首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To use the ‘lessons of the Pleistocene’ to forecast the biotic effects of climate change, we must parse the effects of history and ecology in the Quaternary record. The preponderance of Northern Hemisphere studies of biotic responses to climate change provides a limited set of players and environmental circumstances with which to decouple these drivers. In this issue Lessa et al. (2010) examine population structure in 14 species of mice distributed across Patagonia and Tierra del Fuego in southern South America. In the Southern Cone, glacial ice was alpine, not polar; major habitats were (and are) oriented N–S, not E–W; and habitable land area actually increased, not decreased, at the height of the last glacial maximum (LGM). Despite these differences, there is evidence for poleward demographic expansion in 10 of the 14 species, and phylogeographic breaks in these are likewise stepped by latitude (and presumably history) rather than by biome. Nevertheless, high latitude endemism and the antiquity of these lineages point to an extended presence in the region that very likely predates the Pleistocene.  相似文献   

2.
    
The patterns of genetic variation within and among individuals and populations can be used to make inferences about the evolutionary forces that generated those patterns. Numerous population genetic approaches have been developed in order to infer evolutionary history. Here, we present the “Two-Two (TT)” and the “Two-Two-outgroup (TTo)” methods; two closely related approaches for estimating divergence time based in coalescent theory. They rely on sequence data from two haploid genomes (or a single diploid individual) from each of two populations. Under a simple population-divergence model, we derive the probabilities of the possible sample configurations. These probabilities form a set of equations that can be solved to obtain estimates of the model parameters, including population split times, directly from the sequence data. This transparent and computationally efficient approach to infer population divergence time makes it possible to estimate time scaled in generations (assuming a mutation rate), and not as a compound parameter of genetic drift. Using simulations under a range of demographic scenarios, we show that the method is relatively robust to migration and that the TTo method can alleviate biases that can appear from drastic ancestral population size changes. We illustrate the utility of the approaches with some examples, including estimating split times for pairs of human populations as well as providing further evidence for the complex relationship among Neandertals and Denisovans and their ancestors.  相似文献   

3.
    
Two species of ocean skaters, Halobates germanus and Halobates micans, live in the tropical and subtropical waters of the Indian Ocean. From December 1992 to December 1993, Halobates was intensively sampled in the easternmost region of the South Indian Ocean (13–18.5°S, 114–121E°), from which there have been a small number of records of Halobates. No H. germanus was caught, but a total of 1190 H. micans were collected, with densities estimated at 13 900–28 100 individuals/km2. This suggests that H. micans lives in the study area at high densities comparable to those in the Atlantic and the Pacific Oceans. We also discuss the possible effects of ocean currents and winds on the geographic distributions of the two Halobates species in the eastern South Indian Ocean.  相似文献   

4.
5.
    
Dispersal and adaptation are the two primary mechanisms that set the range distributions for a population or species. As such, understanding how these mechanisms interact in marine organisms in particular – with capacity for long‐range dispersal and a poor understanding of what selective environments species are responding to – can provide useful insights for the exploration of biogeographic patterns. Previously, the barnacle Notochthamalus scabrosus has revealed two evolutionarily distinct lineages with a joint distribution that suggests an association with one of the two major biogeographic boundaries (~30°S) along the coast of Chile. However, spatial and genomic sampling of this system has been limited until now. We hypothesized that given the strong oceanographic and environmental shifts associated with the other major biogeographic boundary (~42°S) for Chilean coastal invertebrates, the southern mitochondrial lineage would dominate or go to fixation in locations further to the south. We also evaluated nuclear polymorphism data from 130 single nucleotide polymorphisms to evaluate the concordance of the signal from the nuclear genome with that of the mitochondrial sample. Through the application of standard population genetic approaches along with a Lagrangian ocean connectivity model, we describe the codistribution of these lineages through a simultaneous evaluation of coastal lineage frequencies, an approximation of larval behavior, and current‐driven dispersal. Our results show that this pattern could not persist without the two lineages having distinct environmental optima. We suggest that a more thorough integration of larval dynamics, explicit dispersal models, and near‐shore environmental analysis can explain much of the coastal biogeography of Chile.  相似文献   

6.
    
