首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Acute inflammatory diseases are the leading causes of mortality in intensive care units. Myeloid differentiation 2 (MD‐2) is required for recognizing lipopolysaccharide (LPS) by toll‐like receptor 4 (TLR4), and represents an attractive therapeutic target for LPS‐induced inflammatory diseases. In this study, we report a chalcone derivative, L2H21, as a new MD2 inhibitor, which could inhibit LPS‐induced inflammation both in vitro and in vivo. We identify that L2H21 as a direct inhibitor of MD‐2 by binding to Arg90 and Tyr102 residues in MD‐2 hydrophobic pocket using a series of biochemical experiments, including surface plasmon response, molecular docking and amino acid mutation. L2H21 dose dependently inhibited LPS‐induced inflammatory cytokine expression in primary macrophages. In mice with LPS intratracheal instillation, L2H21 significantly decreased LPS‐induced pulmonary oedema, pathological changes in lung tissue, protein concentration increase in bronchoalveolar lavage fluid, inflammatory cells infiltration and inflammatory gene expression, accompanied with the decrease in pulmonary TLR4/MD‐2 complex. Meanwhile, administration with L2H21 protects mice from LPS‐induced mortality at a degree of 100%. Taken together, this study identifies a new MD2 inhibitor L2H21 as a promising candidate for the treatment of acute lung injury (ALI) and sepsis, and validates that inhibition of MD‐2 is a potential therapeutic strategy for ALI.  相似文献   

2.
We previously reported that the canonical innate immune receptor toll‐like receptor 4 (TLR4) is critical in maintaining lung integrity. However, the molecular mechanisms via which TLR4 mediates its effect remained unclear. In the present study, we identified distinct contributions of lung endothelial cells (Ec) and epithelial cells TLR4 to pulmonary homeostasis using genetic‐specific, lung‐ and cell‐targeted in vivo methods. Emphysema was significantly prevented via the reconstituting of human TLR4 expression in the lung Ec of TLR4?/? mice. Lung Ec‐silencing of TLR4 in wild‐type mice induced emphysema, highlighting the specific and distinct role of Ec‐expressed TLR4 in maintaining lung integrity. We also identified a previously unrecognized role of TLR4 in preventing expression of p16INK4a, a senescence‐associated gene. Lung Ec‐p16INK4a‐silencing prevented TLR4?/? induced emphysema, revealing a new functional role for p16INK4ain lungs. TLR4 suppressed endogenous p16INK4a expression via HDAC2‐mediated deacetylation of histone H4. These findings suggest a novel role for TLR4 in maintaining of lung homeostasis via epigenetic regulation of senescence‐related gene expression.  相似文献   

3.
4.
Lipopolysaccharide (LPS) activates innate immune responses through TLR4·MD-2. LPS binds to the MD-2 hydrophobic pocket and bridges the dimerization of two TLR4·MD-2 complexes to activate intracellular signaling. However, exactly how lipid A, the endotoxic moiety of LPS, activates myeloid lineage cells remains unknown. Lipid IVA, a tetra-acylated lipid A precursor, has been used widely as a model for lipid A activation. For unknown reasons, lipid IVA activates proinflammatory responses in rodent cells but inhibits the activity of LPS in human cells. Using stable TLR4-expressing cell lines and purified monomeric MD-2, as well as MD-2-deficient bone marrow-derived macrophages, we found that both mouse TLR4 and mouse MD-2 are required for lipid IVA activation. Computational studies suggested that unique ionic interactions exist between lipid IVA and TLR4 at the dimerization interface in the mouse complex only. The negatively charged 4′-phosphate on lipid IVA interacts with two positively charged residues on the opposing mouse, but not human, TLR4 (Lys367 and Arg434) at the dimerization interface. When replaced with their negatively charged human counterparts Glu369 and Gln436, mouse TLR4 was no longer responsive to lipid IVA. In contrast, human TLR4 gained lipid IVA responsiveness when ionic interactions were enabled by charge reversal at the dimerization interface, defining the basis of lipid IVA species specificity. Thus, using lipid IVA as a selective lipid A agonist, we successfully decoupled and coupled two sequential events required for intracellular signaling: receptor engagement and dimerization, underscoring the functional role of ionic interactions in receptor activation.  相似文献   

