首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phylogenetic relationships among 20 nominal species of tropical lutjanine snappers (Lutjanidae) (12 from the western Atlantic, one from the eastern Pacific, and seven from the Indo‐Pacific) were inferred based on 2206 bp (712 variable, 614 parsimony informative) from three protein‐coding mitochondrial genes. Also included in the analysis were DNA sequences from two individuals, identified initially as Lutjanus apodus, which were sampled off the coast of Bahia State in Brazil (western Atlantic), and from three individuals labelled as ‘red snapper’ in the fish market in Puerto Armuelles, Panama (eastern Pacific). Bayesian posterior probabilities and maximum‐likelihood bootstrap percentages strongly supported monophyly of all lutjanines sampled and the hypothesis that western Atlantic lutjanines are derived from an Indo‐Pacific lutjanine lineage. The phylogenetic hypothesis also indicated that oceans where lutjanines are distributed (western Atlantic, eastern Pacific, and Indo‐Pacific) are not reciprocally monophyletic for the species distributed within them. There were three strongly supported clades that included all western Atlantic lutjanines: one included six species of Lutjanus from the western Atlantic, two species of Lutjanus from the eastern Pacific, and the monotypic genera Rhomboplites and Ocyurus (western Atlantic); one that included three, probably four, species of Lutjanus in the western Atlantic; and one that included Lutjanus cyanopterus (western Atlantic), an unknown species of Lutjanus from the eastern Pacific, and three species of Lutjanus from the Indo‐Pacific. Molecular‐clock calibrations supported an early Miocene diversification of an Indo‐Pacific lutjanine lineage that dispersed into the western Atlantic via the Panamanian Gateway. Divergent evolution among these lutjanines appears to have occurred both by vicariant and ecological speciation: the former following significant geographic or geological events, including both shoaling and closure of the Panamanian Gateway and tectonic upheavals, whereas the latter occurred via phenotypic diversification inferred to indicate adaptation to life in different habitats. Taxonomic revision of western Atlantic lutjanines appears warranted in that monotypic Ocyurus and Rhomboplites should be subsumed within the genus Lutjanus. Finally, it appears that retail mislabelling of ‘red snapper’ in commercial markets extends beyond the USA. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 102 , 915–929.  相似文献   

2.
The predominantly Afrotropical genus Charaxes is represented by 31 known species outside of Africa (excluding subgenus Polyura Billberg). We explored the biogeographic history of the genus using every known non‐African species, with several African species as outgroup taxa. A phylogenetic hypothesis is proposed, based on molecular characters of the mitochondrial genes cytochrome oxidase subunit I (COI) and NADH dehydrogenase 5 (ND5), and the nuclear wingless gene. Phylogenetic analyses based on maximum parsimony and Bayesian inference of the combined dataset implies that the Indo‐Pacific Charaxes form a monophyletic assemblage, with the exception of Charaxes solon Fabricius. Eight major lineages are recognized in the Indo‐Pacific, here designated the solon (+African), elwesi, harmodius, amycus, mars, eurialus, latona, nitebis, and bernardus clades. Species group relationships are concordant with morphology and, based on the phylogeny, we present the first systematic appraisal and classification of all non‐African species. A biogeographical analysis reveals that, after the genus originated in Africa, the evolutionary history of Charaxes in the Indo‐Pacific, in particular Wallacea, may be correlated with the inferred geological and climatic history of the region. We propose that Wallacea was the area of origin of all Charaxes (excluding C. solon) occurring to the east of Wallace's [1863] Line. The earliest Indo‐Pacific lineages appear to have diverged subsequent to the initial fragmentation of a palaeo‐continent approximately 13 million years ago. Further diversification in Indo‐Pacific Charaxes appears primarily related to climatic changes during the Pliocene and possibly as recently as the Pleistocene. Although both dispersal and vicariance have played important roles in the evolution of the genus within the region, the latter has been particularly responsible for diversification of Charaxes in Wallacea. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 100 , 457–481.  相似文献   

