首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Identifying refugia is a critical component of effective conservation of biodiversity under anthropogenic climate change. However, despite a surge in conceptual and practical interest, identifying refugia remains a significant challenge across diverse continental landscapes. We provide an overview of the key properties of refugia that promote species' persistence under climate change, including their capacity to (i) buffer species from climate change; (ii) sustain long‐term population viability and evolutionary processes; (iii) minimize the potential for deleterious species interactions, provided that the refugia are (iv) available and accessible to species under threat. Further, we classify refugia in terms of the environmental and biotic stressors that they provide protection from (i.e. thermal, hydric, cyclonic, pyric and biotic refugia), but ideally refugia should provide protection from a multitude of stressors. Our systematic characterization of refugia facilitates the identification of refugia in the Australian landscape. Challenges remain, however, specifically with respect to how to assess the quality of refugia at the level of individual species and whole species assemblages. It is essential that these challenges are overcome before refugia can live up to their acclaim as useful targets for conservation and management in the context of climate change.  相似文献   

2.
Aim To model long‐term trends in plant species distributions in response to predicted changes in global climate. Location Amazonia. Methods The impacts of expected global climate change on the potential and realized distributions of a representative sample of 69 individual Angiosperm species in Amazonia were simulated from 1990 to 2095. The climate trend followed the HADCM2GSa1 scenario, which assumes an annual 1% increase of atmospheric CO2 content with effects mitigated by sulphate forcing. Potential distributions of species in one‐degree grid cells were modelled using a suitability index and rectilinear envelope based on bioclimate variables. Realized distributions were additionally limited by spatial contiguity with, and proximity to, known record sites. A size‐structured population model was simulated for each cell in the realized distributions to allow for lags in response to climate change, but dispersal was not included. Results In the resulting simulations, 43% of all species became non‐viable by 2095 because their potential distributions had changed drastically, but there was little change in the realized distributions of most species, owing to delays in population responses. Widely distributed species with high tolerance to environmental variation exhibited the least response to climate change, and species with narrow ranges and short generation times the greatest. Climate changed most in north‐east Amazonia while the best remaining conditions for lowland moist forest species were in western Amazonia. Main conclusions To maintain the greatest resilience of Amazonian biodiversity to climate change as modelled by HADCM2GSa1, highest priority should be given to strengthening and extending protected areas in western Amazonia that encompass lowland and montane forests.  相似文献   

3.
杨青  刘耕源  杨志峰 《生态学报》2024,44(3):871-884
尽管目前已有大量关于生物多样性评估的研究,但同时考虑生物多样性多维评估、多驱动因素对生物多样性变化的影响评估及生物多样性变化中长期动态模拟预测等研究仍相对缺乏,这会引起对生物多样性不同维度变化水平的片面理解,导致生物多样性保护工程管理决策失误。基于此,综述现有生物多样性评估维度、驱动因素及历史评估的研究进展,并基于现有研究存在的局限性提出生物多样性多维评估方法与人地耦合系统下生物多样性模拟模型构建思路,基于此提出气候变化和土地利用变化驱动下的生物多样性系统分析新框架。该框架包括:①生物多样性"潜力-贡献-重要性"多维评估理论与方法构建;②人地耦合系统下生物多样性模拟模型构建;③人地耦合系统下生物多样性预测及生物多样性保护工程效果仿真与管理。该框架可为生物多样性保护工程管理及可持续开展提供科学建议。  相似文献   