5.
Migration of dendritic cells (DCs) plays an important role in T‐cell‐mediated adaptive immune responses. Lipopolysaccharide (LPS) sensed by Toll‐like receptor 4 (TLR4) serves as a signal for DC migration. We analyzed LPS‐induced DC volume changes preceding the directed movement towards chemoattractants. Treatment with LPS resulted in rapid, prolonged cell swelling in wild‐type (WT), but not in TLR4?/? bone marrow‐derived (BM) DCs indicating that TLR4 signaling is essential for LPS‐induced swelling. As a consequence, LPS‐treatment enhanced the migratory activity along a chemokine (CCL21)‐gradient in WT, but not in TLR4‐deficient BMDCs suggesting that the LPS/TLR4‐induced swelling response facilitates DC migration. Moreover, the role of calcium‐activated potassium channels (KCa3.1) as putative regulators of immune cell volume regulation and migration was analyzed in LPS‐challenged BMDCs. We found that the LPS‐induced swelling of KCa3.1‐deficient DCs was impaired when compared to WT DCs. Accordingly, the LPS‐induced increase in [Ca2+]i detected in WT DCs was reduced in KCa3.1‐deficient DCs. Finally, directed migration of LPS‐challenged KCa3.1‐deficient DCs was low compared to WT DCs indicating that activation of KCa3.1 is involved in LPS‐induced DC migration. These findings suggest that both TLR4 and KCa3.1 contribute to the migration of LPS‐activated DCs as an important feature of the adaptive immune response.
  相似文献   

6.
We previously reported that neuraminidase (NA) pretreatment of human PBMCs markedly increased their cytokine response to lipopolysaccharide (LPS). To study the mechanisms by which this occurs, we transfected HEK293T cells with plasmids encoding TLR4, CD14, and MD2 (three components of the LPS receptor complex), as well as a NFκB luciferase reporting system. Both TLR4 and MD2 encoded by the plasmids are α-2,6 sialylated. HEK293T cells transfected with TLR4/MD2/CD14 responded robustly to the addition of LPS; however, omission of the MD2 plasmid abrogated this response. Addition of culture supernatants from MD2 (sMD2)-transfected HEK293T cells, but not recombinant, non-glycosylated MD2 reconstituted this response. NA treatment of sMD2 enhanced the LPS response as did NA treatment of the TLR4/CD14-transfected cell supplemented with untreated sMD2, but optimal LPS-initiated responses were observed with NA-treated TLR4/CD14-transfected cells supplemented with NA-treated sMD2. We hypothesized that removal of negatively charged sialyl residues from glycans on the TLR4 complex would hasten the dimerization of TLR4 monomers required for signaling. Co-transfection of HEK293T cells with separate plasmids encoding either YFP- or FLAG-tagged TLR4, followed by treatment with NA and stimulation with LPS, led to an earlier and more robust time-dependent dimerization of TLR4 monomers on co-immunoprecipitation, compared to untreated cells. These findings were confirmed by fluorescence resonance energy transfer (FRET) analysis. Overexpression of human Neu1 increased LPS-initiated TLR4-mediated NFκB activation and a NA inhibitor suppressed its activation. We conclude that (1) sialyl residues on TLR4 modulate LPS responsiveness, perhaps by facilitating clustering of the homodimers, and that (2) sialic acid, and perhaps other glycosyl species, regulate MD2 activity required for LPS-mediated signaling. We speculate that endogenous sialidase activity mobilized during cell activation may play a role in this regulation.  相似文献   