3.
4.
Aim Our aims were: (1) to reconstruct a molecular phylogeny of the cephalaspidean opisthobranch genus Bulla, an inhabitant of shallow sedimentary environments; (2) to test if divergence times are consistent with Miocene and later vicariance among the four tropical marine biogeographical provinces; (3) to examine the phylogenetic status of possible Tethyan relict species; and (4) to infer the timing and causes of speciation events. Location Tropical and warm‐temperate regions of the Atlantic, Indo‐West Pacific, Australasia and eastern Pacific. Methods Ten of the 12 nominal species of Bulla were sampled, in a total sample of 65 individuals, together with cephalaspidean outgroups. Phylogenetic relationships were inferred by Bayesian analysis of partial sequences of the mitochondrial cytochrome c oxidase I (COI) and 16S rRNA and nuclear 28S rRNA genes. Divergence times and rates of evolution were estimated using uncorrelated relaxed‐clock Bayesian methods with fossil calibrations (based on literature review and examination of fossil specimens), implemented in beast . The geographical pattern of speciation was assessed by estimating the degree of overlap between sister lineages. Results Four clades were supported: Indo‐West Pacific (four species), Australasia (one species), Atlantic plus eastern Pacific (three species) and Atlantic (two species), with estimated mean ages of 35–46 Ma. Nominal species were monophyletic, but deep divergences were found within one Indo‐West Pacific and one West Atlantic species. Species‐level divergences occurred in the Miocene or earlier. The age of a sister relationship across the Isthmus of Panama was estimated at 7.9–32.1 Ma, and the divergence of a pair of sister species on either side of the Atlantic Ocean occurred 20.4–27.2 Ma. Main conclusions Fossils suggest that Bulla originated in the Tethys realm during the Middle Eocene. Average ages of the four main clades fall in the Eocene, and far pre‐date the 18–19 Ma closure of the Tethys Seaway. This discrepancy could indicate earlier vicariant events, selective extinction or errors of calibration. Similarly, the transisthmian divergence estimate far pre‐dates the uplift of the Panamanian Isthmus at about 3 Ma. Speciation events occurred in the Miocene, consistent with tectonic events in the central Indo‐West Pacific, isolation of the Arabian Sea by upwelling and westward trans‐Atlantic dispersal. Differences in habitat between sister species suggest that ecological speciation may also have played a role. The basal position of the Australasian species supports its interpretation as a Tethyan relict.  相似文献   

5.
We describe Halmaheramys bokimekot Fabre, Pagès, Musser, Fitriana, Semiadi & Helgen gen. et sp. nov. , a new genus and species of murine rodent from the North Moluccas, and study its phylogenetic placement using both molecular and morphological data. We generated a densely sampled mitochondrial and nuclear DNA data set that included most genera of Indo‐Pacific Murinae, and used probabilistic methodologies to infer their phylogenetic relationships. To reconstruct their biogeographical history, we first dated the topology and then used a Lagrange analysis to infer ancestral geographic areas. Finally, we combined the ancestral area reconstructions with temporal information to compare patterns of murine colonization among Indo‐Pacific archipelagos. We provide a new and comprehensive molecular phylogenetic reconstruction for Indo‐Pacific Murinae, with a focus on the Rattus division. Using previous results and those presented in this study, we define a new Indo‐Pacific group within the Rattus division, composed of Bullimus, Bunomys, Paruromys, Halmaheramys, Sundamys, and Taeromys. Our phylogenetic reconstructions revealed a relatively recent diversification from the Middle Miocene to Plio‐Pleistocene associated with several major dispersal events. We identified two independent Indo‐Pacific dispersal events from both western and eastern Indo‐Pacific archipelagos to the isolated island of Halmahera, which led to the speciations of H. bokimekot gen. et sp. nov. and Rattus morotaiensis Kellogg, 1945. We propose that a Middle Miocene collision between the Halmahera and Sangihe arcs may have been responsible for the arrival of the ancestor of Halmaheramys to eastern Wallacea. Halmaheramys bokimekot gen. et sp. nov. is described in detail, and its systematics and biogeography are documented and illustrated. © 2013 The Linnean Society of London  相似文献   