4.
Current knowledge of effects of climate change on biodiversity is briefly reviewed, and results are presented of a survey of biological research groups in the Netherlands, aimed at identifying key research issues in this field. In many areas of the world, biodiversity is being reduced by humankind through changes in land cover and use, pollution, invasions of exotic species and possibly climate change. Assessing the impact of climate change on biodiversity is difficult, because changes occur slowly and effects of climate change interact with other stress factors already imposed on the environment. Research issues identified by Dutch scientists can be grouped into: (i) spatial and temporal distributions of taxa; (ii) migration and dispersal potentials of taxa; (iii) genetic diversity and viability of (meta) populations of species; (iv) physiological tolerance of species; (v) disturbance of functional interactions between species; and (vi) ecosystem processes. Additional research should be done on direct effects of greenhouse gases, and on interactions between effects of climate change and habitat fragmentation. There are still many gaps in our knowledge of effects of climate change on biodiversity. An interdisciplinary research programme could possibly focus only on one or few of the identified research issues, and should generate input data for predictive models based on climate change scenarios.  相似文献   

5.
井新  蒋胜竞  刘慧颖  李昱  贺金生 《生物多样性》2022,30(10):22462-1603
气候变化与生物多样性丧失是人类社会正在经历的两大变化。气候变化影响生物多样性的方方面面, 是导致生物多样性丧失的一个主要驱动因子; 反过来, 生物多样性丧失会加剧气候变化。因此, 阻止甚至扭转气候变化和生物多样性丧失是当前人类社会亟需解决的全球性问题,但我们对气候变化与生物多样性之间的复杂关系和反馈机制尚缺乏清晰认识。本文总结了近年气候变化与生物多样性变化的研究进展, 重点概述了不同组织层次、空间尺度和维度的生物多样性对气候变化的响应和反馈等相关领域的研究进展和存在的主要问题。结果发现多数研究关注气候变化对生物多样性的直接影响, 涉及到生物多样性的不同组织层次、维度和营养级, 但针对气候变化间接影响的研究仍然较少, 机理研究同样需要加强; 生物多样性对生态系统功能影响的环境依赖和尺度推演、生物多样性对生态系统多功能性的作用机理和量化方法是当前研究面临的挑战; 生物多样性对生态系统响应气候变化的作用机制尚无统一的认识; 生物多样性对气候变化的正、负反馈效应是国内外研究的盲点。最后, 本文展望了未来发展方向和需要解决的关键科学问题, 包括多因子气候变化对生物多样性的影响; 减缓和适应气候变化的措施如何惠益于生物多样性保护; 生物多样性与生态系统功能的理论如何应用到现实世界; 生物多样性保护对实现碳中和目标的贡献。  相似文献   

6.
气候变化已成为威胁生物多样性及生态系统服务功能的主要因素之一, 许多国家已经意识到必须提高本国生物多样性适应气候变化的能力。一些国家出台了国家战略, 采取增加连通性、改进现有保护区域的管理和恢复措施等基于生态系统的适应措施, 采用跨学科与跨部门协作手段加强生物多样性适应气候变化的监测和评估, 并且从制度和资金等方面加强政策措施的落实。作者对部分发达国家和发展中的生物多样性大国的生物多样性适应气候变化的相关政策和措施进行了梳理, 并结合我国现状提出以下建议: (1)把生物多样性适应气候变化作为国家整体适应战略中的优先措施之一; (2)将提高生物多样性和生态系统的恢复力作为适应气候变化的基础性原则; (3)整合并完善国家生物多样性监测网络, 参考国际通行标准制定信息和数据收集标准, 并且尽快对气候变化下我国生物多样性脆弱性开展全面且持续的评估。  相似文献   