7.
The level of circulating endotoxin is related to the severity of cardiovascular disease. One of the indexes for the prognosis of cardiovascular disease is the plasma aldosterone level. Recently, the Toll‐like receptors (TLRs), lipopolysaccharide (LPS)‐regulated receptors, were found not only to mediate the inflammatory response but also to be important in the adrenal stress response. Whether LPS via TLRs induced aldosterone production in adrenal zona glomerulosa (ZG) cells was not clear. Our results suggest that LPS‐induced aldosterone secretion in a time‐ and dose‐dependent manner and via TLR2 and TLR4 signaling pathway. Administration of LPS can enhance steroidogenesis enzyme expression such as scavenger receptor‐B1 (SR‐B1), steroidogenic acute regulatory protein (StAR) and P450 side chain cleavage (P450scc) enzyme. LPS‐induced SR‐B1 and StAR protein expression are abolished by TLR2 blocker. Furthermore, we demonstrated that phosphorylation of Akt was elevated by LPS treatment and reduced by TLR2 blockers, TLR4 blockers, and LY294002 (PI3K inhibitor). Those inhibitors of PI3K/Akt pathways also abolish LPS‐induced aldosterone secretion and SR‐B1 protein level. In conclusion, LPS‐induced aldosterone production and SR‐B1 proteins expression are through the TLR2 and TLR4 related PI3K/Akt pathways in adrenal ZG cells. J. Cell. Biochem. 111: 872–880, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

8.
Innate-like B lymphocytes play an important role in innate immunity in periodontal disease through Toll-like receptor (TLR) signaling. However, it is unknown how innate-like B cell apoptosis is affected by the periodontal infection-associated innate signals. This study is to determine the effects of two major TLR ligands, lipopolysaccharide (LPS) and CpG-oligodeoxynucleotides (CpG-ODN), on innate-like B cell apoptosis. Spleen B cells were isolated from wild type (WT), TLR2 knockout (KO) and TLR4 KO mice and cultured with E. coli LPS alone, P. gingivalis LPS alone, or combined with CpG-ODN for 2 days. B cell apoptosis and expressions of specific apoptosis-related genes were analyzed by flow cytometry and real-time PCR respectively. P. gingivalis LPS, but not E. coli LPS, reduced the percentage of AnnexinV+/7-AAD- cells within IgMhighCD23lowCD43-CD93- marginal zone (MZ) B cell sub-population and IgMhighCD23lowCD43+CD93+ innate response activator (IRA) B cell sub-population in WT but not TLR2KO or TLR4KO mice. CpG-ODN combined with P. gingivalis LPS further reduced the percentage of AnnexinV+/7-AAD- cells within MZ B cells and IRA B cells in WT but not TLR2 KO or TLR4 KO mice. Pro-apoptotic CASP4, CASP9 and Dapk1 were significantly down-regulated in P. gingivalis LPS- and CpG-ODN-treated B cells from WT but not TLR2 KO or TLR4 KO mice. Anti-apoptotic IL-10 was significantly up-regulated in P. gingivalis LPS- and CpG-ODN-treated B cells from WT and TLR2 KO but not TLR4 KO mice. These results suggested that both TLR2 and TLR4 signaling are required for P. gingivalis LPS-induced, CpG-ODN-enhanced suppression of innate-like B cell apoptosis.  相似文献   

