首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reactivity of tetraruthenium carbonyl clusters supported on metal oxides (SiO2, TiO2, γ-Al2O3, and MgO) under various atmospheres has been investigated by infrared and ultraviolet-visible spectroscopies and electron microscopy. [H4Ru4(CO)12] physisorbed on SiO2 easily decomposes and aggregates to form metal particles. The tetraruthenium clusters supported on TiO2 are oxidized by surface hydroxyl groups, giving mononuclear complexes; virtually the same chemistry occurs, but less readily, on γ-Al2O3. The tetramthenium clusters supported on MgO, in contrast, are highly resistant to oxidation. The strong basicity of this support leads to an increased stability of small polynuclear complexes, hindering the formation of oxidized complexes and aggregated metallic structures. The unique character of the basic support appears to be related to the tendency of the support to form and stabilize cluster anions.  相似文献   

2.
The complex formation of flavonoids with anthocyanins, resulting in increase in both absorbance and in a bathochromic shift of the visible absorption maximum of the latter, is based mainly on hydrogen bond formation between the carbonyl group of the anthocyanin anhydrobase and aromatic hydroxyl groups of the complex-forming flavonoids. The larger the number of hydroxyl groups in the flavonoid molecule, the stronger the complex formation. The presence of a 3-hydroxyl group in the flavonoid molecule has little effect on the complex-forming ability. The nature of the sugar substituent of the complex-forming flavonoid compound has no influence on the reaction. The 5-hydroxyl group of flavonoids is strongly bound by intramolecular hydrogen bond to the 4-carbonyl and does not participate in the complex formation. The most important hydroxyl group in the flavonoid molecule is the one in the 7-position. Unsaturation at C2C3 in the heterocyclic ring is an important factor for complex formation. Aromatic hydroxyl groups in the flavonoid system alone cannot account for all the complex-forming ability, suggesting additional involvement by electrostatic forces and configurational or steric effects.  相似文献   

3.
The mineral helvite, (Mn4S)(BeSiO4)3, contains discrete tetrahedral Mn4S+6 clusters in which the S?2 is tetrahedrally coordinated and each Mn(II) is in a distorted tetrahedron of one S?2 and three oxygens; the cluster is situated within an encompassing lattice of SiO4?4 and BeO4?6 tetrahedra. Mn4S+6 centers provide an interesting model for comparison to the polynuclear manganese center that is associated with photosynthetic water oxidation. Magnetic susceptibility data between 77 and 298 K have been measured for a natural helvite sample containing principally Mn4S+6 centers but with significant contamination from Mn3FeS+6 and Mn3CaS+6. The data exhibited Curie-Weiss behavior with μeff = 5.969 B.M. and θ = 178.3 K. An analysis of the magnetic susceptibility, based on Van Vleck's formalism, demonstrated the presence of antiferromagnetic coupling, with a coupling constant J = ?5.83 cm?1. Mössbauer spectra of Mn3FeS centers in helvite and of Fe4S centers in the related mineral danalite have also been recorded. Isomer shifts show little temperature dependence and lie in the range 1.23–1.43 mmsec.. This range is typical of tetrahedrally coordinated Fe(II) in several ionic crystals but is significantly above that of Fe(II) in ferredoxins and below that in the [quinone-Fe(II)-quinone] complex of the photosynthetic bacterium,Rhodopseudomonas sphaeroides. Quadrupole splittings are highly temperature dependent, ranging from 2.4 mmsec at 4.2 K to less than 0.5 mmsec at 248 K.  相似文献   

4.
The electronic structure of the two most stable isomers of squaric acid and their complexes with BeH2 were investigated at the B3LYP/6-311?+?G(3df,2p)// B3LYP/6-31?+?G(d,p) level of theory. Squaric acid forms rather strong beryllium bonds with BeH2, with binding energies of the order of 60 kJ?mol?1. The preferential sites for BeH2 attachment are the carbonyl oxygen atoms, but the global minima of the potential energy surfaces of both EZ and ZZ isomers are extra-stabilized through the formation of a BeH···HO dihydrogen bond. More importantly, analysis of the electron density of these complexes shows the existence of significant cooperative effects between the beryllium bond and the dihydrogen bond, with both becoming significantly reinforced. The charge transfer involved in the formation of the beryllium bond induces a significant electron density redistribution within the squaric acid subunit, affecting not only the carbonyl group interacting with the BeH2 moiety but significantly increasing the electron delocalization within the four membered ring. Accordingly the intrinsic properties of squaric acid become perturbed, as reflected in its ability to self-associate.
Figure
The ability of squaric acid to self-associate is significantly enhanced when this molecule forms beryllium bonds with BeH2  相似文献   

