首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
J.C. Romijn  J. Amesz 《BBA》1976,423(2):164-173
Light-induced absorbance changes were measured at low temperatures in reaction center preparations from Rhodopseudomonas sphaeroides. Absorbance difference spectra measured at 100 °K show that ubiquinone is photoreduced at this temperature, both by continuous light and by a short actinic flash. The reduction occurred with relatively high efficiency. These results give support to the idea that ubiquinone is involved in the primary photochemical reaction in Rhodopseudomonas sphaeroides. Reduction of ubiquinone was accompanied by a shift of the infrared absorption band of bacteriopheophytin.The rate of decay of the primary photoproducts (P+870 and ubisemiquinone) appeared to be approximately independent of temperature below 180 °K and above 270 °K; in the region between 180 and 270 °K it increased with decreasing temperature. The rate of decay was not affected by o-phenanthroline. Secondary reactions were inhibited by lowering the temperature.The light-induced absorbance changes were inhibited by chaotropic agents, like thiocyanate and perchlorate. It was concluded that these agents lower the efficiency of the primary photoconversion. The kinetics indicated that the degree of inhibition was not the same for all reaction centers. The absorption spectrum of the photoconverted reaction centers appeared to be somewhat modified by thiocyanate.  相似文献   

2.
In preparations of photochemical reaction centers from Rhodopseudomonas spheroides R-26, lowering the redox potential so as to reduce the primary electron acceptor prevents the photochemical transfer of an electron from bacteriochlorophyll to the acceptor. Measuring absorbance changes under these conditions, we found that a 20-ns actinic flash converts the reaction center to a new state, PF, which then decays with a half-time that is between 1 and 10 ns at 295 °K. At 25 °K, the decay half-time is approx. 20 ns. The quantum yield of state PF appears to be near 1.0, both at 295 and at 15 °K. State PF could be an intermediate in the photochemical electron-transfer reaction which occurs when the acceptor is in the oxidized form.Following the decay of state PF, we detected another state, PR, with a decay half-time of 6 μs at 295 °K and 120 μs at 15 °K. The quantum yield of state PR is approx. 0.1 at 295 °K, but rises to a value nearer 1.0 at 15 °K. The kinetics and quantum yields are consistent with the view that state PR forms from PF. State PR seems likely to be a side-product, rather than an intermediate in the electron-transfer process.The decay kinetics indicate that state PF cannot be identical with the lowest excited singlet state of the reaction center. One of the two states, PF or PR, probably is the lowest excited triplet state of the reaction center, but it remains unclear which one.  相似文献   

3.
Light-induced absorption changes associated with the primary photochemical reaction and dark relaxation in Photosystem I were measured at various low temperatures. A possible temperature-dependent long-range electron tunneling process was suggested to account for the unique temperature dependence of the dark decay process. The kinetics of the light-induced absorption changes are in good agreement with the light-induced EPR changes reported earlier (Ke, B., Sugahara, K., Shaw, E.R., Hansen, R. E., Hamilton, W. D. and Beinert, H. (1974) Biochim. Biophys. Acta 368, 401–408) for the same Photosystem I subchloroplast fragments at comparable temperatures.All absorption changes between 400 and 725 nm at 86 °K have identical kinetics. The light-minus-dark difference spectrum is very similar to that of P-700 at room temperature, with an additional prominent positive change at 690 nm. Possible contributions by P-430 to the blue and red spectral changes were discussed.It was demonstrated that the intensity of the measuring beam has a drastic effect on the light-induced absorption changes of Photosystem I at low temperatures. Various pretreatments of the Photosystem I fragments such as those that photochemically (or chemically) oxidize the primary donor or photoreduce the primary acceptor abolish the subsequent photochemical reaction. Continuous illumination of the Photosystem I fragments before and during freezing has the same effect.In the temperature range of ?20 to ?60 °C, an unusual counter absorption change as well as a counter EPR change were observed.  相似文献   