  • 1 In response to conservation and management concerns about gray whale Eschrichtius robustus population and stock structure, we provide an overview of the life history and ecology of gray whales as a context for discussion of population and stock structure within the species. Historically eastern and western North Pacific gray whales were managed separately because: (i) their ranges do not overlap; (ii) genetic analyses indicate that the two populations are significantly different; and (iii) eastern gray whales have increased in abundance over the past century while western gray whales have not.
  • 2 Here, we review gray whale migration timing and segregation, feeding and prey species, and reproduction and reproductive behaviour. For the eastern and western gray whale, we review their distribution, history of exploitation, abundance and current status, although most of what is known is founded on the better studied eastern gray whale and only implied for the lesser known western gray whale. Methods to investigate population and stock identity are reviewed including genetics, morphology, chemical signatures, carbon isotopes, parasites, photographic identification and trends in abundance.
  • 3 While the evidence indicates that there is at least some degree of mixing within each of the gray whale populations, no stocks or sub‐stocks can be defined. Population structure is not evident in nuclear data, and because selection occurs primarily on the nuclear genome, it is unlikely that there is structuring within each population that could result in evolutionary differences. For western gray whales, there are insufficient data to assess the plausibility of stock structure within the population, owing to its extremely depleted state. Research on eastern gray whales has focused mostly on documenting changes in abundance, feeding biology and behaviour, and suggests separate breeding groups to be unlikely. Both males and females are promiscuous breeders lending little opportunity for the nuclear genome to be anything other than well mixed as is suggested by the high haplotypic diversity of the eastern population.
  • 4 The available data strongly indicate that western gray whales represent a population geographically isolated from eastern gray whales and therefore that the western and eastern populations should be treated as separate management units.
  相似文献   

7.
    
Repeated climatic and vegetation changes during the Pleistocene have shaped biodiversity in Northern Europe including Denmark. The Northern Birch Mouse (Sicista betulina) was one of the first small rodent species to colonize Denmark after the Late Glacial Maximum. This study analyses complete mitochondrial genomes and two nuclear genes of the Northern Birch Mouse to investigate the phylogeographical pattern in North‐western Europe and test whether the species colonized Denmark through several colonization events. The latter was prompt by (i) the present‐day distinct northern and southern Danish distribution and (ii) the subfossil record of Northern Birch Mouse, supporting early Weichselian colonization. Samples from Denmark, Norway, Sweden, Russia, Latvia, Estonia, and Slovakia were included. Mitogenomes were obtained from 54 individuals, all representing unique mitogenomes supporting high genetic variation. Bayesian phylogenetic analysis identified two distinct evolutionary linages in Northern Europe diverging within the Elster glaciation period. The results of the two nuclear genomes showed lower genetic differentiation but supported the same evolutionary history. This suggests an allopatric origin of the clades followed by secondary contact. Individuals from southern Denmark were only found in one clade, while individuals from other areas, including northern Denmark, were represented in both clades. Nevertheless, we found no evidence for repeated colonization''s explaining the observed fragmented distribution of the species today. The results indicated that the mitogenome pattern of the Northern Birch Mouse population in southern Denmark was either (i) due to the population being founded from northern Denmark, (ii) a result of climatic and anthropogenic effects reducing population size increasing genetic drift or (iii) caused by sampling bias.  相似文献   

8.
Ocean acidification (OA) and its associated decline in calcium carbonate saturation states is one of the major threats that tropical coral reefs face this century. Previous studies of the effect of OA on coral reef calcifiers have described a wide variety of outcomes for studies using comparable partial pressure of CO2 (pCO2) ranges, suggesting that key questions remain unresolved. One unresolved hypothesis posits that heterogeneity in the response of reef calcifiers to high pCO2 is a result of regional-scale variation in the responses to OA. To test this hypothesis, we incubated two coral taxa (Pocillopora damicornis and massive Porites) and two calcified algae (Porolithon onkodes and Halimeda macroloba) under 400, 700 and 1000 μatm pCO2 levels in experiments in Moorea (French Polynesia), Hawaii (USA) and Okinawa (Japan), where environmental conditions differ. Both corals and H. macroloba were insensitive to OA at all three locations, while the effects of OA on P. onkodes were location-specific. In Moorea and Hawaii, calcification of P. onkodes was depressed by high pCO2, but for specimens in Okinawa, there was no effect of OA. Using a study of large geographical scale, we show that resistance to OA of some reef species is a constitutive character expressed across the Pacific.  相似文献   