7.
Key global indicators of biodiversity decline, such as the IUCN Red List Index and the Living Planet Index, have relatively long assessment intervals. This means they, due to their inherent structure, function as late‐warning indicators that are retrospective, rather than prospective. These indicators are unquestionably important in providing information for biodiversity conservation, but the detection of early‐warning signs of critical biodiversity change is also needed so that proactive management responses can be enacted promptly where required. Generally, biodiversity conservation has dealt poorly with the scattered distribution of necessary detailed information, and needs to find a solution to assemble, harmonize and standardize the data. The prospect of monitoring essential biodiversity variables (EBVs) has been suggested in response to this challenge. The concept has generated much attention, but the EBVs themselves are still in development due to the complexity of the task, the limited resources available, and a lack of long‐term commitment to maintain EBV data sets. As a first step, the scientific community and the policy sphere should agree on a set of priority candidate EBVs to be developed within the coming years to advance both large‐scale ecological research as well as global and regional biodiversity conservation. Critical ecological transitions are of high importance from both a scientific as well as from a conservation policy point of view, as they can lead to long‐lasting biodiversity change with a high potential for deleterious effects on whole ecosystems and therefore also on human well‐being. We evaluated candidate EBVs using six criteria: relevance, sensitivity to change, generalizability, scalability, feasibility, and data availability and provide a literature‐based review for eight EBVs with high sensitivity to change. The proposed suite of EBVs comprises abundance, allelic diversity, body mass index, ecosystem heterogeneity, phenology, range dynamics, size at first reproduction, and survival rates. The eight candidate EBVs provide for the early detection of critical and potentially long‐lasting biodiversity change and should be operationalized as a priority. Only with such an approach can science predict the future status of global biodiversity with high certainty and set up the appropriate conservation measures early and efficiently. Importantly, the selected EBVs would address a large range of conservation issues and contribute to a total of 15 of the 20 Aichi targets and are, hence, of high biological relevance.  相似文献   

8.
在保护优先区规划中,有必要考虑气候变化的潜在风险并关注物种在气候驱动下的扩散格局。基于未来生物气候数据、地形多样性数据以及土地利用数据,应用Omniscape算法,对21世纪中叶(2040-2061年)气候变化情景下京津冀地区陆生哺乳动物的扩散进行全域连通性建模并与当前情景对比分析,识别出生物多样性保护优先区。结果表明:区域尺度下,气候变化风险使得高连通性的区域逐渐从平原向山区转移,分布趋于集中;斑块尺度下,林缘连通性较高,而位于林地或草地边缘的耕地连通性低。在此基础上,共识别生物多样性保护优先区共51786 km2,其中涵养区(占56.4%)在当前和未来的连通状况均较为良好;优化区(占38.4%)应提升生境质量以满足未来连通性的更高需求;而修复区(占5.22%)面临的气候变化风险较高,亟需进行生态修复以免在未来出现连通性夹点。本研究通过评估京津冀地区两种情景下的全域连通格局,为生物多样性保护的气候适应性规划提供了科学依据。  相似文献   

9.
PAUL GIOIA 《Austral ecology》2010,35(4):392-405
Decision makers, planners and researchers have identified the need to assess the effects of climate change on biodiversity, resulting in extensive research across a number of fields. The availability of comprehensive, accurate and relevant data is central to undertaking effective research. However, the quality and availability of biodiversity information is substantially determined by current and historical data collection strategies. If researchers and planners are to make effective use of existing and future investments in biodiversity information, a strategic approach should be taken in identifying and implementing best practice information management. This paper discusses ways to improve institutional support for information management and increase the availability of quality information. The paper reviews the most common areas of climate change and biodiversity research, and identifies best practices in information management, focusing on data used within biodiversity and climate change analyses.  相似文献   

10.
Climate change effects on biodiversity are already manifested, and yet no predictive knowledge characterizes the likely nature of these effects. Previous studies suggested an influence of topography on these effects, a possibility tested herein. Bird species with distributions restricted to montane (26 species) and Great Plains (19 species) regions of central and western North America were modeled, and climate change effects on their distributions compared: in general, plains species were more heavily influenced by climate change, with drastic area reductions (mode 35% of distributional area lost under assumption of no dispersal) and dramatic spatial movements (0–400 km shift of range centroid under assumption of no dispersal) of appropriate habitats. These results suggest an important generality regarding climate change effects on biodiversity, and provide useful guidelines for conservation planning.  相似文献   