5.
Reducing dilute aqueous HAuCl4 with sodium thiocyanate (NaSCN) under alkaline conditions produces 2 to 3 nm diameter nanoparticles. Stable grape-like oligomeric clusters of these yellow nanoparticles of narrow size distribution are synthesized under ambient conditions via two methods. The delay-time method controls the number of subunits in the oligoclusters by varying the time between the addition of HAuCl4 to alkaline solution and the subsequent addition of reducing agent, NaSCN. The yellow oligoclusters produced range in size from ~3 to ~25 nm. This size range can be further extended by an add-on method utilizing hydroxylated gold chloride (Na+[Au(OH4-x)Clx]-) to auto-catalytically increase the number of subunits in the as-synthesized oligocluster nanoparticles, providing a total range of 3 nm to 70 nm. The crude oligocluster preparations display narrow size distributions and do not require further fractionation for most purposes. The oligoclusters formed can be concentrated >300 fold without aggregation and the crude reaction mixtures remain stable for weeks without further processing. Because these oligomeric clusters can be concentrated before derivatization they allow expensive derivatizing agents to be used economically. In addition, we present two models by which predictions of particle size can be made with great accuracy.  相似文献   

6.
Several natural and synthetic flavone derivatives have been reported to inhibit formation of amyloid fibrils or to remodel existing fibrils. These studies suggest that the numbers and positions of hydroxyl groups on the flavone rings determine their effectiveness as amyloid inhibitors. In many studies the primary method for determining the effectiveness of inhibition is measuring Thioflavin T (ThT) fluorescence. This method demonstrably results in a number of false positives for inhibition. We studied the effects of 265 commercially available flavone derivatives on insulin fibril formation. We enhanced the effectiveness of ThT fluorescence measurements by fitting kinetic curves to obtain halftime of aggregation (t 50). Maximal values of ThT fluorescence varied two fold or more in one third of all cases, but this did not correlate with changes in t 50. Changes in t 50 values were more accurate measures of inhibition of amyloid formation. We showed that without a change in an assay, but just by observing complete kinetic curves it is possible to eliminate numbers of false positive and sometimes even false negative results. Examining the data from all 265 flavones we confirmed previous observations that identified the importance of hydroxyl groups for inhibition. Our evidence suggests the importance of hydroxyl groups at locations 5, 6, 7, and 4’, and the absence of a hydroxyl group at location 3, for inhibiting amyloid formation. However, the main conclusion is that the positions are not additive. The structures and their effects must be thought of in the context of the whole molecule.  相似文献   

7.
Reactions of (NH4)2MS4 or (NH4)2MOS3 (M = Mo, W) with AgSCN and closo carborane diphosphine ligand 1,2-(PPh2)2-1,2-C2B10H10 (L) in CH2Cl2 yielded four heterobimetallic trinuclear Mo(W)-Ag-S clusters: [Ag2MoS4L2] (1), [Ag2WS4L2] (2), [Ag2MoOS3L2] (3) and [Ag2WS4L2] (4), respectively. All the new clusters have been characterized by elemental analysis, FT-IR, UV-Vis, 1H and 13C NMR spectroscopy and their molecular structures (except for 3) were further confirmed by single-crystal X-ray diffraction. X-ray crystal structure analysis showed that the closo carborane diphosphine ligand was coordinated bidentately to Ag(I) atom through its two phosphorus atoms, resulting in a stable five-member chelating ring between the diphosphine ligand and the metal. The coordination sphere of the central M atom, as well as all the Ag atoms, was tetrahedron. The skeletons of these clusters could be classified into two types: with (NH4)2MS4, the three metal atoms (two Ag atoms and one M atom) are in a linear conformation, while with (NH4)2MOS3, the conformation of the heterobimetallic trinuclear cluster is butterfly shaped. The luminescence properties of the clusters were investigated in CH2Cl2 solution at room temperature and for the first time the butterfly-shaped Ag-W-S cluster containing the Ag2WS4 core has been proved to show luminescence property.  相似文献   