6.
Two mitochondrial DNA segments of the bigeye tuna (Thunnus obesus) were amplified by polymerase chain reaction (PCR), and restriction fragment length polymorphism (RFLP) analyses of these segments were used for the genetic stock study. The variation in a segment flanking the ATPase and COIII genes was low; only two genotypes (α and β) were detected by RsaI digestion. Yet a large difference in the genotype distribution was observed between ocean basin samples. The α type predominated in four Atlantic samples, where 178 of 244 individuals were the α type. In contrast, only one of 195 individuals collected in the Indo‐Pacific was the α type? The frequency of the α type varied considerably from 0 to 80% among seven samples collected off the Cape of Good Hope. The variation found in the other segment, containing the D‐loop region, was much higher; two endonucleases (DpnII and RsaI) detected five genotypes each and 15 composite genotypes. A highly significant difference in genotype frequencies was observed between the Atlantic and Indo‐Pacific samples, but no heterogeneity was observed among the four Atlantic or among four Indo‐Pacific samples. These results clearly indicate that not only gene flow, but also fish migration, between the Atlantic and Indian Oceans are severely restricted, and that fishes from these distinct stocks are intermingling around South Africa. The simple and diagnostic genetic marker found in this study can be used to estimate mixing ratios between Atlantic and Indian stocks around South Africa.  相似文献   

7.
Historical changes in the distributions of temperate species in response to Milankovitch climate cycles have been well documented in palaeontological studies and recently evaluated with phylogeographical methods. How these cycles influence biological diversity remains a matter of debate. Molecular surveys of terrestrial and freshwater fauna demonstrate glacial refugia in low latitudes and range expansions into high latitudes, but few genetic studies have assessed the corresponding impact on marine fauna. In the present study, mtDNA sequences (N = 84) are surveyed to understand the impact of long‐term climate oscillations on ‘Old World’ anchovies (genus Engraulis), a monophyletic group occurring in north and south temperate zones of the eastern Atlantic and the western Pacific. The analysis of a 521‐bp sequence of mtDNA cytochrome b indicates a late Miocene or Pliocene dispersal from the north‐eastern Pacific (California–Mexico) to the north‐western Pacific (Japan), followed by Pleistocene dispersal from the north‐western Pacific to Europe. Geography mandates that populations in southern Africa and Australia were stepping‐stones for this dispersal. However, neither population occupies an intermediate position in the mtDNA genealogy; both populations are more recently derived from their northern neighbours. Haplotype diversity is high (h = 0.93–0.97) in European, Australian, and Japanese anchovies, but low (h = 0.22) in the southern African population, where all haplotypes are more closely related to European specimens than to each other. These southern populations occupy a precarious position, lacking north–south coastlines that allow range shifts during climatic extremes. Recurring extinctions and episodic recolonizations from northern hemisphere populations are the likely results. In this case, ocean‐climatic changes retard rather than enhance opportunities for evolutionary radiations. © 2006 The Linnean Society of London, Biological Journal of the Linnean Society, 2006, 88 , 673–689.  相似文献   

8.
The South Pacific archipelago of Fiji is characterized by a predominantly Indo‐Malesian flora and fauna. We provide a first systematic study on Fiji's tateid gastropods – previously classified as Hydrobiidae – describing 18 new species, combining morphological, anatomical, and molecular data. The molecular phylogeny of tateid gastropods based on 16S rRNA and cytochrome c oxidase subunit I (COI) showed that the species from Fiji were closer related to New Zealand than to Australian or New Caledonian taxa, which is rather exceptional. Performing an ancestral range reconstruction we inferred the colonization history across the two main islands. The radiation had its origin in southern Viti Levu, with a subsequent dispersal over the western and central parts of the island. The chronology of the radiation over eastern Viti Levu and Vanua Levu remained unresolved because of incomplete lineage sorting, a phenomenon typical for young radiations. © 2014 The Linnean Society of London  相似文献   

9.
The phylogeographical structure of coral‐associated reef fishes may have been severely affected, more than species from deeper habitats, by habitat loss during periods of low sea level. The humbug damselfish, Dascyllus aruanus, is widely distributed across the Indo‐West Pacific, and exclusively inhabits branching corals. We used mitochondrial cytochrome b sequence and seven microsatellite loci on D. aruanus samples (260 individuals) from 13 locations across the Indo‐West Pacific to investigate its phylogeographical structure distribution‐wide. A major genetic partition was found between the Indian and Pacific Ocean populations, which we interpret as the result of geographical isolation on either side of the Indo‐Pacific barrier during glacial periods. The peripheral populations of the Red Sea and the Society Islands exhibited lower genetic diversity, and substantial genetic differences with the other populations, suggesting relative isolation. Thus, vicariance on either side of the Indo‐Pacific barrier and peripheral differentiation are considered to be the main drivers that have shaped the phylogeographical patterns presently observed in D. aruanus. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 113 , 931–942.  相似文献   

