首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The quaternary structure of α‐crystallin is dynamic, a property which has thwarted crystallographic efforts towards structural characterization. In this study, we have used collision‐induced dissociation mass spectrometry to examine the architecture of the polydisperse assemblies of α‐crystallin. For total α‐crystallin isolated directly from fetal calf lens using size‐based chromatography, the αB‐crystallin subunit was found to be preferentially dissociated from the oligomers, despite being significantly less abundant overall than the αA‐crystallin subunits. Furthermore, upon mixing molar equivalents of purified αA‐ and αB‐crystallin, the levels of their dissociation were found to decrease and increase, respectively, with time. Interestingly though, dissociation of subunits from the αA‐ and αB‐crystallin homo‐oligomers was comparable, indicating that strength of the αA:αA, and αB:αB subunit interactions are similar. Taken together, these data suggest that the differences in the number of subunit contacts in the mixed assemblies give rise to the disproportionate dissociation of αB‐crystallin subunits. Limited proteolysis mass spectrometry was also used to examine changes in protease accessibility during subunit exchange. The C‐terminus of αA‐crystallin was more susceptible to proteolytic attack in homo‐oligomers than that of αB‐crystallin. As subunit exchange proceeded, proteolysis of the αA‐crystallin C‐terminus increased, indicating that in the hetero‐oligomeric form this tertiary motif is more exposed to solvent. These data were used to propose a refined arrangement for the interactions of the α‐crystallin domains and C‐terminal extensions of subunits within the α‐crystallin assembly. In particular, we propose that the palindromic IPI motif of αB‐crystallin gives rise to two orientations of the C‐terminus. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

2.
α‐Crystallin, the major protein of mammalian eye lens, is a member of the small heat shock protein family and is a molecular chaperone. We previously reported that its molecular chaperone function as well as stability increased in presence of Zn+2. Despite the effect of Zn+2 on the structure and function of α‐crystallin, evidence for direct interaction between them remained elusive. We now present the MALDI mass spectrometric data that shows direct evidence of Zn+2 binding to recombinant αA‐ and αB‐crystallin. The binding stoichiometry was over three Zn+2 per subunit of α‐crystallin at zinc/protein molar ratio of 20. Observation of multiple Zn+2 binding is consistent with the large increase in thermodynamic stability. Sequence‐based analysis of αA‐ and αB‐crystallin predicted both proteins to be nonzinc binding proteins. Our dynamic light scattering data shows that Zn+2 stabilizes the oligomeric structure of α‐crystallin by bridging neighboring subunits in multiple centers. Despite the low affinity binding, the intersubunit bridging by multiple Zn+2 makes the oligomer so stable that oligomer breakdown does not occur even at 6M urea. The subunit bridging has been supported by our FRET data that showed absence of subunit exchange in presence of zinc. MALDI data also showed that the interaction of α‐crystallin with Zn+2 is quite different from other bivalent metal ions. Bound Zn+2 could be easily removed by dialysis of the complex. The relevance of such weak interaction on the stability of the oligomeric structure of α‐crystallin and its function in the eye lens has been discussed. © 2010 Wiley Periodicals, Inc. Biopolymers 95: 105–116, 2011.  相似文献   

3.
Oligomerization is an essential property of small heat shock proteins (sHSPs) that appears to regulate their chaperone activity. We have examined the role of conserved hydrophobic residues that are postulated to stabilize sHSP oligomers. We identified a mutation of Synechocystis Hsp16.6 that impairs function in vivo and in vitro. The V143A mutation is in the C-terminal extension, a region predicted to form an oligomeric interaction with a hydrophobic region that includes the site of a previously characterized mutation, L66A. Both mutants were dimeric, but V143A had a stronger oligomerization defect than L66A. However, V143A protected a model substrate better than L66A. This suggests that although the two regions both play a role in oligomerization, they are not equivalent. Nevertheless, the addition of either dimeric sHSP enhanced the in vitro chaperone activity of wild type Hsp16.6, consistent with models that the sHSP dimers initiate interactions with substrates. Suppressor analysis of V143A identified mutations in the N terminus that restored activity by restabilizing the oligomer. These mutants were allele-specific and unable to suppress L66A, although they suppressed a dimeric C-terminal truncation of Hsp16.6. Conversely, suppressors of L66A were unable to suppress either V143A or the truncation, although they, like suppressors of V143A, stabilize the Hsp16.6 oligomer. We interpret these data as evidence that the mutations V143A and L66A stabilize two different dimeric structures and as further support that sHSP dimers are active species.  相似文献   