8.
To clarify the effect of superoxide dismutase (SOD) on the formation of hydroxyl radical in a standard reaction mixture containing 15 μM of xanthone, 0.1 M of 5,5-dimethyl-1-pyrroline N-oxide (DMPO), and 45 mM of phosphate buffer (pH 7.4) under UVA irradiation, electron paramagnetic resonance (EPR) measurements were performed. SOD enhanced the formation of hydroxyl radicals. The formation of hydroxyl radicals was inhibited on the addition of catalase. The rate of hydroxyl radical formation also slowed down under a reduced oxygen concentration, whereas it was stimulated by disodium ethylenediaminetetraacetate (EDTA) and diethyleneaminepentaacetic acid (DETAPAC). Above findings suggest that O2, H2O2, and iron ions participate in the reaction. SOD possibly enhances the formation of the hydroxyl radical in reaction mixtures of photosensitizers that can produce O2 .  相似文献   

9.
4-[N-(2-cyanoethyl)-N-ethylamino]-4′-nitroazo-benzene (disperse orange 25, DO25) is one of the main components in dyeing wastewater. In this work, supercritical water oxidation (SCWO) process of DO25 has been investigated using the molecular dynamic simulations based on the reactive force field (ReaxFF). For the SCWO system, the effects of temperature, the molecular ratio of DO25, O2 and H2O as well as the reaction time have been analyzed. The simulated results showed that the aromatic rings in DO25 could be attacked by hydroxyl radical, oxygen molecule, and hydroxyl radical together with oxygen molecule, respectively, which caused the aromatic ring-opening reaction to happen mainly through three different pathways. The hydroxyl radicals were mainly from water clusters and H2O2 (which was produced from oxygen molecules reacting with water clusters). However, for the SCW system as comparison, the aromatic rings in DO25 could be attacked by hydroxyl radical only, and the OH radicals just come from water clusters. During the DO25 SCWO degradation process, we also found that N elements in one DO25 molecule were difficult to be converted into environmentally friendly N2 molecules because of steric hindrance, but increasing the number of DO25 molecules could improve the possibility for the connection of N elements, thus promoting N element converting into N2. Extending reaction time could also improve N elements in DO25 to transform into N2 rather than carbonitride.
Graphical Abstract The processes of making DO25 wastewater by SCWO into clean water
  相似文献   

10.
Sclerin, a colorless crystalline, C13H14O4 compound melting at 123°C was at first isolated as a lipase formation stimulating constituent of Sclerotinia libertiana, from its own mycelial extract, and infrared spectrum showed the presence a hydroxyl group and a lactone ring. Sclerin was found to promote also the enzyme formation and growth of various plant seedlings such as those of castor bean-, mung bean-, and rice seedlings. In the growth of the sclerin-treated plant, promotion of root formation and increase of dry weight per unit shoot length were noticed, and the combined use of sclerin and gibberellin brought about a synergistic effect on the growth of rice seedlings. The relationship between sclerin and some other plant growth regulators in the enzyme formation of germinating seeds was also described.  相似文献   

11.
The crystal structure of LaPO4 has been determined from three-dimensional single-crystal X-ray diffraction data. The respective residual indices R1 and R2 have been refined to 0.020 and 0.021, based on 625 unique reflections. Crystallization occurs in the monoclinic space group P21/n (No. 14) with a = 6.825(4), b = 7.057(2), c = 6.482(2) Å, and β = 103.21(4)°. Z = 4. The lanthanum metal atom is nine-coordinated to oxygen atoms forming a polyhedron best described as a pentagonal interpenetrating tetrahedron. The nine-coordinated La atoms are linked together by distorted tetrahedral phosphate groups. Important interatomic distances and angles are presented.  相似文献   