9.
  总被引:1,自引:0,他引:1  
The bathyal genus Bassogigas (Teleostei: Ophidiidae) is revised based on 25 specimens, 18 from the west Atlantic Ocean and seven from the Indo-west Pacific Ocean. One specimen, from off Guam, west Pacific Ocean, represents a new species, Walker's cusk eel Bassogigas walkeri. The other 24 specimens all belong to the type species, Gills cusk eel Bassogigas gillii. A comparison between the Atlantic and the Indo-west Pacific Ocean specimens of B. gillii showed no differences in meristic and morphometric characters, but in two of the Indo-west Pacific Ocean specimens the sagittal otolith varied somewhat from the remaining specimens. The two Bassogigas species differ in the length of the lateral line, the number of scales in the midline of the body, the form of the median basibranchial tooth patches and in the thickness of the otolith.  相似文献   

10.
    
Understanding the processes of biological diversification is a central topic in evolutionary biology. The South African Cape fynbos, one of the major plant biodiversity hotspots out of the tropics, has prompted several hypotheses about the causes of generation and maintenance of biodiversity. Fire has been traditionally invoked as a key element to explain high levels of biodiversity in highly speciose fynbos taxa, such as the genus Erica. In this study, we have implemented a microevolutionary approach to elucidate how plant‐response to fire may contribute to explain high levels of diversification in Erica. By using microsatellite markers, we investigated the genetic background of seeder (fire‐sensitive) and resprouter (fire‐resistant) populations of the fynbos species Erica coccinea. We found higher within‐population genetic diversity and higher among‐population differentiation in seeder populations and interpreted these higher levels of genetic diversification as a consequence of the comparatively shorter generation times and faster population turnover in the seeder form of this species. Considering that genetic divergence among populations may be seen as the initial step to speciation, the parallelism between these results and the pattern of biodiversity at the genus level offers stimulating insights into understanding causes of speciation of the genus Erica in the Cape fynbos.  相似文献   

11.
Genetic clustering algorithms require a certain amount of data to produce informative results. In the common situation that individuals are sampled at several locations, we show how sample group information can be used to achieve better results when the amount of data is limited. New models are developed for the structure program, both for the cases of admixture and no admixture. These models work by modifying the prior distribution for each individual's population assignment. The new prior distributions allow the proportion of individuals assigned to a particular cluster to vary by location. The models are tested on simulated data, and illustrated using microsatellite data from the CEPH Human Genome Diversity Panel. We demonstrate that the new models allow structure to be detected at lower levels of divergence, or with less data, than the original structure models or principal components methods, and that they are not biased towards detecting structure when it is not present. These models are implemented in a new version of structure which is freely available online at http://pritch.bsd.uchicago.edu/structure.html.  相似文献   

12.
Genetic affinity of human populations based on allele frequency data was studied from two viewpoints. (1) The effect of the number of polymorphic loci on the reconstruction of a phylogenetic tree of human populations was empirically investigated. Genetic affinity trees were constructed based on data for 1–12 polymorphic loci, by using the neighbor-joining method. Geographical clustering of populations gradually appeared when the number of loci was increased. A new classification and terminology of higher order human population clusters is proposed based on these and other studies. (2) A new method of estimating the absolute divergence time of two populations is proposed, which is based on a diffusion equation that describes random genetic drift.  相似文献   

13.
14.
    
Ecological and life history characteristics such as population size, dispersal pattern, and mating system mediate the influence of genetic drift and gene flow on population subdivision. Bull trout (Salvelinus confluentus) and mountain whitefish (Prosopium williamsoni) differ markedly in spawning location, population size and mating system. Based on these differences, we predicted that bull trout would have reduced genetic variation within and greater differentiation among populations compared with mountain whitefish. To test this hypothesis, we used microsatellite markers to determine patterns of genetic divergence for each species in the Clark Fork River, Montana, USA. As predicted, bull trout had a much greater proportion of genetic variation partitioned among populations than mountain whitefish. Among all sites, FST was seven times greater for bull trout (FST = 0.304 for bull trout, 0.042 for mountain whitefish. After removing genetically differentiated high mountain lake sites for each species FST, was 10 times greater for bull trout (FST = 0.176 for bull trout; FST = 0.018 for mountain whitefish). The same characteristics that affect dispersal patterns in these species also lead to predictions about the amount and scale of adaptive divergence among populations. We provide a theoretical framework that incorporates variation in ecological and life history factors, neutral divergence, and adaptive divergence to interpret how neutral and adaptive divergence might be correlates of ecological and life history factors.  相似文献   