4.
The small heat shock protein (sHSP) from Methanococcus jannaschii (Mj Hsp16.5) forms a monodisperse 24mer and each of its monomer contains two flexible N‐ and C‐terminals and a rigid α‐crystallin domain with an extruding β‐strand exchange loop. The minimal α‐crystallin domain with a β‐sandwich fold is conserved in sHSP family, while the presence of the β‐strand exchange loop is divergent. The function of the β‐strand exchange loop and the minimal α‐crystallin domain of Mj Hsp16.5 need further study. In the present study, we constructed two fragment‐deletion mutants of Mj Hsp16.5, one with both the N‐ and C‐terminals deleted (ΔNΔC) and the other with a further deletion of the β‐strand exchange loop (ΔNΔLΔC). ΔNΔC existed as a dimer in solution. In contrast, the minimal α‐crystallin domain ΔNΔLΔC became polydisperse in solution and exhibited more efficient chaperone‐like activities to prevent amorphous aggregation of insulin B chain and fibril formation of the amyloidogenic peptide dansyl‐SSTSAA‐W than the mutant ΔNΔC and the wild type did. The hydrophobic probe binding experiments indicated that ΔNΔLΔC exposed much more hydrophobic surface than ΔNΔC. Our study also demonstrated that Mj Hsp16.5 used different mechanisms for protecting different substrates. Though Mj Hsp16.5 formed stable complexes with substrates when preventing thermal aggregation, no complexes were detected when preventing aggregation under non‐heat‐shock conditions. Proteins 2014; 82:1156–1167. © 2013 Wiley Periodicals, Inc.  相似文献   

5.
Detection and Architecture of Small Heat Shock Protein Monomers   总被引:1,自引:0,他引:1  

Background

Small Heat Shock Proteins (sHSPs) are chaperone-like proteins involved in the prevention of the irreversible aggregation of misfolded proteins. Although many studies have already been conducted on sHSPs, the molecular mechanisms and structural properties of these proteins remain unclear. Here, we propose a better understanding of the architecture, organization and properties of the sHSP family through structural and functional annotations. We focused on the Alpha Crystallin Domain (ACD), a sandwich fold that is the hallmark of the sHSP family.

Methodology/Principal Findings

We developed a new approach for detecting sHSPs and delineating ACDs based on an iterative Hidden Markov Model algorithm using a multiple alignment profile generated from structural data on ACD. Using this procedure on the UniProt databank, we found 4478 sequences identified as sHSPs, showing a very good coverage with the corresponding PROSITE and Pfam profiles. ACD was then delimited and structurally annotated. We showed that taxonomic-based groups of sHSPs (animals, plants, bacteria) have unique features regarding the length of their ACD and, more specifically, the length of a large loop within ACD. We detailed highly conserved residues and patterns specific to the whole family or to some groups of sHSPs. For 96% of studied sHSPs, we identified in the C-terminal region a conserved I/V/L-X-I/V/L motif that acts as an anchor in the oligomerization process. The fragment defined from the end of ACD to the end of this motif has a mean length of 14 residues and was named the C-terminal Anchoring Module (CAM).

