl-L-aspartate up to at least 0.125 mumol and to the quantity of Escherichia coli aspartate transcarbamylase up to about 7 ng. Kinetic parameters obtained from saturation curves for L-aspartate in 50 mM Tris-acetate, pH 8.0, are indistinguishable from those previously obtained: Vmax = 26,225 mumol h-1 mg-1; S0.5 = 14.7 mmol liter-1; hill constant = 2.5. 相似文献
17.
Reaction mechanism of the reconstituted aspartate/glutamate carrier from bovine heart mitochondria 总被引:1,自引:0,他引:1
A functional model for the aspartate/glutamate carrier of the inner mitochondrial membrane was established based on a kinetic evaluation of this transporter. Antiport kinetics were measured in proteoliposomes that contained partially purified carrier protein of definite transmembrane orientation (Dierks, T. and Kr?mer, R. (1988) Biochim. Biophys. Acta 937, 122-126). Bireactant initial velocity analyses of the counterexchange reaction were carried out varying substrate concentrations both in the internal and the external compartment. The kinetic patterns obtained were inconsistent with a pong-pong mechanism; rather they demonstrated the formation of a ternary complex as a consequence of sequential binding of one internal and one external substrate molecule to the carrier. Studies on transport activity in the presence of aspartate and glutamate in the same compartment (formally treated as substrate inhibition) clearly indicated that during exchange only one form of the carrier at either membrane surface exposes its binding sites, for which the two different substrates compete. In the deenergized state (pH 6.5) both substrates were translocated at about the same rate. Aspartate/glutamate antiport became asymmetric if a membrane potential was imposed, due to the electrogenic nature of the heteroexchange resulting from proton cotransport together with glutamate. Investigation of the electrical properties of aspartate/aspartate homoexchange led to the conclusion that the translocating carrier-substrate intermediate exhibits a transmembrane symmetry with respect to the (negative) charge, which again only is conceivable assuming a ternary complex. Thus, an antiport model is outlined that shows the functional complex of the carrier with two substrate molecules bound, one at either side of the membrane. The conformational change associated with the transition of both substrate molecules across the membrane then occurs in a single step. Furthermore the model implicates a distinct proton binding site, which is derived from the different influence of H+ concentration observed on transport affinity and transport velocity, respectively, when glutamate is used as a substrate. 相似文献
18.
Jefferson Foote 《Analytical biochemistry》1983,134(2):489-494
A procedure for determining the activity of aspartate transcarbamylase, based upon the greater ultraviolet absorbancy of the products of the reaction catalyzed compared to the reactants, was devised. Extinction coefficients were determined at 205, 210, and 215 nm for the compounds carbamoyl aspartate, acetyl aspartate, and aspartate. These values formed the quantitative basis for a spectrophotometric assay in which an enzymatic reaction is monitored at one of these wavelengths. Use of this procedure was illustrated in four kinetic experiments with the allosteric aspartate transcarbamylase from Escherichia coli, and the nonallosteric catalytic subunit of this enzyme: aspartate saturation curve, arsenate saturation curve (reverse reaction), allosteric activation by a transition-state analog employing acetyl phosphate as substrate, and carbamoyl phosphate progress curve (substrate depletion in the presence of excess cosubstrate). Owing to changes in absorbance on the order of 1000 liter mol?1 cm?1 concomitant with the reaction, the sensitivity of the method is comparable to that of many procedures already in the literature. 相似文献
19.
The reaction of phenylglyoxal with aspartate transcarbamylase and its isolated catalytic subunit results in complete loss of enzymatic activity (Kantrowitz, E. R., and Lipscomb, W. N. (1976) J. Biol. Chem. 251, 2688-2695). If N-(phosphonacetyl)-L-aspartate is used to protect the active site, we find that phenylglyoxal causes destruction of the enzyme's susceptibility to activation by ATP and inhibition by CTP. Furthermore, CTP only minimally protects the regulatory site from reaction with this reagent. The modified enzyme still binds CTP although with reduced affinity. After reaction with phenylglyoxal, the native enzyme shows reduced cooperativity. The hybrid with modified regulatory subunits and native catalytic subunits exhibits slight heterotropic or homotropic properties, while the reverse hybrid, with modified catalytic subunits and native regulatory subunits, shows much reduced homotropic properties but practically normal heterotropic interactions. The decrease in the ability of CTP to inhibit the enzyme correlates with the loss of 2 arginine residues/regulatory chain (Mr = 17,000). Under these reaction conditions, 1 arginine residue is also modified on each catalytic chain (Mr = 33,000). Reaction rate studies of p-hydroxymercuribenzoate, with the liganded and unliganded modified enzyme suggest that the reaction with phenylglyoxal locks the enzyme into the liganded conformation. The conformational state of the regulatory subunit is implicated as having a critical role in the expression of the enzyme's heterotropic and homotropic properties. 相似文献
20.