9.
Components of bacteria have been shown to induce innate antiviral immunity via Toll-like receptors (TLRs). We have recently shown that FimH, the adhesin portion of type 1 fimbria, can induce the innate immune system via TLR4. Here we report that FimH induces potent in vitro and in vivo innate antimicrobial responses. FimH induced an innate antiviral state in murine macrophage and primary MEFs which was correlated with IFN-β production. Moreover, FimH induced the innate antiviral responses in cells from wild type, but not from MyD88−/−, Trif−/−, IFN−α/βR−/− or IRF3−/− mice. Vaginal delivery of FimH, but not LPS, completely protected wild type, but not MyD88−/−, IFN-α/βR−/−, IRF3−/− or TLR4−/− mice from subsequent genital HSV-2 challenge. The FimH-induced innate antiviral immunity correlated with the production of IFN-β, but not IFN-α or IFN-γ. To examine whether FimH plays a role in innate immune induction in the context of a natural infection, the innate immune responses to wild type uropathogenic E. coli (UPEC) and a FimH null mutant were examined in the urinary tract of C57Bl/6 (B6) mice and TLR4-deficient mice. While UPEC expressing FimH induced a robust polymorphonuclear response in B6, but not TLR4−/− mice, mutant bacteria lacking FimH did not. In addition, the presence of TLR4 was essential for innate control of and protection against UPEC. Our results demonstrate that FimH is a potent inducer of innate antimicrobial responses and signals differently, from that of LPS, via TLR4 at mucosal surfaces. Our studies suggest that FimH can potentially be used as an innate microbicide against mucosal pathogens.  相似文献   

10.
Lipopolysaccharide (LPS) activates the innate immune response through the Toll-like receptor 4 (TLR4)·MD-2 complex. A synthetic lipid A precursor, lipid IVA, induces an innate immune response in mice but not in humans. Both TLR4 and MD-2 are required for the agonist activity of lipid IVA in mice, with TLR4 interacting through specific surface charges at the dimerization interface. In this study, we used site-directed mutagenesis to identify the MD-2 residues that determine lipid IVA species specificity. A single mutation of murine MD-2 at the hydrophobic pocket entrance, E122K, substantially reduced the response to lipid IVA. Combining the murine MD-2 E122K with the murine TLR4 K367E/S386K/R434Q mutations completely abolished the response to lipid IVA, effectively converting the murine cellular response to a human-like response. In human cells, however, simultaneous mutations of K122E, K125L, Y41F, and R69G on human MD-2 were required to promote a response to lipid IVA. Combining the human MD-2 quadruple mutations with the human TLR4 E369K/Q436R mutations completely converted the human MD-2/human TLR4 receptor to a murine-like receptor. Because MD-2 residues 122 and 125 reside at the dimerization interface near the pocket entrance, surface charge differences here directly affect receptor dimerization. In comparison, residues 42 and 69 reside at the MD-2/TLR4 interaction surface opposite the dimerization interface. Surface charge differences there likely affect the binding angle and/or rigidity between MD-2 and TLR4, exerting an indirect influence on receptor dimerization and activation. Thus, surface charge differences at the two MD-2/TLR4 interfaces determine the species-specific activation of lipid IVA.  相似文献   

11.
Lipid A in LPS activates innate immunity through the Toll-like receptor 4 (TLR4)-MD-2 complex on host cells. Variation in lipid A has significant consequences for TLR4 activation and thus may be a means by which Gram-negative bacteria modulate host immunity. However, although even minor changes in lipid A structure have been shown to affect downstream immune responses, the mechanism by which the TLR4-MD-2 receptor complex recognizes these changes is not well understood. We previously showed that strain BP338 of the human pathogen Bordetella pertussis, the causative agent of whooping cough, modifies its lipid A by the addition of glucosamine moieties that promote TLR4 activation in human, but not mouse, macrophages. Using site-directed mutagenesis and an NFκB reporter assay screen, we have identified several charged amino acid residues in TLR4 and MD-2 that are important for these species-specific responses; some of these are novel for responses to penta-acyl B. pertussis LPS, and their mutation does not affect the response to hexa-acylated Escherichia coli LPS or tetra-acylated lipid IVA. We additionally show evidence that suggests that recognition of penta-acylated B. pertussis lipid A is dependent on uncharged amino acids in TLR4 and MD-2 and that this is true for both human and mouse TLR4-MD-2 receptors. Taken together, we have demonstrated that the TLR4-MD-2 receptor complex recognizes variation in lipid A molecules using multiple sites for receptor-ligand interaction and propose that host-specific immunity to a particular Gram-negative bacterium is, at least in part, mediated by very subtle tuning of one of the earliest interactions at the host-pathogen interface.  相似文献   