4.
The photoreductive trapping of the transient, intermediate acceptor, I-, in purified reaction centers of Rhodopseudomonas sphaeroides R-26 was investigated for different external conditions. The optical spectrum of I- was found to be similar to that reported for other systems by Shuvalov and Klimov ((1976) Biochim. Biophys. Acta 400, 587--599) and Tiede et al. (P.M. Tiede, R.C. Prince, G.H. Reed and P.L. Dutton (1976) FEBS Lett. 65, 301--304). The optical changes of I- showed characteristics of both bacteriopheophytin (e.g. bleaching at 762, 542 nm and red shift at 400 nm) and bacteriochlorophyll (bleaching at 802 and 590 nm). Two types of EPR signals of I- were observed: one was a narrow singlet at g = 2.0035, deltaH = 13.5 G, the other a doublet with a splitting of 60 G centered around g = 2.00, which was only seen after short illumination times in reaction centers reconstituted with menaquinone. The optical and EPR kinetics of I- on illumination in the presence of reduced cytochrome c and dithionite strongly support the following three-step scheme in which the doublet EPR signal is due to the unstable state DI-Q-Fe2+ and the singlet EPR signal is due to DI-Q2-Fe2+. : formula: (see text), where D is the primary donor (BChl)2+. The above model was supported by the following observations: (1) During the first illumination, sigmoidal kinetics of the formation of I- was observed. This is a direct consequence of the three-sequential reactions. (2) During the second and subsequent illuminations first-order (exponential) kinetics were observed for the formation of I-. This is due to the dark decay, k4, to the state DIQ2-Fe2+ formed after the first illumination. (3) Removal of the quinone resulted in first-order kinetics. In this case, only the first step, k1, is operative. (4) The observation of the doublet signal in reaction centers containing menaquinone but not ubiquinone is explained by the longer lifetime of the doublet species I-(Q-Fe2%) in reaction centers containing menaquinone. The value of tau2 was determined from kinetic measurements to be 0.01 s for ubiquinone and 4 s for menaquinone (T = 20 degrees C). The temperature and pH dependence of the dark electron transfer reaction I-(Q-Fe2+) yields I(Q2-Fe2+) was studied in detail. The activation energy for this process was found to be 0.42 eV for reaction centers containing ubiquinone and 0.67 eV for reaction centers with menaquinone. The activation energy and the doublet splitting were used to calculate the rate of electron transfer from I- to MQ-Fe2+ using Hopfield's theory for thermally activated electron tunneling. The calculated rate agrees well with the experimentally determined rate which provides support for electron tunneling as the mechanism for electron transfer in this reaction. Using the EPR doublet splitting and the activation energy for electron transfer, the tunneling matrix element was calculated to be 10(-3) eV. From this value the distance between I- and MQ- was estimated to be 7.5--10 A.  相似文献   

5.
In intact PSII, both the secondary electron donor (Tyr(Z)) and side-path electron donors (Car/Chl(Z)/Cyt(b)(559)) can be oxidized by P(680)(+) at cryogenic temperatures. In this paper, the effects of acceptor side, especially the redox state of the non-heme iron, on the donor side electron transfer induced by visible light at cryogenic temperatures were studied by EPR spectroscopy. We found that the formation and decay of the S(1)Tyr(Z) EPR signal were independent of the treatment of K(3)Fe(CN)(6), whereas formation and decay of the Car(+)/Chl(Z)(+) EPR signal correlated with the reduction and recovery of the Fe(3+) EPR signal of the non-heme iron in K(3)Fe(CN)(6) pre-treated PSII, respectively. Based on the observed correlation between Car/Chl(Z) oxidation and Fe(3+) reduction, the oxidation of non-heme iron by K(3)Fe(CN)(6) at 0 degrees C was quantified, which showed that around 50-60% fractions of the reaction centers gave rise to the Fe(3+) EPR signal. In addition, we found that the presence of phenyl-p-benzoquinone significantly enhanced the yield of Tyr(Z) oxidation. These results indicate that the electron transfer at the donor side can be significantly modified by changes at the acceptor side, and indicate that two types of reaction centers are present in intact PSII, namely, one contains unoxidizable non-heme iron and another one contains oxidizable non-heme iron. Tyr(Z) oxidation and side-path reaction occur separately in these two types of reaction centers, instead of competition with each other in the same reaction centers. In addition, our results show that the non-heme iron has different properties in active and inactive PSII. The oxidation of non-heme iron by K(3)Fe(CN)(6) takes place only in inactive PSII, which implies that the Fe(3+) state is probably not the intermediate species for the turnover of quinone reduction.  相似文献   