12.
Based on experimental zinc blende and wurtzite models of CdSe nanocrystals, four clusters of CdSe, seven Se-Cd-ligand structures, and their characters are studied at DFT/B3LYP/Lanl2dz theoretical level. Cd3Se3, (Cd3Se3)2 and (Cd3Se3)3 clusters which have a ring with six atoms are similar to wurtzite structures, Cd4Se4 have resemblant conformation with zinc blende for they are all composed of tetrahedron. Calculated Raman spectra of Cd3Se3, Cd4Se4, (Cd3Se3)2 and (Cd3Se3)3 are about 175 cm−1 which is consistent with the experimental result. Then, through investigation of Se-Cd-ligand clusters, we find that all Se-Cd-ligand structures have similar characters because main influence of ligands on nanocrystals comes from thiol. Finally, we testify that both solvent and ligand make absorption peaks shift to blue, compared with those in gas phase and without ligand. Under these conditions, calculated data of four clusters are almost identical with the absorption peaks of CdSe nanocrystals. Besides, we also prove that the absorption peaks of four clusters are the transitions from HOMO to LUMO or from d to p orbitals. And HOMO-LUMO gaps reduce in order of Cd3Se3, (Cd3Se3)2 and (Cd3Se3)3, which is induced by the quantum size effect.  相似文献   

13.
《Inorganica chimica acta》1986,116(2):99-107
Important theoretical approaches to metal cluster bonding including the Wade-Mingos skeletal electron pair method, the Teo topological electron count, the King-Rouvray graph theory derived method, and Lauher's extended Hückel calculations are shown to agree in their apparent skeletal electron counts for the most prevalent metal cluster polyhedra including the tetrahedron, the trigonal bipyramid (both ordinary and elongated), square pyramid, octahedron, bicapped tetrahedron, pentagonal bipyramid, and capped octahedron. The graph theory derived method is used to treat osmium carbonyl clusters containing from five to eleven osmium atoms. In this connection most osmium carbonyl clusters can be classified into the following types: (1) Clusters exhibiting edge- localized bonding containing multiple tetrahedral chambers (e.g., Os5(CO)16, Os6(CO)18, H2Os7(CO)20 and HOs8(CO)22); (2) Capped octahedral clusters derived from osmium carbonyl fragments of the type Os6+p(CO)19+2p (p = 0, 1, 2, and 4) (e.g., Os6- (CO)182−, Os7(CO)21, Os8(CO)222−, and H4Os10- (CO)242−). Other more unusual osmium carbonyl clusters such as the planar Os6(CO)17 [P(OCH3)3]4, the Os9 cluster [Os9(CO)21C3H2R], and the Os11 cluster Os11C(CO)272− can also be treated satisfactorily by these methods. The importance of the number of ligands around isoelectronic Osn systems in determining the cluster polyhedron is illustrated by the different cluster polyhedra found for each member of the following isoelectronic pairs: HOs6- (CO)18/H2Os6(CO)18. Os7(CO)21/H2Os7(CO)20, Os8(CO)222−/HOs8(CO)22. The tendency for osmium carbonyl clusters frequently to form polyhedra exhibiting edge-localized rather than globally delocalized bonding relates to the facility for osmium carbonyl vertices to contribute more than three internal orbitals to the cluster bonding. In this way Wade's well-known analogy between boron hydride clusters and metal clusters, which assumes exactly three internal orbitals for each vertex atom, is frequently no longer followed in the case of osmium carbonyl clusters.  相似文献   