12.
Dendritic cells (DCs) induce innate immune responses by recognizing bacterial LPS through TLR4 receptor complexes. In this study, we compared gene expression profiles of TLR4 knockout (TLR4neg) DCs and wild type (TLR4pos) DCs after stimulating with LPS. We found that the expression of various inflammatory genes by LPS were TLR4-independent. Among them, interleukin 1 receptor antagonist (IL-1rn) was of particular interest since IL-1rn is a potent natural inhibitor of proinflammatory IL-1. Using RT-PCR, real-time PCR, immunoblotting and ELISA, we demonstrated that IL-1rn was induced by DCs stimulated with LPS in the absence of TLR4. 2-Aminopurine, a pharmacological PKR inhibitor, completely abrogated LPS-induced expression of IL-1rn in TLR4neg DCs, suggesting that LPS-induced TLR4-independent expression of IL-1rn might be mediated by PKR pathways. Considering that IL-1rn is a physiological inhibitor of IL-1, TLR4-independent and PKR-dependent pathways might be crucial in counter-balancing proinflammatory effector functions of DCs resulted from TLR4-dependent activation by LPS.  相似文献   

13.
Toll-like receptors (TLRs) play important inductive roles in innate immune responses for host defense against invading microbial pathogens. Activation of TLR4 by lipopolysaccharide (LPS) induces dimerization of TLR4 and, subsequently, activation of downstream signaling pathways including nuclear factor-kappa B and interferon regulatory factor 3. TLR4 dimerization may be an early regulatory event in activating signaling pathways induced by LPS. Here, biochemical evidence is reported that isoliquiritigenin, one of the major ingredients derived from licorice root, inhibits LPS-induced TLR4 dimerization resulting in inhibition of nuclear factor-kappa B and interferon regulatory factor 3 activation, and cyclooxygenase-2 and inducible nitric oxide synthase expression. These results suggest that isoliquiritigenin modulates TLR-mediated signaling pathways at the receptor level. Furthermore, these results suggest that TLRs themselves may be important targets for the prevention of chronic inflammatory diseases.  相似文献   

14.
Endotoxemia by bacterial lipopolysaccharide (LPS) has been reported to affect gut motility specifically depending on Toll‐like receptor 4 activation (TLR4). However, the direct impact of LPS ligation to TLR4 on human smooth muscle cells (HSMC) activity still remains to be elucidated. The present study shows that TLR4, its associated molecule MD2, and TLR2 are constitutively expressed on cultured HSMC and that, once activated, they impair HSMC function. The stimulation of TLR4 by LPS induced a time‐ and dose‐dependent contractile dysfunction, which was associated with a decrease of TLR2 messenger, a rearrangement of microfilament cytoskeleton and an oxidative imbalance, i.e., the formation of reactive oxygen species (ROS) together with the depletion of GSH content. An alteration of mitochondria, namely a hyperpolarization of their membrane potential, was also detected. Most of these effects were partially prevented by the NADPH oxidase inhibitor apocynin or the NFκB inhibitor MG132. Finally, a 24 h washout in LPS‐free medium almost completely restored morphofunctional and biochemical HSMC resting parameters, even if GSH levels remained significantly lower and no recovery was observed in TLR2 expression. Thus, the exposure to bacterial endotoxin directly and persistently impaired gastrointestinal smooth muscle activity indicating that HSMC actively participate to dysmotility during infective burst. The knowledge of these interactions might provide novel information on the pathogenesis of infection‐associated gut dysmotility and further clues for the development of new therapeutic strategies. J. Cell. Physiol. 223: 442–450, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

15.