10.
Forest or mouse shrews (Myosorex) represent a small but important radiation of African shrews generally adapted to montane and/or temperate conditions. The status of populations from Zimbabwe, Mozambique, and the north of South Africa has long been unclear because of the variability of traits that have traditionally been ‘diagnostic’ for the currently recognized South African taxa. We report molecular (mitochondrial DNA and nuclear DNA), craniometric, and morphological data from newly collected series of Myosorex from Zimbabwe (East Highlands), Mozambique (Mount Gorogonsa, Gorongosa National Park), and the Limpopo Province of South Africa (Soutpansberg Range) in the context of the available museum collections from southern and eastern Africa and published DNA sequences. Molecular data demonstrate close genetic similarity between populations from Mozambique and Zimbabwe, and this well‐supported clade (herein described as a new species, M yosorex meesteri sp. nov. ) is the sister group of all South African taxa, except for Myosorex longicaudatus Meester & Dippenaar, 1978. Populations of Myosorex in Limpopo Province (herein tentatively assigned to Myosorex cf. tenuis) are cladistically distinct from both Myosorex varius (Smuts, 1832) and Myosorex cafer (Sundevall, 1846), and diverged from M. varius at approximately the same time (2.7 Mya) as M. cafer and Myosorex sclateri Thomas & Schwann, 1905 diverged (2.4 Mya). Morphometric data are mostly discordant with the molecular data. For example, clearly distinct molecular clades overlap considerably in craniometric variables. On the other hand, extreme size differentiation occurs between genetically closely related populations in the Soutpansberg Range, which coincides with the bissection of the mountain range by the dry Sand River Valley, indicating the potential for strong intraspecific phenotypic divergence in these shrews. © 2013 The Linnean Society of London  相似文献   

11.
Southern Africa has economically exploited populations of terete gracilarioids on the cool temperate west coast and numerous species of endemic and Indo‐Pacific tropical Gracilariaceae on the south and east coasts. Gross morphological characters have been the main means of identification, and incorrect applications have led to a number of misidentifications. In this study, small subunit rDNA and RUBISCO spacer sequences were used to determine phylogenetic relationships. Whereas rDNA sequences successfully differentiate major groups within the family as well as species belonging to the Gracilariopsis and the Curdiea/Melanthalia clade, RUBISCO spacer sequencing was required to distinguish between species of Gracilaria. The southern African gracilarioid complex (stringy, terete, elongate members of the Gracilariaceae) was resolved into three species: Gracilaria gracilis, Gracilariopsis longissima, and Gracilariopsis funicularis. South African Gracilaria protea was shown to be conspecific with tropical Indian Ocean G. corticata. Apart from G. gracilis and G. corticata, South African Gracilaria species were differentiated into a temperate‐tropical terete grouping and a temperate‐tropical flattened grouping.  相似文献   

12.
We have undertaken a comprehensive, molecular‐assisted alpha‐taxonomic examination of the rhodophyte family Liagoraceae sensu lato, a group that has not previously been targeted for molecular studies in the western Atlantic. Sequence data from three molecular markers indicate that in Bermuda alone there are 10 species in nine different genera. These include the addition of three genera to the flora — Hommersandiophycus, Trichogloeopsis, and Yamadaella. Liagora pectinata, a species with a type locality in Bermuda, is phylogenetically allied with Indo‐Pacific species of Hommersandiophycus, and the species historically reported as L. ceranoides for the islands is morphologically and genetically distinct from that taxon, and is herein described as L. nesophila sp. nov. Molecular sequence data have also uncovered the Indo‐Pacific L. mannarensis in Bermuda, a long‐distance new western Atlantic record. DNA sequences of Trichogloeopsis pedicellata from the type locality (Bahamas) match with local specimens demonstrating its presence in Bermuda. We described Yamadaella grassyi sp. nov. from Bermuda, a species phylogenetically and morphologically distinct from the generitype, Y. caenomyce of the Indo‐Pacific. Our data also indicated a single species each of Ganonema, Gloiocallis, Helminthocladia, Titanophycus, and Trichogloea in the flora.  相似文献   