14.
We have previously reported that dietary docosahexaenoic acid (DHA) improves and/or protects against impairment of cognition ability in amyloid beta1‐40 (Aβ1‐40)‐infused Alzheimer’s disease (AD)‐model rats. Here, after the administration of DHA to AD model rats for 12 weeks, the levels of Aβ1‐40, cholesterol and the composition of fatty acids were investigated in the Triton X100‐insoluble membrane fractions of their cerebral cortex. The effects of DHA on the in vitro formation and kinetics of fibrillation of Aβ1‐40 were also investigated by thioflavin T fluorescence spectroscopy, transmission electron microscopy and fluorescence microscopy. Dietary DHA significantly decreased the levels of Aβ1‐40, cholesterol and saturated fatty acids in the detergent insoluble membrane fractions of AD rats. The formation of Aβ fibrils was also attenuated by their incubation with DHA, as demonstrated by the decreased intensity of thioflavin T‐derived fluorescence and by electron micrography. DHA treatment also decreased the intensity of thioflavin fluorescence in preformed‐fibril Aβ peptides, demonstrating the anti‐amyloidogenic effects of DHA. We then investigated the effects of DHA on the levels of oligomeric amyloid that is generated during its in vitro transformation from monomers to fibrils, by an anti‐oligomer‐specific antibody and non‐reducing Tris‐Glycine gradient (4–20%) gel electrophoresis. DHA concentration‐dependently reduced the levels of oligomeric amyloid species, suggesting that dietary DHA‐induced suppression of in vivo1‐40 aggregation occurs through the inhibitory effect of DHA on oligomeric amyloid species.  相似文献   

15.
Abstract

The formation of water clusters, polyhydrates of nucleotide bases and their associates during simultaneous condensation of water and base molecules in vacuo onto a surface of a needle emitter cooled to 170 K was studied by field ionization mass spectrometry. It was found that different emitter temperatures are characterized by a specific distribution of intensities of cluster currents, depending on the number of water molecules in clusters. These distributions correlate with structural peculiarities and the relative energetics of formation of water clusters, polyhydrates of nucleotide bases and their associates at low temperature. The features observed in mass spectra for clusters m9Ade (H2O)5, m1Ura (H2O)4 and m9Ade m1Ura (H2O)2 are treated as a result of formation of energetically favorable structures stabilized by H-bonded bridges of water molecules.

The relative association constants and formation enthalpies of the noncomplementary pairs Ade Cyt, Gua Ura and the associates which model the aminoacid-base complexes m1Ura Gin and m2 1,3Thy Gin were determined from the temperature dependencies of the intensities of mass spectra peaks in the range 290–320 K.  相似文献   

16.
Several lines of evidence support the proposal that the unusual chloroplast-specific lipid acyl group Δ3,trans-hexadecenoic acid (trans-C16:1) stimulates the formation or maintenance of the oligomeric form of the light-harvesting chlorophyll a/b complex (LHCP). To assess the functional significance of this apparent association we have analyzed LHCP structure and function in a mutant of Arabidopsis thaliana (L.) which lacks trans-C16:1 by electrophoretic analysis of the protein-chlorophyll complexes and by measurements of chlorophyll fluorescence under a variety of conditions. By these criteria the putative oligomeric form of LHCP appears to be slightly more labile to detergent-mediated dissociation in the mutant. The oligomeric PSI chlorophyll-protein complex, associated with PSI, was also more labile to detergent-mediated dissociation in the mutant, suggesting a previously unsuspected association of trans-C16:1 with the PSI complex. However, no significant effect of the mutation on the efficiency of energy transfer from LHCP to the photochemical reaction centers was observed under any of the various conditions imposed. Also, the stability of the chlorophyll-protein complexes to temperature-induced dissociation was unaffected in the mutant. The role of trans-C16:1 is very subtle or is only conditionally expressed.  相似文献   

17.
Several clusters complexes of composition [Pt42-CO)5L4] have been synthesized and characterized, using 31P and 195Pt NMR. L = PEt3, PMe2Ph, PMePh2, PEt2But. The molecular structure of a new monoclinic modification of the PMe2Ph derivative has been determined: space group P21/n with a = 19.698(4), b = 10.9440(20), and c = 21.360(6) Å, β = 112.432(18)°, Z = 4. Using 4751 reflections measured at 290 ± 1 K on a four-circle diffractometer the structure has been refined to R = 0.0846. The molecule has no imposed symmetry, but the central Pt4(CO)5P4 core has the approximate C2v architecture established for the previously known orthorhombic modification. The Pt4 unit is thus a highly distorted, edge-opened (3.3347 Å) tetrahedron, with five edge-bridging carbonyl and four terminal phosphine ligands. In contrast to the crystallographic results 31P and 195Pt NMR spectra reveal equivalent 31P and 195Pt spins, which can be interpreted in terms of a tetrahedral arrangement of platinum atoms. It is suggested that this equivalence arises from time-averaging of all possible isomeric edge-opened tetrahedra.  相似文献   