15.
  总被引:3,自引:0,他引:3  
Surveys of mitochondrial DNA (mtDNA) variation in the giant tiger prawn, Penaeus monodon, using restriction fragment length polymorphisms have provided the first clear evidence that the Indo-West Pacific region is a site of accumulation of genetic diversity rather than a site of origin of genetic diversity. No haplotyes were found in common between a group of five southeast African populations and a group of five Australian (including Western Australia) and three southeast Asian populations. The dominant haplotype was different in the Australian and southeast Asian population groups. Genetic diversity (pi) was greatest in Indonesia (pi averaged 0.05), less in the Philippines and Australia (pi averaged 0.01), and markedly less in the southeast African and the West Australian populations (pi averaged 0.003). The high diversity of the southeast Asian populations resulted from the occurrence in those populations of a set of haplotypes found only in southeast Asia but derived from the southeast African haplotypes. These genetic variants therefore evolved in the Indian Ocean and later migrated into the Indo-West Pacific region. Low genetic variation in the geographically marginal populations in southeast Africa and Western Australia is considered to be the result of bottlenecks, but mismatch distributions suggest that large population sizes have been maintained in Indonesian populations for long periods.  相似文献   

16.
Abstract

Using a morphology‐based approach, we explore the relationships between three poorly understood species of organic‐walled Foraminifera. Thalmann and Bermudez (1954) described Chitinosiphon rufescens as the type species of a new monotypic genus which they compared to the tubular agglutinated foraminiferan Bathysiphon. Loeblich and Tappan (1964), however, considered C. rufescens to be identical to Reophax membranacea Brady 1879, type species of another organic‐walled genus, Nodellum. Based on a re‐examination of the type specimens of both species, new material of C. rufescens from the Lost City hydrothermal field, and new material of N. membranacea from the NE Atlantic and Pacific Oceans, we show that these two deep‐sea species are distinguished by the following features. (1) Chitinosiphon rufescens lacks the distinct, regular constrictions that divide the tubular test of N. membranacea into a series of segments. (2) The proloculus is spindle‐shaped in C. rufescens but sub‐cylindrical in N. membranacea. (3) A distinctive, pocket‐like invagination is developed at the base (proximal end) of the proloculus in N. membranacea but not in C. rufescens. However, a series of undescribed species which occur in deep‐sea sediments blur the distinction between the two genera. We therefore adopt a conservative position and regard Chitinosiphon as a junior synonym of Nodellum. We also examined the holotype and new material of Nodellum moniliforme Resig, 1982, the type species of Resigella Loeblich and Tappan, 1984, in which the organic‐walled test comprises a series of bulbous chambers. This species exhibits a basal invagination, identical to the feature present in Nodellum membranacea. These three remarkable species are united by the basically tubular test and the nature of the test wall which is largely organic, brownish in colour, and exhibits no internal structure when broken sections are examined by SEM. The surface of the organic test of Nodellum rufescens from Lost City is strewn with tiny (≤1μm), needle‐shaped mineral particles, visible only by SEM. More equidimensional, micron‐sized particles are present in the other two species. We agree with Thalmann and Bermudez (1954) that N. rufescens is related to tubular agglutinated taxa such as Bathysiphon. Resigella may have similar affinities, although this needs to be tested using molecular approaches.  相似文献   

17.
The absence of the larval Anisakis simplex s. l. in samples from central Chile but heavy infections in fish from southern localities suggest the existence of two stocks of Strangomera bentincki, one closely associated with the central coast of Chile (landing port San Antonio and Talcahuano, c. 33° 30′ S–36° 40′ S) and the other associated with southern Chile (landing port Puerto Montt, c. 41° 30′ S). Results confirm the usefulness of metazoan parasites, like A. simplex s. l. as biological markers.  相似文献   