6.
Phospholipids are essential components for electron transport activity of cytochrome oxidase. Recently, we have found that the removal of phospholipids from the oxidase affected the copper and low-spin heme signals, and conceivably other paramagnetic centers as demonstrated by EPR spectroscopy. At 4.2–30 °K, the signal amplitudes and power saturation behaviors were studied at approximately g = 2.0 for the copper signal, and in the neighborhood of g = 3.0 for the low-spin heme signal. After depletion of phospholipids the amplitude of the copper signal decreased 25–30% at 12–30 °K and below 12 °K 40–50% under nonsaturating conditions. The amplitude of the low-spin heme signal decreased 60–70% at 4.2–20 °K. Below 14 °K both signals became more resistant to power saturation, but the copper signal was more readily saturated above this temperature, compared to the oxidase with about 25% lipid. After removal of phospholipids, the spectral features of the copper signal remained essentially the same, but the low-spin heme signal broadened and became very asymmetric to show two signals as revealed by the second harmonic EPR spectra. These findings may explain, at least partially, the wide variations in percentage of EPR detectable copper and heme of cytochrome oxidase reported by different laboratories. Unequivocally, the EPR behavior of cytochrome oxidase is not only affected by the protein moiety, but also by the associated phospholipids of the enzyme.  相似文献   

7.
Light-induced absorbance changes were measured at low temperatures in reaction center preparations from Rhodopseudomonas sphaeroides. Absorbance difference spectra measured at 100 degrees K show that ubiquinone is photoreduced at this temperature, both by continuous light and by a short actinic flash. The reduction occurred with relatively high efficiency. These results give support to the idea that ubiquinone is involved in the primary photochemical reaction in Rhodopseudomonas sphaeroides. Reduction of ubiquinone was accompanied by a shift of the infrared absorption band of bacteriopheophytin. The rate of decay of the primary photoproducts (P+870 and ubisemiquinone) appeared to be approximately independent of temperature below 180 degrees K and above 270 degrees K; in the region between 180 and 270 degrees K it increased with decreasing temperature. The rate of decay was not affected by 0-phenanthroline. Secondary reactions were inhibited by lowering the temperature. The light-induced absorbance changes were inhibited by chaotropic agents, like thiocyanate and perchlorate. It was concluded that these agents lower the efficiency of the primary photoconversion. The kinetics indicated that the degree of inhibition was not the same for all reaction centers. The absorption spectrum of the photoconverted reaction centers appeared to be somewhat modified by thiocyanate.  相似文献   