13.
Pyrgomatid barnacles are a family of balanomorphs uniquely adapted to symbiosis on corals. The evolution of the coral‐dwelling barnacles is explored using a multi‐gene phylogeny (COI, 16S, 12S, 18S, and H3) and phenotypic trait‐mapping. We found that the hydrocoral associate Wanella should be excluded, while some archaeobalanids in the genus Armatobalanus should be included in the Pyrgomatidae. Three well supported clades were recovered: clade I is the largest group and is exclusively Indo‐West Pacific, clade II contains two plesiomorphic Indo‐West Pacific genera, while clade III is comprised of East and West Atlantic taxa. Some genera did not form reciprocally monophyletic groups, while the genus Trevathana was found to be paraphyletic and to include members of three other apomorphic genera/tribes. The highly unusual coral‐parasitic hoekiines appear to be of recent origin and rapidly evolving from Trevathana sensu lato. Pyrgomatids include six‐, four‐, and one‐plated forms, and exhibit convergent evolutionary tendencies towards skeletal reduction and fusion, loss of cirral armature, and increased host specificity. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 113 , 162–179.  相似文献   

14.
Aim We examined the ectoparasite fauna of Sebastes capensis over almost all its geographical distribution range (Chilean, Argentinean and South African coasts) to determine (1) whether the ectoparasites of this host show a zoogeographical pattern and, if so, (2) how this pattern is related to known zoogeographical patterns for free‐living organisms. Location Fish were captured from 20, 24, 30, 33, 36, 40, 45 and 52° S along the Chilean coast; 11° S on the Peruvian coast; 43° S on the Argentina coast; and 34° S on the South African coast. Methods From April to September 2003 and from April to August 2004, 626 fish were captured. The parasites were collected using standard parasitological techniques. At the component community level, zoogeographical distribution patterns were evaluated using cluster analysis. At the infra‐community level, patterns of similarity in parasite composition among localities were investigated with multivariate discriminant analyses. Results The ectoparasite fauna of S. capensis consists of six species distributed along the whole of the Chilean coast. Four other species are distributed only within the transitional zone between the northern warm temperate region (Peruvian faunistic province), extending from Peru to the northern Chilean coast up to c. 30° S, and the cold temperate region (Magellanic faunistic province). The component communities from latitudes 30 to 40° S showed higher ectoparasite species richness, while localities on the margins of the geographical range showed lower species richness. Cluster analysis indicated a grouping of localities consistent with the transitional zone. Argentina and South Africa always emerged as separate localities. Main conclusions The ectoparasite communities of S. capensis do not follow a distributional pattern concordant with the known biogeographical zones for invertebrates and/or fish along the south‐eastern Pacific. Therefore their ectoparasite fauna is not useful as a zoogeographical indicator, although it does allow us to distinguish the transitional zone of the south‐eastern Pacific. On a more extended geographical scale, it is possible to distinguish the ectoparasite communities of S. capensis in the south‐eastern Pacific (as a whole) from those of Argentina and South Africa.  相似文献   