11.
Species conservation plans frequently rely on information that spans political and administrative boundaries, especially when predictions are needed of future habitat under climate change; however, most species conservation plans and their requisite predictions of future habitat are often limited in geographical scope. Moreover, dispersal constraints for species of concern are not often incorporated into distribution models, which can result in overly optimistic predictions of future habitat. We used a standard modeling approach across a suite of 23 taxa of amphibians and reptiles in the North American deserts (560,024 km2 across 13 ecoregions) to assess impacts of climate change on habitat and combined landscape population dispersal simulations with species distribution modeling to reduce the risk of predicting future habitat in areas that are not available to species given their dispersal abilities. We used 3 general circulation models and 2 representative concentration pathways (RCPs) to represent multiple scenarios of future habitat potential and assess which study species may be most vulnerable to changes forecasted under each climate scenario. Amphibians were the most vulnerable taxa, but the most vulnerable species tended to be those with the lowest dispersal ability rather than those with the most specialized niches. Under the most optimistic climate scenario considered (RCP 2.6; a stringent scenario requiring declining emissions from 2020 to near zero emissions by 2100), 76% of the study area may experience a loss of >20% of the species examined, while up to 87% of the species currently present may be lost in some areas under the most pessimistic climate scenario (RCP 8.5; a scenario wherein greenhouse gases continue to increase through 2100 based on trajectories from the mid-century). Most areas with high losses were concentrated in the Arizona and New Mexico Plateau ecoregion, the Edwards Plateau in Texas, and the Southwestern Tablelands in New Mexico and Texas, USA. Under the most pessimistic climate scenario, all species are predicted to lose some existing habitat, with an average of 34% loss of extant habitat across all species. Even under the most optimistic scenario, we detected an average loss of 24% of extant habitat across all species, suggesting that changing climates may influence the ranges of reptiles and amphibians in the Southwest.  相似文献   

12.
13.
14.
15.
Planting of woody perennial vegetation for carbon sequestration continues to gain momentum as markets for carbon develop in Australia. With the impetus of the Clean Energy Future package, these plantings have the potential to contribute to biodiversity gains if established and managed appropriately. In this study, we sought to link indicators of biodiversity to carbon storage in remnant vegetation, mixed‐species native revegetation and single‐species eucalypt plantations in the Mount Lofty Ranges (MLR) of South Australia. Native plant species richness was higher in remnant vegetation than in revegetation and plantation sites in the southern MLR, but only remnant and plantation sites were different in the northern MLR. Native bird species richness was higher in remnant than plantation sites, but revegetation sites were similar to both plantation and remnant sites in northern and southern sites. Mean total standing carbon varied across treatments in southern sites, and there were no statistically significant differences in mean carbon sequestration rate between planted treatments. Monoculture plantation sites lack the structural complexity required and offer limited resources for native fauna compared with mixed‐species revegetation or remnant vegetation. This reinforces the importance of carefully constructed incentives to compensate landholders for potential carbon shortfalls if the opportunity for biodiversity gains from carbon plantings is to be realised in the longer term. The value of the standing carbon in remnant vegetation should also be recognised in emerging markets.  相似文献   

16.
The upsurge in anthropogenic climate change has accelerated the habitat loss and fragmentation of wild animals and plants. The rare and endangered plants are important biodiversity elements. However, the lack of comprehensive and reliable information on the spatial distribution of these organisms has hampered holistic and efficient conservation management measures. We explored the consequences of climate change on the geographical distribution of Firmiana kwangsiensis (Malvaceae), an endangered species, to provide a reference for conservation, introduction, and cultivation of this species in new ecological zones. Modeling of the potential distribution of F. kwangsiensis under the current and two future climate scenarios in maximum entropy was performed based on 30 occurrence records and 27 environmental variables of the plant. We found that precipitation‐associated and temperature‐associated variables limited the potentially suitable habitats for F. kwangsiensis. Our model predicted 259,504 km2 of F. kwangsiensis habitat based on 25 percentile thresholds. However, the high suitable habitat for F. kwangsiensis is only about 41,027 km2. F. kwangsiensis is most distributed in Guangxi''s protected areas. However, the existing reserves are only 2.7% of the total suitable habitat and 4.2% of the high suitable habitat for the plant, lower than the average protection area in Guangxi (7.2%). This means the current protected areas network is insufficient, underlining the need for alternative conservation mechanisms to protect the plant habitat. Our findings will help identify additional F. kwangsiensis localities and potential habitats and inform the development and implementation of conservation, management, and cultivation practices of such rare tree species.  相似文献   

