首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

The expression of myocardin, a cardiac-restricted gene, increases during environmental stress. How mechanical stretch affects the regulation of myocardin in vascular smooth muscle cells (VSMCs) is not fully understood. We identify the mechanisms and pathways through which mechanical stretch induces myocardin expression in VSMCs.

Results

Rat VSMCs grown on a flexible membrane base were stretched to 20% of maximum elongation, at 60 cycles per min. An in vivo model of aorta-caval shunt in adult rats was also used to investigate myocardin expression. Cyclic stretch significantly increased myocardin and angiotensin II (AngII) expression after 18 and 6 h of stretch. Addition of extracellular signal-regulated kinases (ERK) pathway inhibitor (PD98059), ERK small interfering RNA (siRNA), and AngII receptor blocker (ARB; losartan) before stretch inhibited the expression of myocardin protein. Gel shift assay showed that myocardin-DNA binding activity increased after stretch. PD98059, ERK siRNA and ARB abolished the binding activity induced by stretch. Stretch increased while myocardin-mutant plasmid, PD98059, and ARB abolished the promoter activity. Protein synthesis by measuring [3H]proline incorporation into the cells increased after cyclic stretch, which represented hypertrophic change of VSMCs. An in vivo model of aorta-caval shunt also demonstrated increased myocardin protein expression in the aorta. Confocal microscopy showed increased VSMC size 24 h after cyclic stretch and VSMC hypertrophy after creation of aorta-caval shunt for 3 days.

Conclusions

Cyclic stretch enhanced myocardin expression mediated by AngII through the ERK pathway in cultured rat VSMCs. These findings suggest that myocardin plays a role in stretch-induced VSMC hypertrophy.  相似文献   

2.
Intrinsic reactive oxygen species (ROS) in a rat model of human minimal change nephropathy were detected directly using an in vivo electron paramagnetic resonance (EPR) method with 1-acetoxy-3-carbamoyl-2,2,5,5-tetramethylpyrrolidine (ACP) in real time. The nephrosis was induced by the intravenous administration of 75 mg/kg of puromycin aminonucleoside (PAN). It was found that ROS in the kidney were increased 1 h after the administration of PAN. This increased oxidative stress declined at 24 h and returned to a normal level 3 days after PAN administration. This is the first non-invasive in vivo detection and quantification of specific ROS in an experimental nephrosis model.  相似文献   

3.
The effects of phenobarbital on protein and glycoprotein synthesis and secretion were studied in rat liver slices. Phenobarbital (2 mM) decreased [14C]-glucosamine and [14C]leucine incorporation into liver proteins and markedly inhibited their incorporation into medium (secretory) proteins. This inhibitory effect of phenobarbital was dose dependent and not reversible under the conditions of this study. In the presence of cycloheximide, an inhibitor of peptide synthesis, phenobarbital still inhibited the release of glycoproteins into the medium; however, the specific activity of liver glycoproteins was increased. The effects of phenobarbital on hepatic macromolecular secretion, independent of its effects on synthesis, were determined by prelabeling proteins in a liver slice system with either [14C]leucine of [14C]glucosamine. When phenobarbital was present, the secretion of these prelabeled proteins into the medium was impaired. 12 h after intraperitoneal injections of phenobarbital, glycoprotein secretion was inhibited from liver slices prepared from the pretreated rats. This inhibition of secretion occurred even though protein synthesis was stimulated and intracellular glycosylations unaffected. The results of this study indicate that phenobarbital impairs the secretion of glycoproteins by the liver.  相似文献   

4.
The mechanism of action of lutropin on the stimulation of the synthesis of a specific lutropin-induced protein in rat testis Leydig cells was investigated. Lutropin-induced protein has a mol.wt. of approx. 21000 and is detected by labelling the Leydig-cell proteins with [35S]methionine, followed by separation by polyacrylamide-gel electrophoresis and radioautography of the dried gel. The incorporation of 35S into lutropin-induced protein was used as an estimate for the synthesis of the protein. Incubation of Leydig cells with dibutyryl cyclic AMP or cholera toxin also resulted in the stimulation of synthesis of the protein. Synthesis of lutropin-induced protein, when maximally stimulated with 100ng of lutropin/ml, could not be stimulated further by addition of dibutyryl cyclic AMP. Addition of 3-isobutyl-1-methylxanthine, a phosphodiesterase inhibitor, further increased synthesis of the protein in the presence of a submaximal dose of lutropin (10ng/ml) but not in the absence of lutropin or with maximal amounts of lutropin (100 and 1000ng/ml). Actinomycin D prevented the effect of lutropin on the stimulation of lutropin-induced protein synthesis when added immediately or 1h after the start of the incubation, but not when added after 5–6h. This is interpreted as reflecting that, after induction of mRNA coding for lutropin-induced protein, lutropin had no influence on the synthesis of the protein in the presence of actinomycin D. Synthesis of the protein was also stimulated in vivo by injection of choriogonadotropin into rats 1 day after hypophysectomy, and the time course of this stimulation of lutropin-induced protein synthesis in vivo was similar to that obtained by incubating Leydig cells in vitro with lutropin. From these results it is concluded that stimulation of lutropin-induced protein synthesis by lutropin is most probably mediated by cyclic AMP and involves synthesis of mRNA.  相似文献   