15.
Bullidae are a worldwide family of marine shelled cephalaspidean gastropods with a mainly tropical distribution, but also with some representatives in temperate waters. The taxonomy of the group has in the past been based only on shell characters, and the few anatomical accounts available have not addressed more than one to three species, so there has been no agreement about the number of valid species. Seventy‐two specific names and 16 varietal names have been proposed worldwide. The systematics of the family Bullidae are revised, based not only on shells but also on anatomy of all extant species and on DNA sequence data. Twelve species are recognized worldwide, including one new species here described, and all are assigned to the genus Bulla. Two species occur in the eastern Atlantic, B. striata and B. mabillei; two in the western Atlantic, B. occidentalis and B. solida; two in the eastern Pacific, B. gouldiana and B. punctulata; and six in the Indo‐West Pacific, B. ampulla, B. arabica sp. nov. , B. orientalis, B. peasiana, B. quoyii and B. vernicosa. Full synonymies and taxonomic histories are provided for each species. In order to promote taxonomic stability, neotypes are designated for B. striata, B. solida, B. nebulosa (valid name B. gouldiana) and B. vernicosa, and lectotypes for B. occidentalis, B. mabillei, B. punctulata, B. ampulla and B. quoyii. The type locality of B. ampulla is restricted to Mauritius. Bullidae show a general morphological stasis, with anatomy being very similar between species. However, there are high levels of intraspecific variability in the shell, radula and male genital system. In some cases species could only be separated based on molecular data . After defining the characters and geographical range of each species it became clear that sympatric species (a maximum of three) show distinctive shells and reproductive structures, which makes identification straightforward. This study employs an integrative approach, combining information on shells, anatomy, DNA and geographical distribution, in order to resolve the systematics of a difficult taxonomic group. © 2008 The Linnean Society of London, Zoological Journal of the Linnean Society, 2008, 153 , 453–543.  相似文献   

16.
It has been an enduring belief that increasing aridity combined with Pliocene‐Pleistocene glacial cycles resulted in the formation of distinct arid zone and temperate zone faunas within Australia. We assembled a molecular phylogeny for the Egernia whitii species group, an endemic group of skinks that comprises representatives from arid and temperate Australia, in order to test several biogeographical hypotheses regarding the origin of the Australian arid zone fauna. Sequence data were obtained from ten of the 11 species within the species group, plus three other Egernia species and an outgroup (Eulamprus heatwolei). We targeted portions of the ND4 (696 base pairs) and 16S rRNA (500 bp) mitochondrial genes and the β‐Fibrinogen 7th Intron nuclear gene (648 bp). The edited alignment comprised 1844 characters, of which 551 (30%) were variable and 382 (69%) were parsimony informative. We analysed the data using maximum likelihood and Bayesian techniques and produced a single optimal tree. Our phylogeny strongly supports two major clades within the species group, corresponding to temperate‐adapted rock‐dwelling species and arid‐adapted obligate burrowing species. However, the phylogenetic affinities of E. pulchra were not resolved. Our topology indicates that the New South Wales population of E. margaretae is actually E. whitii and reveals that E. margaretae margaretae and E. m. personata are distinct species. There also appears to be a major phylogeographical break within E. whitii occurring in eastern Victoria. Although our data supported several previously proposed phylogenetic relationships, Shimodaira–Hasegawa tests soundly rejected several suggested affinities between certain species. The arid zone members of the E. whitii species group had been suggested to have originated as a result of multiple periods of colonization during the Pleistocene glaciation cycles. However, our genetic data suggest a single origin (presumably from a semiarid E. multiscutata‐like ancestor) for the arid zone members of the group prior to the Plio‐Pleistocene, probably during the late Miocene to early Pliocene. Our topology displays substantial sequence divergence between species with short internodes and long terminal branches, indicating rapid adaptive radiations within the arid and temperate zones. The presence of temperate‐adapted species within more mesic refugia of the arid zone suggests that the necessary adaptations to aridity for colonizing the dry interior of the continent have not evolved since the initial period of adaptive radiation, despite the long evolutionary history of the species group. © 2004 The Linnean Society of London, Biological Journal of the Linnean Society, 2004, 83 , 157–173.  相似文献   

17.
This study investigates the genetic structure and phylogeography of a broadcast spawning bivalve mollusc, Pinctada maxima, throughout the Indo‐West Pacific and northern Australia. DNA sequence variation of the mitochondrial cytochrome oxidase subunit I (COI) gene was analysed in 367 individuals sampled from nine populations across the Indo‐West Pacific. Hierarchical AMOVA indicated strong genetic structuring amongst populations (ΦST = 0.372, P < 0.001); however, sequence divergence between the 47 haplotypes detected was low (maximum 1.8% difference) and no deep phylogenetic divergence was observed. Results suggest the presence of genetic barriers isolating populations of the South China Sea and central Indonesian regions, which, in turn, show patterns of historical separation from northern Australian regions. In P. maxima, historical vicariance during Pleistocene low sea levels is likely to have restricted planktonic larval transport, causing genetic differentiation amongst populations. However, low genetic differentiation is observed where strong ocean currents are present and is most likely due to contemporary larval transport along these pathways. Geographical association with haplotype distributions may indicate signs of early lineage sorting arising from historical population separations, yet an absence of divergent phylogenetic clades related to geography could be the consequence of periodic pulses of high genetic exchange. We compare our results with previous microsatellite DNA analysis of these P. maxima populations, and discuss implications for future conservation management of this species. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 107 , 632–646.  相似文献   