18.
So little is known about the early life history of leatherback turtles (Dermochelys coriacea) from hatchling to adulthood that this period has been termed the 'lost years'. For critically endangered eastern Pacific leatherback populations, continued and rapid declines underscore the urgent need to develop conservation strategies across all life stages. We investigate leatherback hatchling dispersal from four Mesoamerican nesting beaches using passive tracer experiments within a regional ocean modelling system. The evolution of tracer distribution from each of the nesting beaches showed the strong influence of eddy transport and coastal currents. Modelled hatchlings from Playa Grande, Costa Rica, were most likely to be entrained and transported offshore by large-scale eddies coincident with the peak leatherback nesting and hatchling emergence period. These eddies potentially serve as 'hatchling highways', providing a means of rapid offshore transport away from predation and a productive refuge within which newly hatched turtles can develop. We hypothesize that the most important leatherback nesting beach remaining in the eastern Pacific (Playa Grande) has been evolutionarily selected as an optimal nesting site owing to favourable ocean currents that enhance hatchling survival.  相似文献   

19.
    
Coral reefs and their associated fauna are largely impacted by ongoing climate change. Unravelling species responses to past climatic variations might provide clues on the consequence of ongoing changes. Here, we tested the relationship between changes in sea surface temperature and sea levels during the Quaternary and present‐day distributions of coral reef fish species. We investigated whether species‐specific responses are associated with life‐history traits. We collected a database of coral reef fish distribution together with life‐history traits for the Indo‐Pacific Ocean. We ran species distribution models (SDMs) on 3,725 tropical reef fish species using contemporary environmental factors together with a variable describing isolation from stable coral reef areas during the Quaternary. We quantified the variance explained independently by isolation from stable areas in the SDMs and related it to a set of species traits including body size and mobility. The variance purely explained by isolation from stable coral reef areas on the distribution of extant coral reef fish species largely varied across species. We observed a triangular relationship between the contribution of isolation from stable areas in the SDMs and body size. Species, whose distribution is more associated with historical changes, occurred predominantly in the Indo‐Australian archipelago, where the mean size of fish assemblages is the lowest. Our results suggest that the legacy of habitat changes of the Quaternary is still detectable in the extant distribution of many fish species, especially those with small body size and the most sedentary. Because they were the least able to colonize distant habitats in the past, fish species with smaller body size might have the most pronounced lags in tracking ongoing climate change.  相似文献   

20.
  总被引:4,自引:0,他引:4  
The deep sea is the largest ecosystem on Earth. Recent exploration has revealed that it supports a highly diverse and endemic benthic invertebrate fauna, yet the evolutionary processes that generate this remarkable species richness are virtually unknown. Environmental heterogeneity, topographic complexity, and morphological divergence all tend to decrease with depth, suggesting that the potential for population differentiation may decrease with depth. To test this hypothesis, we use mitochondrial DNA (16S rRNA gene) to examine patterns of population differentiation in four species of protobranch bivalves (Nuculoma similis, Deminucula atacellana, Malletia abyssorum, and Ledella ultima) distributed along a depth gradient in the western North Atlantic. We sequenced 268 individuals from formalin-fixed samples and found 45 haplotypes. The level of sequence divergence among haplotypes within species was similar, but shifted from between populations at bathyal depths to within populations at abyssal depths. Levels of population structure as measured by phiST were considerably greater in the upper bathyal species (N. similis = 0.755 and D. atacellana = 0.931; 530-3834 m) than in the lower bathyal/abyssal species (M. abyssorum = 0.071 and L. ultima = 0.045; 2864-4970 m). Pairwise genetic distances among the samples within each species also decreased with depth. Population trees (UPGMA) based on modified coancestry coefficients and nested clade analysis both indicated strong population-level divergence in the two upper bathyal species but little for the deeper species. The population genetic structure in these protobranch bivalves parallels depth-related morphological divergence observed in deep-sea gastropods. The higher level of genetic and morphological divergence, coupled with the strong biotic and abiotic heterogeneity at bathyal depths, suggests this region may be an active area of species formation. We suggest that the steep, topographically complex, and dynamic bathyal zone, which stretches as a narrow band along continental margins, plays a more important role in the evolutionary radiation of the deep-sea fauna than the much more extensive abyss.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号