17.
18.
Forecasting the consequences of climate change is contingent upon our understanding of the relationship between biodiversity patterns and climatic variability. While the impacts of climate change on individual species have been well‐documented, there is a paucity of studies on climate‐mediated changes in community dynamics. Our objectives were to investigate the relationship between temporal turnover in avian biodiversity and changes in climatic conditions and to assess the role of landscape fragmentation in affecting this relationship. We hypothesized that community turnover would be highest in regions experiencing the most pronounced changes in climate and that these patterns would be reduced in human‐dominated landscapes. To test this hypothesis, we quantified temporal turnover in avian communities over a 20‐year period using data from the New York State Breeding Atlases collected during 1980–1985 and 2000–2005. We applied Bayesian spatially varying intercept models to evaluate the relationship between temporal turnover and temporal trends in climatic conditions and landscape fragmentation. We found that models including interaction terms between climate change and landscape fragmentation were superior to models without the interaction terms, suggesting that the relationship between avian community turnover and changes in climatic conditions was affected by the level of landscape fragmentation. Specifically, we found weaker associations between temporal turnover and climatic change in regions with prevalent habitat fragmentation. We suggest that avian communities in fragmented landscapes are more robust to climate change than communities found in contiguous habitats because they are comprised of species with wider thermal niches and thus are less susceptible to shifts in climatic variability. We conclude that highly fragmented regions are likely to undergo less pronounced changes in composition and structure of faunal communities as a result of climate change, whereas those changes are likely to be greater in contiguous and unfragmented habitats.  相似文献   

19.
20.
Conservation strategies are often established without consideration of the impact of climate change. However, this impact is expected to threaten species and ecosystem persistence and to have dramatic effects towards the end of the 21st century. Landscape suitability for species under climate change is determined by several interacting factors including dispersal and human land use. Designing effective conservation strategies at regional scales to improve landscape suitability requires measuring the vulnerabilities of specific regions to climate change and determining their conservation capacities. Although methods for defining vulnerability categories are available, methods for doing this in a systematic, cost‐effective way have not been identified. Here, we use an ecosystem model to define the potential resilience of the Finnish forest landscape by relating its current conservation capacity to its vulnerability to climate change. In applying this framework, we take into account the responses to climate change of a broad range of red‐listed species with different niche requirements. This framework allowed us to identify four categories in which representation in the landscape varies among three IPCC emission scenarios (B1, low; A1B, intermediate; A2, high emissions): (i) susceptible (B1 = 24.7%, A1B = 26.4%, A2 = 26.2%), the most intact forest landscapes vulnerable to climate change, requiring management for heterogeneity and resilience; (ii) resilient (B1 = 2.2%, A1B = 0.5%, A2 = 0.6%), intact areas with low vulnerability that represent potential climate refugia and require conservation capacity maintenance; (iii) resistant (B1 = 6.7%, A1B = 0.8%, A2 = 1.1%), landscapes with low current conservation capacity and low vulnerability that are suitable for restoration projects; (iv) sensitive (B1 = 66.4%, A1B = 72.3%, A2 = 72.0%), low conservation capacity landscapes that are vulnerable and for which alternative conservation measures are required depending on the intensity of climate change. Our results indicate that the Finnish landscape is likely to be dominated by a very high proportion of sensitive and susceptible forest patches, thereby increasing uncertainty for landscape managers in the choice of conservation strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号