18.
The long‐snouted African spurdog Squalus bassi sp. nov. is described based on material collected from the outer shelf and upper continental slope off South Africa and Mozambique. Squalus bassi shares with S. mitsukurii, S. montalbani, S. chloroculus, S. grahami, S. griffini, S. edmundsi, S. quasimodo and S. lobularis a large snout with prenarial length greater than distance between nostrils and upper labial furrows, dermal denticles tricuspidate and rhomboid and elevated number of vertebrae. Squalus bassi can be distinguished from all its congeners by a combination of body and fin colouration, external morphometrics, vertebral counts and shape of dermal denticles. Similar long‐snouted congeners from the Indo‐Pacific region, including S. montalbani, S. edmundsi and S. lalannei are compared in detail with the new species. This new species has been misidentified as the Japanese S. mitsukurii and the Mediterranean S. blainvillei due to the lack of comparative morphological analyses. The validity of the nominal species S. mitsukurii in the south‐eastern Atlantic Ocean and western Indian Ocean is also clarified herein, indicating it has a more restricted geographical distribution in the North Pacific Ocean.  相似文献   

19.
Lactoridaceae are a monotypic family confined to Masatierra Island, Juan Fernández Archipelago, in the Pacific Ocean. It grows in the understorey of a subtropical montane rain forest. Lactoridaceae most probably originated in southern South Africa in the Cretaceous, with the oldest records in the Turonian–Campanian, and reached its widest palaeogeographical distribution by the Maastrichtian, extending into Australia, India, Antarctica, and North and South America. In this paper, we report a new fossil find of lactoridaceous tetrads from the early Miocene of eastern Patagonia, southern South America. This record is the youngest and geographically one of the closest to the extant Lactoris distribution area. Patagonian fossil material shows greater similarities to extant L. fernandeziana Phil. than to any other described morphotaxon. The family may have migrated into South America, either via Africa (through the Atlantic Ocean) or Antarctica, by the Maastrichtian, growing in eastern Patagonia up to the early Miocene. Arid conditions established in this region by the middle–late Miocene onwards would have determined the restriction of forests to the western lands. Lactoridaceae may have followed a similar migration pattern towards the Pacific coast of South America. The shifting of Lactoridaceae towards Masatierra Island would have occurred in the last 4 Myr by long‐distance dispersal events (perhaps by birds). © 2008 The Linnean Society of London, Botanical Journal of the Linnean Society, 2008, 158 , 41–50.  相似文献   

20.
Sawfishes are among the most endangered of all elasmobranch species, a factor fostering considerable worldwide interest in the conservation of these animals. However, conservation efforts have been hampered by the confusing taxonomy of the group and the poor state of knowledge about the family's geographical population structure. Based on historical taxonomy, external morphology, and mitochondrial DNA sequences (NADH‐2), we show here that, globally, the sawfish comprise five species in two genera: Pristis pristis (circumtropical), Pristis clavata (east Indo‐West Pacific), Pristis pectinata (Atlantic), Pristis zijsron (Indo‐West Pacific), and Anoxypristis cuspidata (Indo‐West Pacific, except for East Africa and the Red Sea). This improved understanding will have implications for the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES), International Union for Conservation of Nature (IUCN) Red List assessments, and endangered species laws and regulations in several countries. Furthermore, based on both or either of NADH‐2 and the number of rostral teeth per side, we show that populations of P. pristis, P. pectinata, P. zijsron, and A. cuspidata exhibit significant geographic structuring across their respective ranges, meaning that regional‐level conservation will be required. Finally, the NADH‐2 gene may serve as a marker for the identification of rostra and fins involved in illegal trade. © 2012 The Linnean Society of London  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号