18.
We synthesized a new bis-amide ligand derived from the l(+)-tartaric acid. We then determined its protonation constants and the stability constants of the copper(II) and nickel(II) chelates by potentiometry as well as ESI-MS and UV-Vis spectroscopy. We found that both metal ions are able to induce the deprotonation and the coordination of an amide nitrogen donor atom. In the case of copper complexes, the data show the formation of two major species: Cu2(L2H−3)+ and Cu2(LH−4). EPR and XAS experiments led us to precise the relative structure of these compounds. In Cu2(L2H−3)+, each metal center is coordinated by pyridinic and amidic nitrogen atoms of one ligand and by nitrogen and oxygen atoms from pyridine and hydroxyl moieties from the other one. In Cu2(LH−4), the copper centers are coordinated by pyridinic and amidic nitrogen atoms, as well as a deprotonated hydroxyl group of the ligand. In this latter complex, the lower value of the Cu-Cu distance determined from EXAFS experiments and compared to the one of the solid species likely involve the formation of an exogeneous hydroxyl bridge between the two copper centers. With Ni(II) ions, the only one major species is the mononuclear Ni(LH−2) complex, in which Ni(II) is held in an octahedral environment with the metal center chelated by the two pyridinic and the two amidic nitrogen atoms, and two oxygen atoms from water molecules.  相似文献   

19.
Dimeric or oligomeric oxo-complexes of Mo(VI) with 2,3-dihydroxybenzoic acid were prepared in aqueous solutions in the presence or not of K2S2O5 (acting as a reducing agent) in various conditions. The complexes were found to contain the cis-(Mo2O5)2+ core and the ligands in the catecholate, semiquinonate or mixed valence oxidation form, depending on the reaction conditions and especially on the presence or not of the reductant. The isolated complexes in the presence or absence of reductant and the oxidation products in solution in the presence of air were studied via elemental, thermogravimetric and electrochemical analysis, Infrared, Raman, NMR and ESR spectroscopies and Electrospray Mass Spectra. The general molecular formula for the complexes is {[(PPh4)2(Mo2O5L2X2] · xH2O)}n, where the coordinated ligand’s L oxidation form varies and X involves coordinated water or hydroxyl group depending on the ligand oxidation state.  相似文献   

20.
The aldehyde inhibitor Z-Ala-Ala-Phe-CHO has been synthesized and shown by 13C-NMR to react with the active site serine hydroxyl group of alpha-chymotrypsin to form two diastereomeric hemiacetals. For both hemiacetals oxyanion formation occurs with a pKa value of ~ 7 showing that chymotrypsin reduces the oxyanion pKa values by ~ 5.6 pKa units and stabilizes the oxyanions of both diastereoisomers by ~ 32 kJ mol− 1. As pH has only a small effect on binding we conclude that oxyanion formation does not have a significant effect on binding the aldehyde inhibitor. By comparing the binding of Z-Ala-Ala-Phe-CHO with that of Z-Ala-Ala-Phe-H we estimate that the aldehyde group increases binding ~ 100 fold. At pH 7.2 the effective molarity of the active site serine hydroxy group is ~ 6000 which is ~ 7 × less effective than with the corresponding glyoxal inhibitor. Using 1H-NMR we have shown that at both 4 and 25 °C the histidine pKa is ~ 7.3 in free chymotrypsin and it is raised to ~ 8 when Z-Ala-Ala-Phe-CHO is bound. We conclude that oxyanion formation only has a minor role in raising the histidine pKa and that the aldehyde hydrogen must be replaced by a larger group to raise the histidine pKa > 10 and give stereospecific formation of tetrahedral intermediates. The results show that a large increase in the pKa of the active site histidine is not needed for the active site serine hydroxyl group to have an effective molarity of 6000.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号