Conclusions/Significance

This work annotates structural components of ACD and quantifies properties of several thousand sHSPs. It gives a more accurate overview of the architecture of sHSP monomers.  相似文献   

6.
ATP-independent small heat-shock proteins (sHSPs) are an essential component of the cellular chaperoning machinery. Under both normal and stress conditions, sHSPs bind partially unfolded proteins and prevent their irreversible aggregation. Canonical vertebrate sHSPs, such as the α-crystallins, form large polydisperse oligomers from which smaller, functionally active subspecies dissociate. Here we focus on human HSPB6 which, despite having considerable homology to the α-crystallins in both the N-terminal region and the signature α-crystallin domain (ACD), only forms dimers in solution that represent the basic chaperoning subspecies. We addressed the three-dimensional structure and functional properties of HSPB6 in a hybrid study employing X-ray crystallography, solution small-angle X-ray scattering (SAXS), mutagenesis, size-exclusion chromatography and chaperoning assays. The crystal structure of a proteolytically stable fragment reveals typical ACD dimers which further form tetrameric assemblies as a result of extensive inter-dimer patching of the β4/β8 grooves. The patching is surprisingly mediated by tripeptide motifs, found in the N-terminal domain directly adjacent to the ACD, that are resembling but distinct from the canonical IxI sequence commonly binding this groove. By combining the crystal structure with SAXS data for the full-length protein, we derive a molecular model of the latter. In solution, HSPB6 shows a strong attractive self-interaction, a property that correlates with its chaperoning activity. Both properties are dictated by the unstructured yet compact N-terminal domain, specifically a region highly conserved across vertebrate sHSPs.  相似文献   

7.
HSP27 is a human molecular chaperone that forms large, dynamic oligomers and functions in many aspects of cellular homeostasis. Mutations in HSP27 cause Charcot‐Marie‐Tooth (CMT) disease, the most common inherited disorder of the peripheral nervous system. A particularly severe form of CMT disease is triggered by the P182L mutation in the highly conserved IxI/V motif of the disordered C‐terminal region, which interacts weakly with the structured core domain of HSP27. Here, we observed that the P182L mutation disrupts the chaperone activity and significantly increases the size of HSP27 oligomers formed in vivo, including in motor neurons differentiated from CMT patient‐derived stem cells. Using NMR spectroscopy, we determined that the P182L mutation decreases the affinity of the HSP27 IxI/V motif for its own core domain, leaving this binding site more accessible for other IxI/V‐containing proteins. We identified multiple IxI/V‐bearing proteins that bind with higher affinity to the P182L variant due to the increased availability of the IxI/V‐binding site. Our results provide a mechanistic basis for the impact of the P182L mutation on HSP27 and suggest that the IxI/V motif plays an important, regulatory role in modulating protein–protein interactions.  相似文献   

8.
McHaourab HS  Lin YL  Spiller BW 《Biochemistry》2012,51(25):5105-5112
How does the sequence of a single small heat shock protein (sHSP) assemble into oligomers of different sizes? To gain insight into the underlying structural mechanism, we determined the crystal structure of an engineered variant of Methanocaldococcus jannaschii Hsp16.5 wherein a 14 amino acid peptide from human heat shock protein 27 (Hsp27) was inserted at the junction of the N-terminal region and the α-crystallin domain. In response to this insertion, the oligomer shell expands from 24 to 48 subunits while maintaining octahedral symmetry. Oligomer rearrangement does not alter the fold of the conserved α-crystallin domain nor does it disturb the interface holding the dimeric building block together. Rather, the flexible C-terminal tail of Hsp16.5 changes its orientation relative to the α-crystallin domain which enables alternative packing of dimers. This change in orientation preserves a peptide-in-groove interaction of the C-terminal tail with an adjacent β-sandwich, thereby holding the assembly together. The interior of the expanded oligomer, where substrates presumably bind, retains its predominantly nonpolar character relative to the outside surface. New large windows in the outer shell provide increased access to these substrate-binding regions, thus accounting for the higher affinity of this variant to substrates. Oligomer polydispersity regulates sHSPs chaperone activity in vitro and has been implicated in their physiological roles. The structural mechanism of Hsp16.5 oligomer flexibility revealed here, which is likely to be highly conserved across the sHSP superfamily, explains the relationship between oligomer expansion observed in disease-linked mutants and changes in chaperone activity.  相似文献   