8.
《BBA》1985,810(1):33-48
We have examined the temperature dependence of the rate of electron transfer to ubiquinone from the bacteriopheophytin (BPh) that serves as an initial electron acceptor (I) in reaction centers of Rhodopseudomonas sphaeroides. The kinetics were measured from the decay of the 665-nm absorption band of the reduced BPh (BPh or I) and from the recovery of the BPh band at 545 nm, following excitation of reaction centers in polyvinyl alcohol films with 30-ps flashes. The measured time constant decreases from 229 ± 25 ps at 295 K to 97 ± 8 ps near 100 K and then remains constant down to 5 K. The temperature dependence of the kinetics can be rationalized on the assumption that the reaction results in changes in the frequencies of numerous low-energy nuclear (vibrational) modes of the electron carriers and/or the protein. The kinetics measured in the absorption bands near 765 and 795 nm show essentially the same temperature dependence as those measured at 545 or 665 nm, but the time constants vary with detection wavelength. The time constant measured in the 795-nm region (70 ± 10 ps at 5 and 76 K) is shorter than that seen in the absorption bands of the BPh; the time constant measured at 758 nm is longer. Time constants measured with reaction centers in solution at 288 K also vary with the detection wavelength. These results can be explained on the assumption that the absorption changes measured at some wavelengths reflect nuclear relaxations rather than electron transfer. The absorption changes at 795 nm probably reflect a relaxation of the bacteriochlorophyll molecules that are near neighbors of the BPh and the primary electron donor (P). Those near 530 and 755 nm probably are due to the second BPh molecule, which does not appear to undergo oxidation or reduction.  相似文献   

9.
The spectroscopic properties of the intermediary electron carrier (I), which functions between the bacteriochlorophyll dimer, (BChl)2, and the primary acceptor quinone · iron, QFe, have been characterized in Rhodopseudomonas viridis. Optically the reduction of I is accompanied by a bleaching of bands at 545 and 790 nm and a broad absorbance increase around 680 nm which we attribute to the reduction of a bacteriopheophytin, together with apparent blue shifts of the bacteriochlorophyll bands at 830 and possibly at 960 nm. Low temperature electron paramagnetic resonance analysis also reveals complicated changes accompanying the reduction of I. In chromatophores I? is revealed as a broad split signal centered close to g 2.003, which is consistent with I? interacting, via exchange coupling and dipolar effects, with the primary acceptor Q?Fe. This is supported by experiments with reaction centers prepared with sodium dodecyl sulfate, which lack the Q?Fe g 1.82 signal, and also lack the broad split I? signal; instead, I? is revealed as an approximately 13 gauss wide free radical centered close to g 2.003. Reaction centers prepared using lauryl dimethylamine N-oxide retain most of their Q?Fe g 1.82 signal, and in this case I? occurs as a mixture of the two EPR signals described above. However, the optical changes accompanying the reduction of I? are very similar in the two reaction center preparations, so we conclude that there is no direct correlation between the two optical and the two EPR signals of I?. Perhaps the simplest explanation of the results is that the two EPR signals reflect the reduced bacteriopheophytin either interacting, or not interacting, with Q?Fe, while the optical changes reflect the reduction of bacteriophenophytin, together with secondary, perhaps electrochromic effects on the bacteriochlorophylls of the reaction center. However, we are unable to eliminate completely the possibility that there is also some electron sharing between the reduced bacteriopheophytin and bacteriochlorophyll.  相似文献   

10.
11.
Light-induced changes of EPR signals in Photosystem-I subchloroplast particles at temperatures between 225 and 13 °K showed that the rates of onset of photooxidation of P700 and photoreduction of iron-sulfur protein(s) are identical and instantaneous within the limits of resolution of our instruments. The fraction of the P700+ EPR signal that appears reversibly decreased with decreasing temperature down to 13 °K when the photoreaction was completely irreversible. At temperatures below 225 °K, the reversible fraction consists of two approximately equal portions with decay halftimes of approx. 3 and 75 s, respectively. Light-induced absorption changes due to P700 photooxidation at low temperatures monitored at 700 nm showed a similar kinetic pattern.