5.
Sertoli cell cultures were prepared from the testes of 20-day-old rats. The proteins which were secreted by the cells into the culture medium were labeled with [3H]leucine or l-[3H]fucose. The proteins were concentrated by ultrafiltration and analysed by polyacrylamide slab gel electrophoresis (PAGE) in the presence of sodium dodecyl sulfate (SDS). Autofluorography of the gels at ?70 °C showed that the rat Sertoli cells synthesized and secreted at least 7 major polypeptides. The polypeptides had molecular weights ranging from 16 000 to 140 000 D. Proteins which were secreted from cultures of testicular fibroblasts and myoid cells had electrophoretic properties on SDS-PAGE which were different from Sertoli cell secreted proteins. Addition of FSH and testosterone to the Sertoli cell cultures increased the total synthesis and secretion of [3H]leucine-labeled proteins. No qualitative changes in the proteins as a result of hormone application could be detected. However, the synthesis of a polypeptide of molecular weight 48 000 was increased relative to the other secreted peptides if the cells were maintained in FSH and testosterone. The Sertoli cell secreted proteins were shown to be glycoproteins which can bind to ConA-Sepharose and can be labeled with [3H]fucose. Tunicamycin, a specific inhibitor of N-glycosylation, inhibited the secretion of [3H]proteins by 50% but had little effect on the intracellular protein synthesis.  相似文献   

6.
The synthesis, transport and localization of a nuclear coded 22-kd heat-shock protein (HSP) in the chloroplast membranes was studied in pea plants and Chlamydomonas reinhardi. HSPs were detected in both systems by in vivo labeling and in vitro translation of poly(A)+RNA, using the wheat-germ and reticulocyte lysate systems. Heat-shock treatment of pea plants for 2 h at 42-45°C induces the expression of ˜10 nuclear coded proteins, among which several (18 kd, 19 kd, 22 kd) are predominant. A 22-kd protein is synthesized as a 26-kd precursor protein and is localized in a chloroplast membrane fraction in vivo. Following post-translational transport into intact chloroplasts in vitro of the 26-kd precursor, the protein is processed but the resulting 22-kd mature protein is localized in the chloroplast stroma. If, however, the in vitro transport is carried out with chloroplasts from heat-shocked plants, the 22-kd protein is preferentially transported to the chloroplast membrane fraction. In C. reinhardi the synthesis of poly(A)+RNAs coding for several HSPs is progressively and sequentially induced when raising the temperature for 1.5 h from 36°C to 42°C, while that of several preexisting RNAs is reduced. Various pre-existing poly(A)+RNAs endure in the cells at 42°C up to 5 h but are no longer translated in vivo, whereas some poly(A)RNAs persist and are translated. As in pea, a poly(A)+RNA coded 22-kd HSP is localized in the chloroplast membranes in vivo, although it is translated as a 22-kd protein in vitro. The in vitro translated protein is not transported in isolated pea chloroplast which, however, processes and transports other nuclear coded chloroplast proteins of Chlamydomonas. The poly(A)+RNA coding for the 22-kd HSP appears after 1 h at 36°C. Its synthesis increases with the temperature of incubation up to 42°C, although it decreases after ˜2 h of heat treatment and the already synthesized RNA is rapidly degraded. The degradation is faster upon return of the cells to 26°C. None of the heat-induced proteins is identical to the light-inducible proteins of the chloroplast membranes.  相似文献   

7.
Carbamylation is a general process involved in protein molecular ageing due to the nonenzymatic binding of isocyanic acid, mainly generated by urea dissociation, to free amino groups. In vitro experiments and clinical studies have suggested the potential involvement of carbamylated proteins (CPs) in chronic kidney disease (CKD) complications like atherosclerosis, but their metabolic fate in vivo is still unknown. To address this issue, we evaluated protein carbamylation in the plasma and tissues of control and 75% nephrectomised C57BL/6J mice by LC-MS/MS assay of homocitrulline, the major carbamylation-derived product (CDP). A basal level of carbamylation was evidenced under all conditions, showing that carbamylation is a physiological process of protein modification in vivo. CP plasma concentrations increased in nephrectomized vs. control mice over the 20 weeks of the experiment (e.g. 335±43 vs. 167±19 μmol homocitrulline/mol lysine (p<0.001) 20 weeks after nephrectomy). Simultaneously, CP content increased roughly by two-fold in all tissues throughout the experiment. The progressive accumulation of CPs was specifically noted in long-lived extracellular matrix proteins, especially collagen (e.g. 1264±123 vs. 726±99 μmol homocitrulline/mol lysine (p<0.01) in the skin of nephrectomized vs. control mice after 20 weeks of evolution). These results show that chronic increase of urea, as seen in CKD, increases the carbamylation rate of plasma and tissue proteins. These results may be considered in the perspective of the deleterious effects of CPs demonstrated in vitro and of the correlation evidenced recently between plasma CPs and cardiovascular risk or mortality in CKD patients.  相似文献   