9.
Recent studies have suggested that the isomerization/racemization of aspartate residues in proteins increases in aged tissues. One such residue is Asp151 in lens‐specific αA‐crystallin. Although many isomerization/racemization sites have been reported in various proteins, the factors that lead to those modifications in proteins in vivo remain obscure. Therefore, an in vitro system is needed to assess the mechanisms of modifications of Asp under various conditions. Deamidation of Asn to Asp in proteins occurs more rapidly than isomerization/racemization of Asp, although the reaction passes through the same intermediate in both pathways. Here, therefore, we replaced Asp151 in human lens αA‐crystallin with Asn by using site‐directed mutagenesis. The recombinant protein was expressed in Escherichia coli and used to investigate the deamidation/isomerization/racemization of Asn151 after incubation at 50°C for various durations and under different pH. After incubation, the mutant αA‐crystallin was subjected to enzymatic digestion followed by liquid chromatography–MS/MS to evaluate the ratio of modifications in Asn151‐containing peptides. The Asp151Asn αA‐crystallin mutant showed rapid deamidation to Asp with the formation of specific Asp isomers. In particular, deamidation increased greatly under basic conditions. By contrast, subunit–subunit interactions between αA‐crystallin and αB‐crystallin had little effect on the modification of Asn151. Our findings suggest that the Asp151Asn αA‐crystallin mutant represents a good in vitro model protein to assess deamidation, isomerization, and the racemization intermediates. Furthermore, our in vitro results show a different trend from in vivo data, implying the presence of specific factors that induce racemization from L‐Asp to D‐Asp residues in vivo.  相似文献   

10.
11.
The small heat shock proteins (sHSPs) are a virtually ubiquitous and diverse group of molecular chaperones that can bind and protect unfolding proteins from irreversible aggregation. It has been suggested that intrinsic disorder of the N-terminal arm (NTA) of sHSPs is important for substrate recognition. To investigate conformations of the NTA that could recognize substrates we performed replica exchange molecular dynamics simulations. Behavior at normal and stress temperatures of the dimeric building blocks of dodecameric HSPs from wheat (Ta16.9) and pea (Ps18.1) were compared because they display high sequence similarity, but Ps18.1 is more efficient in binding specific substrates. In our simulations, the NTAs of the dimer are flexible and dynamic; however, rather than exhibiting highly extended conformations they retain considerable α-helical character and contacts with the conserved α-crystallin domain (ACD). Network analysis and clustering methods reveal that there are two major conformational forms designated either “open” or “closed” based on the relative position of the two NTAs and their hydrophobic solvent accessible surface area. The equilibrium constant for the closed to open transition is significantly different for Ta16.9 and Ps18.1, with the latter showing more open conformations at elevated temperature correlated with its more effective chaperone activity. In addition, the Ps18.1 NTAs have more hydrophobic solvent accessible surface than those of Ta16.9. NTA hydrophobic patches are comparable in size to the area buried in many protein-protein interactions, which would enable sHSPs to bind early unfolding intermediates. Reduced interactions of the Ps18.1 NTAs with each other and with the ACD contribute to the differences in dynamics and hydrophobic surface area of the two sHSPs. These data support a major role for the conformational equilibrium of the NTA in substrate binding and indicate features of the NTA that contribute to sHSP chaperone efficiency.  相似文献   