Since the reduced iron-sulfur protein signals can only be detected at very low temperature, their decay kinetics cannot be continuously monitored at higher temperatures. Therefore, exposure at appropriate temperatures and reaction times were selected according to the decay kinetics of P700+, after which decay was stopped by lowering the temperature to 13 °K and the P700+ and reduced iron-sulfur protein signals were recorded and compared. In the temperature range (225-13 °K) studied, the decay of P700+ and reduced iron-sulfur protein signals appears identical, suggesting that the two oppositely charged species recombine in the dark. These experiments support the view that iron-sulfur protein(s) is the reaction partner of P700 in the primary photochemical act of Photosystem I.  相似文献   


12.
Richard Malkin  Alan J. Bearden 《BBA》1975,396(2):250-259
Electron paramagnetic resonance studies of the primary reactants of Photosystems I and II have been conducted at cryogenic temperatures after laser-flash activation with monochromatic light.P-700 photooxidation occurs irreversibly in chloroplasts and in Photosystem I fragments after activation with a 730 nm laser flash at a temperature of 35 °;K. Flash activation of chloroplasts or Photosystem II chloroplast fragments with 660 nm light results in the production of a free-radical signal (g = 2.002, linewidth ~ 8 gauss) which decays with a half-time of 5.0 ms at 35 °;K. The half-time of decay is independent of temperature in the range of 10–77 °;K. This reversible signal can be eliminated by preillumination of the sample at 35 °;K with 660 nm light (but not by 730 nm light), by preillumination with 660 nm light at room temperature in the presence of 3-(3′, 4′-dichlorophenyl)-1,1′-dimethylurea (DCMU) plus hydroxylamine, or by adjustment of the oxidation-reduction potential of the chloroplasts to — 150 mV prior to freezing. In the presence of ferricyanide (20–50 mM), two free-radical signals are photoinduced during a 660 nm flash at 35 °;K. One signal decays with a half-time of 5 ms, whereas the second signal is formed irreversibly. These results are discussed in terms of a current model for the Photosystem II primary reaction at low temperature which postulates a back-reaction between P-680+ and the primary electron acceptor.  相似文献   

13.
G D Watt  A Burns  D L Tennent 《Biochemistry》1981,20(25):7272-7277
Reductive EPR and optical titrations of oxidized MoFe protein using reduced methyl viologen as reductant were used to quantitate the stoichiometry of the various spectroscopically and electrochemically distinct redox centers in the oxidized MoFe protein. Three centers were found to correlate with the EPR signal development (MoFe cofactor centers), and three centers were found to be independent of the EPR signal (P clusters) but to demonstrate distinct optical and kinetic properties. Oxidative EPR and optical titrations of reduced MoFe protein are reported which support the presence of three P-cluster centers. The optical titrations show a distinct change in kinetic behavior between the MoFe cofactor and P-cluster centers. Controlled potential coulometry demonstrates that incremental oxidation of reduced protein by methylene blue, thionine, or indigodisulfonate occurs specifically at three P-cluster sites. Subsequent oxidation by methylene blue and thionine (but not indigodisulfonate) causes the EPR signal to disappear. Three P-cluster sites, two EPR sites, and one presently uncharacterized site are suggested by the results of this study.  相似文献   

14.
Effects of formate on rates of O(2) evolution and electron paramagnetic resonance (EPR) signals were observed in the oxygen evolving PS II membranes as a function of pH. In formate treated PS II membranes, decrease in pH value resulted in the inhibition of the O(2) evolving activity, a decrease in the intensity of S(2) state multiline signal but an increase in the intensity of the Q(A)(-)Fe(2+) EPR signal. Time-resolved EPR study of the Y(Z)(*) decay kinetics showed that the light-induced intensity of Y(Z)(*) EPR signal was proportional to the formate concentration. The change in the pH affected both the light-induced intensities and the decay rates of Y(Z)(*), which was found to be faster at lower pH. At 253 K, t(1/e) value of Y(Z)(*) decay kinetics was found to be 8-10 s at pH 6.0 and 18-21 s at pH 5.0. The results presented here indicate that the extent of inhibition at the donor and the acceptor side of PS II due to formate is pH dependent, being more effective at lower pH.  相似文献   