Introduction

The crucial role of innate immunity in the pathogenesis of systemic sclerosis (SSc) is well established, and in the past few years the hypothesis that Toll-like receptor 4 (TLR4) activation induced by endogenous ligands is involved in fibrogenesis has been supported by several studies on skin, liver, and kidney fibrosis. These findings suggest that TLR4 activation can enhance transforming growth factor beta (TGF-β) signaling, providing a potential mechanism for TLR4/Myeloid differentiation factor 88 (MyD88)-dependent fibrosis.

Methods

The expression of TLR4, CD14 and MD2 genes was analyzed by real-time polymerase chain reaction from skin biopsies of 24 patients with diffuse cutaneous SSc. In order to investigate the effects of the chronic skin exposure to endotoxin (Lipopolysaccharide (LPS)) in vivo we examined the expression of inflammation, TGF-β signaling and cellular markers genes by nanostring. We also identified cellular subsets by immunohistochemistry and flow cytometry.

Results

We found that TLR4 and its co-receptors, MD2 and CD14, are over-expressed in lesional skin from patients with diffuse cutaneous SSc, and correlate significantly with progressive or regressive skin disease as assessed by the Delta Modified Rodnan Skin Score. In vivo, a model of chronic dermal LPS exposure showed overexpression of proinflammatory chemokines, recruitment and activation of macrophages, and upregulation of TGF-β signature genes.

Conclusions

We delineated the role of MyD88 as necessary for the induction not only for the early phase of inflammation, but also for pro-fibrotic gene expression via activation of macrophages. Chronic LPS exposure might be a model of early stage of SSc when inflammation and macrophage activation are important pathological features of the disease, supporting a role for innate immune activation in SSc skin fibrosis.  相似文献   

16.

Background

Ascending infections of the female genital tract with bacteria causes pelvic inflammatory disease (PID), preterm labour and infertility. Lipopolysaccharide (LPS) is the main component of the cell wall of Gram-negative bacteria. Innate immunity relies on the detection of LPS by Toll-like receptor 4 (TLR4) on host cells. Binding of LPS to TLR4 on immune cells stimulates secretion of pro-inflammatory cytokines such as IL-6, chemokines such as CXCL1 and CCL20, and prostaglandin E2. The present study tested the hypothesis that TLR4 on endometrial epithelial and stromal cells is essential for the innate immune response to LPS in the female genital tract.

Methodology/Principal Findings

Wild type (WT) mice expressed TLR4 in the endometrium. Intrauterine infusion of purified LPS caused pelvic inflammatory disease, with accumulation of granulocytes throughout the endometrium of WT but not Tlr4−/− mice. Intra-peritoneal infusion of LPS did not cause PID in WT or Tlr4−/− mice, indicating the importance of TLR4 in the endometrium for the detection of LPS in the female genital tract. Stromal and epithelial cells isolated from the endometrium of WT but not Tlr4−/− mice, secreted IL-6, CXCL1, CCL20 and prostaglandin E2 in response to LPS, in a concentration and time dependent manner. Co-culture of combinations of stromal and epithelial cells from WT and Tlr4−/− mice provided little evidence of stromal-epithelial interactions in the response to LPS.

Conclusions/Significance

The innate immune response to LPS in the female genital tract is dependent on TLR4 on the epithelial and stromal cells of the endometrium.  相似文献   

17.
18.
Immune responses are initiated when molecules of microbial origin are sensed by the Toll-like receptors (TLRs). We now report the identification of essential molecular components for the trafficking of the lipopolysaccharide (LPS) receptor complex. LPS was endocytosed by a receptor-mediated mechanism dependent on dynamin and clathrin and colocalized with TLR4 on early/sorting endosomes. TLR4 was ubiquitinated and associated with the ubiquitin-binding endosomal sorting protein hepatocyte growth factor-regulated tyrosine kinase substrate, Hrs. Inhibition of endocytosis and endosomal sorting increased LPS signaling. Finally, the LPS receptor complex was sorted to late endosomes/lysosomes for degradation and loading of associated antigens onto HLA class II molecules for presentation to CD4+ T cells. Our results show that endosomal trafficking of the LPS receptor complex is essential for signal termination and LPS-associated antigen presentation, thus controlling both innate and adaptive immunity through TLR4.  相似文献   