12.
Heat shock factor Hsf1 regulates the stress‐inducibility of heat shock proteins (Hsps) or molecular chaperones. One of the functions attributed to Hsps is their participation in folding and degradation of proteins. We recently showed that hsf1?/? cells accumulate ubiquitinated proteins. However, a direct role for Hsf1 in stability of specific proteins such as p53 has not been elucidated. We present evidence that cells deficient in hsf1 accumulate wild‐type p53 protein. We further show that hsf1?/? cells express lower levels of αB‐crystallin and cells deficient in αB‐crystallin also accumulate p53 protein. Reports indicate that αB‐crystallin binds to Fbx4 ubiquitin ligase, and they target cyclin D1 for degradation through a pathway involving the SCF (Skp1‐Cul1‐F‐box) complex. Towards determining a mechanism for p53 degradation involving αB‐crystallin and Hsf1, we have found that ectopic expression of Fbx4 in wild‐type mouse embryo fibroblasts (MEFs) expressing mutant p53 (p53R175H) leads to increase in its degradation, while MEFs deficient in hsf1 or αBcry are defective in degradation of this p53 protein. In addition, immunoprecipitated p53R175H from wild‐type MEFs is able to pull‐down both αB‐crystallin and Fbx4. Finally, immunoprecipitated wild‐type p53 from doxorubicin treated U2OS cells can pull‐down endogenous αB‐crystallin and Fbx4. These results indicate that hsf1‐ and αBcry‐deficient cells accumulate p53 due to reduced levels of αB‐crystallin in these cells. Elevated levels of p53 in hsf1‐ and αBcry‐deficient cells lead to their increased sensitivity to DNA damaging agents. These data reveal a novel mechanism for protein degradation through Hsf1 and αB‐crystallin. J. Cell. Biochem. 107: 504–515, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

13.
Small heat shock proteins (sHSPs) are a ubiquitous class of molecular chaperones that interacts with substrates to prevent their irreversible insolubilization during denaturation. How sHSPs interact with substrates remains poorly defined. To investigate the role of the conserved C-terminal alpha-crystallin domain versus the variable N-terminal arm in substrate interactions, we compared two closely related dodecameric plant sHSPs, Hsp18.1 and Hsp16.9, and four chimeras of these two sHSPs, in which all or part of the N-terminal arm was switched. The efficiency of substrate protection and formation of sHSP-substrate complexes by these sHSPs with three different model substrates, firefly luciferase, citrate synthase, and malate dehydrogenase (MDH) provide new insights into sHSP/substrate interactions. Results indicate that different substrates have varying affinities for different domains of the sHSP. For luciferase and citrate synthase, the efficiency of substrate protection was determined by the identity of the N-terminal arm in the chimeric proteins. In contrast, for MDH, efficient protection clearly required interactions with the alpha-crystallin domain in addition to the N-terminal arm. Furthermore, we show that sHSP-substrate complexes with varying stability and composition can protect substrate equally, and substrate protection is not correlated with sHSP oligomeric stability for all substrates. Protection of MDH by the dimeric chimera composed of the Hsp16.9 N-terminal arm and Hsp18.1 alpha-crystallin domain supports the model that a dimeric form of the sHSP can bind and protect substrate. In total, results demonstrate that sHSP-substrate interactions are complex, likely involve multiple sites on the sHSP, and vary depending on substrate.  相似文献   

14.
Human age‐onset cataracts are believed to be caused by the aggregation of partially unfolded or covalently damaged lens crystallin proteins; however, the exact molecular mechanism remains largely unknown. We have used microseconds of molecular dynamics simulations with explicit solvent to investigate the unfolding process of human lens γD‐crystallin protein and its isolated domains. A partially unfolded folding intermediate of γD‐crystallin is detected in simulations with its C‐terminal domain (C‐td) folded and N‐terminal domain (N‐td) unstructured, in excellent agreement with biochemical experiments. Our simulations strongly indicate that the stability and the folding mechanism of the N‐td are regulated by the interdomain interactions, consistent with experimental observations. A hydrophobic folding core was identified within the C‐td that is comprised of a and b strands from the Greek key motif 4, the one near the domain interface. Detailed analyses reveal a surprising non‐native surface salt‐bridge between Glu135 and Arg142 located at the end of the ab folded hairpin turn playing a critical role in stabilizing the folding core. On the other hand, an in silico single E135A substitution that disrupts this non‐native Glu135‐Arg142 salt‐bridge causes significant destabilization to the folding core of the isolated C‐td, which, in turn, induces unfolding of the N‐td interface. These findings indicate that certain highly conserved charged residues, that is, Glu135 and Arg142, of γD‐crystallin are crucial for stabilizing its hydrophobic domain interface in native conformation, and disruption of charges on the γD‐crystallin surface might lead to unfolding and subsequent aggregation.  相似文献   