15.
The Photosystem I primary reaction, as measured by electron paramagnetic resonance changes of P-700 and a bound iron-sulfur center, has been studied at 15°K in P-700-chlorophyll a-protein complexes isolated from a blue-green alga. One complex, prepared with sodium dodecyl sulfate shows P-700 photooxidation only at 300°K, whereas a second complex, prepared with Triton X-100, is photochemically active at 15°K as well as at 300°K. Analysis of these two preparations shows that the absence of low-temperature photoactivity in the sodium dodecyl sulfate complex reflects a lack of bound iron-sulfur centers in this preparation and supports the assignment of an iron-sulfur center as the primary electron acceptor of Photosystem I.  相似文献   

16.
The time-resolved chlorophyll fluorescence emission of higher plant chloroplasts monitors the primary processes of photosynthesis and reflects photosynthetic membrane organization. In the present study we compare measurements of the chlorophyll fluorescence decay kinetics of the chlorophyll-b-less chlorina-f2 barley mutant and wild-type barley to investigate the effect of alterations in thylakoid membrane composition on chlorophyll fluorescence. Our analysis characterizes the fluorescence decay of chlorina-f2 barley chloroplasts by three exponential components with lifetimes of approx. 100 ps, 400 ps and 2 ns. The majority of the chlorophyll fluorescence originates in the two faster decay components. Although photo-induced and cation-induced effects on fluorescence yields are evident, the fluorescence lifetimes are independent of the state of the Photosystem-II reaction centers and the degree of grana stacking. Wild-type barley chloroplasts also exhibit three kinetic fluorescence components, but they are distinguished from those of the chlorina-f2 chloroplasts by a slow decay component which displays cation- and photo-induced yield and lifetime changes. A comparison is presented of the kinetic analysis of the chlorina-f2 barley fluorescence to the decay kinetics previously measured for intermittent-light-grown peas (Karukstis, K. and Sauer, K. (1983) Biochim. Biophys. Acta 725, 384–393). We propose that similarities in the fluorescence decay kinetics of both species are a consequence of analogous rearrangements of the thylakoid membrane organization due to the deficiencies present in the light-harvesting chlorophyll ab complex.  相似文献   

17.
Ulf Andréasson 《BBA》2003,1607(1):45-52
In reaction centers from Rhodobacter sphaeroides exposed to continuous illumination in the presence of an inhibitor of the QA to QB electron transfer, a semi-stable, charge-separated state was formed with halftimes of formation and decay of several minutes. When the non-heme iron was replaced by Cu2+, the decay of the semi-stable, charge-separated state became much slower than in centers with bound Fe2+ with about the same rate constant for formation. In Cu2+-substituted reaction centers, the semi-stable state was associated with an EPR signal, significantly different from that observed after chemical reduction of the acceptor-side quinone or after illumination at low temperature, but similar to that of an isolated Cu2+ in the absence of magnetic interaction. The EPR results, obtained with Cu2+-substituted reaction centers, suggest that the slow kinetics of formation and decay of the charge-separated, semi-stable state is associated with a structural rearrangement of the acceptor side and the immediate environment of the metal-binding site.  相似文献   