19.
The activating immunoglobulin-like receptor, subfamily A, member 2 (LILRA2) is primarily expressed on the surface of cells of the innate immunity including monocytes, macrophages, neutrophils, basophils and eosinophils but not on lymphocytes and NK cells. LILRA2 cross-linking on monocytes induces pro-inflammatory cytokines while inhibiting dendritic cell differentiation and antigen presentation. A similar activating receptor, LILRA4, has been shown to modulate functions of TLR7/9 in dendritic cells. These suggest a selective immune regulatory role for LILRAs during innate immune responses. However, whether LILRA2 has functions distinct from other receptors of the innate immunity including Toll-like receptor (TLR) 4 and FcγRI remains unknown. Moreover, the effects of LILRA2 on TLR4 and FcγRI-mediated monocyte functions are not elucidated. Here, we show activation of monocytes via LILRA2 cross-linking selectively increased GM-CSF production but failed to induce IL-12 and MCP-1 production that were strongly up-regulated by LPS, suggesting functions distinct from TLR4. Interestingly, LILRA2 cross-linking on monocytes induced similar amounts of IL-6, IL-8, G-CSF and MIP-1α but lower levels of TNFα, IL-1β, IL-10 and IFNγ compared to those stimulated with LPS. Furthermore, cross-linking of LILRA2 on monocytes significantly decreased phagocytosis of IgG-coated micro-beads and serum opsonized Escherichia coli but had limited effect on phagocytosis of non-opsonized bacteria. Simultaneous co-stimulation of monocytes through LILRA2 and LPS or sequential activation of monocytes through LILRA2 followed by LPS led lower levels of TNFα, IL-1β and IL-12 production compared to LPS alone, but had additive effect on levels of IL-10 and IFNγ but not on IL-6. Interestingly, LILRA2 cross-linking on monocytes caused significant inhibition of TLR4 mRNA and protein, suggesting LILRA2-mediated suppression of LPS responses might be partly via regulation of this receptor. Taken together, we provide evidence that LILRA2-mediated activation of monocytes is significantly different to LPS and that LILRA2 selectively modulates LPS-mediated monocyte activation and FcγRI-dependent phagocytosis.  相似文献   

20.
The accessory protein MD2 has been implicated in LPS-mediated activation of the innate immune system by functioning as a co-receptor with TLR4 for LPS binding at the cell surface. Epithelial cells that play a role in primary immune response, such as in the lung or gut, often express TLR4, but are dependent on circulating soluble MD2 (sMD2) to bind TLR4 to assemble the functional receptor. In this study, we show that sMD2 incubation with HEK293 epithelial cells transfected with TLR4 increases the cell surface levels of TLR4 in the absence of LPS. Dose response studies reveal that a threshold sMD2 concentration (approximately 450 nM) stimulates maximal TLR4 levels on the cell surface, whereas higher concentrations of sMD2 (approximately 1800 nM) reduce these enhanced TLR4 levels. We show evidence that MD2 multimer formation is increased at these higher concentrations of sMD2 and that addition of LPS to sMD2-stimulated cells masks the enhanced TLR4 cell surface levels, most likely due to the LPS-induced downregulation of TLR4 by endocytosis following receptor stimulation. All together, these results support a model in which sMD2 binds to TLR4 and increases TLR4 levels at the cell surface by preventing TLR4 turnover through the endocytic pathway. Thus, sMD2 may prime epithelial cells for enhanced immunoresponsive function prior to LPS exposure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号