15.
Protein pin array technology was used to identify subunit-subunit interaction sites in the small heat shock protein (sHSP) alphaB crystallin. Subunit-subunit interaction sites were defined as consensus sequences that interacted with both human alphaA crystallin and alphaB crystallin. The human alphaB crystallin protein pin array consisted of contiguous and overlapping peptides, eight amino acids in length, immobilized on pins that were in a 96-well ELISA plate format. The interaction of alphaB crystallin peptides with physiological partner proteins, alphaA crystallin and alphaB crystallin, was detected using antibodies and recorded using spectrophotometric absorbance. Five peptide sequences including 37LFPTSTSLSPFYLRPPSF54 in the N terminus, 75FSVNLDVK82)(beta3), 131LTITSSLS138 (beta8) and 141GVLTVNGP148 (beta9) that form beta strands in the conserved alpha crystallin core domain, and 155PERTIPITREEK166 in the C-terminal extension were identified as subunit-subunit interaction sites in human alphaB crystallin using the novel protein pin array assay. The subunit-subunit interaction sites were mapped to a three-dimensional (3D) homology model of wild-type human alphaB crystallin that was based on the crystal structure of wheat sHSP16.9 and Methanococcus jannaschi sHSP16.5 (Mj sHSP16.5). The subunit-subunit interaction sites identified and mapped onto the homology model were solvent-exposed and had variable secondary structures ranging from beta strands to random coils and short alpha helices. The subunit-subunit interaction sites formed a pattern of hydrophobic patches on the 3D surface of human alphaB crystallin.  相似文献   

16.
In mammals, small heat-shock proteins (sHSPs) typically assemble into interconverting, polydisperse oligomers. The dynamic exchange of sHSP oligomers is regulated, at least in part, by molecular interactions between the α-crystallin domain and the C-terminal region (CTR). Here we report solution-state nuclear magnetic resonance (NMR) spectroscopy investigations of the conformation and dynamics of the disordered and flexible CTR of human HSP27, a systemically expressed sHSP. We observed multiple NMR signals for residues in the vicinity of proline 194, and we determined that, while all observed forms are highly disordered, the extra resonances arise from cis-trans peptidyl-prolyl isomerization about the G193-P194 peptide bond. The cis-P194 state is populated to near 15% at physiological temperatures, and, although both cis- and trans-P194 forms of the CTR are flexible and dynamic, both states show a residual but differing tendency to adopt β-strand conformations. In NMR spectra of an isolated CTR peptide, we observed similar evidence for isomerization involving proline 182, found within the IPI/V motif. Collectively, these data indicate a potential role for cis-trans proline isomerization in regulating the oligomerization of sHSPs.  相似文献   

17.
Alzheimer's disease is a progressive neurodegenerative disorder characterized by the abnormal processing of the Tau and the amyloid precursor proteins. The unusual aggregation of Tau is based on the formation of intermolecular β‐sheets through two motifs: 275VQIINK280 and 306VQIVYK311. Phenylthiazolyl‐hydrazides (PTHs) are capable of inhibiting/disassembling Tau aggregates. However, the disaggregation mechanism of Tau oligomers by PTHs is still unknown. In this work, we studied the disruption of the oligomeric form of the Tau motif 306VQIVYK311 by PTHs through molecular docking, molecular dynamics, and free energy calculations. We predicted hydrophobic interactions as the major driving forces for the stabilization of Tau oligomer, with V306 and I308 being the major contributors. Nonpolar component of the binding free energy is essential to stabilize Tau‐PTH complexes. PTHs disrupted mainly the van der Waals interactions between the monomers, leading to oligomer destabilization. Destabilization of full Tau filament by PTHs and emodin was not observed in the sampled 20 ns; however, in all cases, the nonpolar component of the binding free energy is essential for the formation of Tau filament‐PTH and Tau filament‐emodin. These results provide useful clues for the design of more effective Tau‐aggregation inhibitors.  相似文献   