18.
C.C. Schenck  B. Diner  P. Mathis  K. Satoh 《BBA》1982,680(2):216-227
Light excitation of chloroplasts at low temperature produces absorption changes (ΔA) with a large positive peak at 990 nm and a bleaching around 480 nm. ΔA at 990 nm rises with t12 = 0.6 ms at 20–77 K and remains largely stable. This signal is not observed when Photosystem II (PS II) photochemistry is blocked by reduction of the primary plastoquinone. It is observed also in purified PS II particles, in which case it could be shown that during a sequence of short flashes, the absorption at 990 nm rises in parallel with plastoquinone reduction measured at 320 nm. In chloroplasts the light-induced 990-nm ΔA at 77 K is increased under oxidizing conditions (addition of ferricyanide) and upon addition of 2-(3-chloro-4-trifluoromethyl)anilino-3,5-dinitrothiophene (ANT2p). At 21°C, flash excitation of chloroplasts or of PS II particles induces only a very small ΔA at 990 nm, even when this is measured with a 100-ns time resolution or when the material is preilluminated. In both materials, however, a large flash-induced ΔA takes place when various lipophilic anions are added. After a flash the signal rises in less than 100 μs and its decay varies with experimental conditions; the decay is strongly accelerated by benzidine. The difference spectrum measured in PS II particles includes a broad peak around 990 nm and a bleaching around 490 nm. These absorption changes are attributed to a carotenoid radical cation formed at the PS II reaction center. It is estimated that in the presence of lipophilic anions at room temperature, one cation can be formed by a single flash in 80% of the reaction centers. At cryogenic temperature approx. 8% of the PS II reaction centers can oxidize a carotenoid after a single flash.  相似文献   

19.
P. Gast  T. Swarthoff  F.C.R. Ebskamp  A.J. Hoff 《BBA》1983,722(1):163-175
The yield of the triplet state of the primary electron donor of Photosystem I of photosynthesis (PT-700) and the characteristic parameters (g value, line shape, saturation behavior) of the ESR signal of the photoaccumulated intermediary acceptor A have been measured for two types of Photosystem I subchloroplast particles: Triton particles (TSF 1, about 100 chlorophyll molecules per P-700) that contain the iron-sulfur acceptors FX, FB and FA, and lithium dodecyl sulfate (LDS) particles (about 40 chlorophyll molecules per P-700) that lack these iron-sulfur acceptors. The results are: (i) In Triton particles the yield of PT-700 upon illumination is independent of the redox state of A and of FX,B,A and is maximally about 5% of the active reaction centers at 5 K. The molecular sublevel decay rates are kx = 1100 s?1 ± 10%, ky = 1300 s?1 ± 10% and kz = 83 s?1 ± 20%. In LDS particles the triplet yield decreases linearly with concentration of reduced intermediary acceptors, the maximal yield being about 4% at 5 K assuming full P-700 activity. (ii) In Triton particles the acceptor complex A consists of two acceptors A0 and A1, with A0 preceding A1. In LDS particles at temperatures below ?30°C only A0 is photoactive. (iii) The spin-polarized ESR signal found in the time-resolved ESR experiments with Triton particles is attributed to a polarized P-700-A?1 spectrum. The decay kinetics are complex and are influenced by transient nutation effects, even at low microwave power. It is concluded that the lifetime at 5 K of P-700A0A?1 must exceed 5 ms. We conclude that PT-700 originates from charge recombination of P-700A?0, and that in Triton particles A0 and A1 are both photoaccumulated upon cooling at low redox potential in the light. Since the state P-700AF?X does not give rise to triplet formation the 5% triplet yield in Triton particles is probably due to centers with damaged electron transport.  相似文献   

20.
In reaction centers from Rhodobacter sphaeroides exposed to continuous illumination in the presence of an inhibitor of the Q(A)(-) to Q(B) electron transfer, a semi-stable, charge-separated state was formed with halftimes of formation and decay of several minutes. When the non-heme iron was replaced by Cu(2+), the decay of the semi-stable, charge-separated state became much slower than in centers with bound Fe(2+) with about the same rate constant for formation. In Cu(2+)-substituted reaction centers, the semi-stable state was associated with an EPR signal, significantly different from that observed after chemical reduction of the acceptor-side quinone or after illumination at low temperature, but similar to that of an isolated Cu(2+) in the absence of magnetic interaction. The EPR results, obtained with Cu(2+)-substituted reaction centers, suggest that the slow kinetics of formation and decay of the charge-separated, semi-stable state is associated with a structural rearrangement of the acceptor side and the immediate environment of the metal-binding site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号