18.
Low molecular weight peptides derived from the breakdown of crystallins have been reported in adult human lenses. The proliferation of these LMW peptides coincides with the earliest stages of cataract formation, suggesting that the protein cleavages involved may contribute to the aggregation and insolubilization of crystallins. This study reports the identification of 238 endogenous LMW crystallin peptides from the cortical extracts of four human lenses representing young, middle and old‐age human lenses. Analysis of the peptide terminal amino acids showed that Lys and Arg were situated at the C‐terminus with significantly higher frequency compared to other residues, suggesting that trypsin‐like proteolysis may be active in the lens cortical fiber cells. Selected reaction monitoring analysis of an endogenous αA‐crystallin peptide (αA57‐65) showed that the concentration of this peptide in the human lens increased gradually to middle age, after which the rate of αA57‐65 formation escalated significantly. Using 2D gel electrophoresis/nanoLC‐ESI‐MS/MS, 12 protein complexes of 40–150 kDa consisting of multiple crystallin components were characterized from the water soluble cortical extracts of an adult human lens. The detection of these protein complexes suggested the possibility of crystallin cross‐linking, with these complexes potentially acting to stabilize degraded crystallins by sequestration into water soluble complexes. Proteins 2015; 83:1878–1886. © 2015 Wiley Periodicals, Inc.  相似文献   

19.
Numerous mutations and covalent modifications of the highly abundant, long‐lived crystallins of the eye lens cause their aggregation leading to progressive opacification of the lens, cataract. The nature and biochemical mechanisms of the aggregation process are poorly understood, as neither amyloid nor native‐state polymers are commonly found in opaque lenses. The βγ‐crystallin fold contains four highly conserved buried tryptophans, which can be oxidized to more hydrophilic products, such as kynurenine, upon UV‐B irradiation. We mimicked this class of oxidative damage using Trp→Glu point mutants of human γD‐crystallin. Such substitutions may represent a model of UV‐induced photodamage—introduction of a charged group into the hydrophobic core generating “denaturation from within.” The effects of Trp→Glu substitutions were highly position dependent. While each was destabilizing, only the two located in the bottom of the double Greek key fold—W42E and W130E—yielded robust aggregation of partially unfolded intermediates at 37°C and pH 7. The αB‐crystallin chaperone suppressed aggregation of W130E, but not W42E, indicating distinct aggregation pathways from damage in the N‐terminal vs C‐terminal domain. The W130E aggregates had loosely fibrillar morphology, yet were nonamyloid, noncovalent, showed little surface hydrophobicity, and formed at least 20°C below the melting temperature of the native β‐sheets. These features are most consistent with domain‐swapped polymerization. Aggregation of partially destabilized crystallins under physiological conditions, as occurs in this class of point mutants, could provide a simple in vitro model system for drug discovery and optimization.  相似文献   

20.
Small heat shock proteins form large cytosolic assemblies from an “α-crystallin domain” (ACD) flanked by sequence extensions. Mutation of a conserved arginine in the ACD of several human small heat shock protein family members causes many common inherited diseases of the lens and neuromuscular system. The mutation R120G in αB-crystallin causes myopathy, cardiomyopathy and cataract. We have solved the X-ray structure of the excised ACD dimer of human αB R120G close to physiological pH and compared it with several recently determined wild-type vertebrate ACD dimer structures. Wild-type excised ACD dimers have a deep groove at the interface floored by a flat extended “bottom sheet.” Solid-state NMR studies of large assemblies of full-length αB-crystallin have shown that the groove is blocked in the ACD dimer by curvature of the bottom sheet. The crystal structure of R120G ACD dimer also reveals a closed groove, but here the bottom sheet is flat. Loss of Arg120 results in rearrangement of an extensive array of charged interactions across this interface. His83 and Asp80 on movable arches on either side of the interface close the groove by forming two new salt bridges. The residues involved in this extended set of ionic interactions are conserved in Hsp27, Hsp20, αA- and αB-crystallin sequences. They are not conserved in Hsp22, where mutation of the equivalent of Arg120 causes neuropathy. We speculate that the αB R120G mutation disturbs oligomer dynamics, causing the growth of large soluble oligomers that are toxic to cells by blocking essential processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号