8.
Ortiz W 《Plant physiology》1990,93(1):141-147
Growing cultures of photoheterotrophic Euglena gracilis experience an increase in chlorophyll accumulation during the initial phase of the temperature-induced bleaching response suggesting an increase in the synthesis of plastid components at the bleaching temperature of 33°C. A primary goal of this work was to establish whether an increase in the synthesis of plastid proteins accompanies the observed increase in chlorophyll accumulation. In vivo pulse-labeling experiments with [35S]sodium sulfate were carried out with cells grown at room temperature or at 33°C. The synthesis of a number of plastid polypeptides of nucleocytoplasmic origin, including some presumably novel polypeptides, increased in cultures treated for 15 hours at 33°C. In contrast, while synthesis of thylakoid proteins by the plastid protein synthesis machinery decreased modestly, synthesis of the large subunit of the enzyme ribulosebisphosphate carboxylase was strongly affected at the elevated temperature. Synthesis of novel plastid-encoded polypeptides was not induced at the bleaching temperature. It is concluded that protein synthesis in plastids declines during the initial phase of the temperature response in Euglena despite an overall increase in cellular protein synthesis and an increase in chlorophyll accumulation per cell.  相似文献   

9.
In order to maintain high transmembrane ionic gradients, retinal tissues require a large amount of energy probably provided by a high rate of both, glycolysis and oxidative phosphorylation. However, little information exists on retinal mitochondrial efficiency. We analyzed the retinal mitochondrial activity in ex vivo retinas and in isolated mitochondria from normal rat retina and from short-term streptozotocin-diabetic rats. In normal ex vivo retinas, increasing glucose concentrations from 5.6mM to 30mM caused a four-fold increase in glucose accumulation and CO2 production. Retina from diabetic rats accumulated similar amounts of glucose. However, CO2 production was not as high. Isolated mitochondria from normal rat retina exhibited a resting rate of oxygen consumption of 14.6 ± 1.1 natgO (min.mg prot)-1 and a respiratory control of 4.0. Mitochondria from 7, 20 and 45 days diabetic rats increased the resting rate of oxygen consumption and the activity of the electron transport complexes; under these conditions the mitochondrial transmembrane potential decreased. In spite of this, the ATP synthesis was not modified. GDP, an UCP2 inhibitor, increased mitochondrial membrane potential and superoxide production in controls and at 45 days of diabetes. The role of UCP2 is discussed. The results suggest that at the early stage of diabetes we studied, retinal mitochondria undergo adaptations leading to maintain energetic requirements and prevent oxidative stress.  相似文献   

10.
Cardiac remodeling was shown to be associated with reduced gap junction expression after myocardial infarction. A reduction in gap junctional proteins between myocytes may trigger ventricular arrhythmia. Therefore, we investigated whether N-acetylcysteine exerted antiarrhythmic effect by preserving connexin43 expression in postinfarcted rats, focusing on cAMP downstream molecules such as protein kinase A (PKA) and exchange protein directly activated by cAMP (Epac). Male Wistar rats after ligating coronary artery were randomized to either vehicle, or N-acetylcysteine for 4 weeks starting 24 hours after operation. Infarct size was similar between two groups. Compared with vehicle, cAMP levels were increased by N-acetylcysteine treatment after infarction. Myocardial connexin43 expression was significantly decreased in vehicle-treated infarcted rats compared with sham operated rats. Attenuated connexin43 expression and function were blunted after administering N-acetylcysteine, assessed by immunofluorescent analysis, dye coupling, Western blotting, and real-time quantitative RT-PCR of connexin43. Arrhythmic scores during programmed stimulation in the N-acetylcysteine-treated rats were significantly lower than those treated with vehicle. In an ex vivo study, enhanced connexin43 levels afforded by N-acetylcysteine were partially blocked by either H-89 (a PKA inhibitor) or brefeldin A (an Epac-signaling inhibitor) and completely blocked when H-89 and brefeldin A were given in combination. Addition of either the PKA specific activator N6Bz or Epac specific activator 8-CPT did not have additional increased connexin43 levels compared with rats treated with lithium chloride alone. These findings suggest that N-acetylcysteine protects ventricular arrhythmias by attenuating reduced connexin43 expression and function via both PKA- and Epac-dependent pathways, which converge through the inactivation of glycogen synthase kinase-3β.  相似文献   

11.
  • 1.1. Lipoperoxidation (LPx) and glutathione peroxidase (GPx) activity were measured in kidney, liver, heart, lung, brain and testis from control and puromycin aminonucleoside (PAN) injected rats on days 1–6, 8, 10, 16 and 22 after vehicle or PAN injection.
  • 2.2. PAN-injected rats developed proteinuria on day 3.
  • 3.3. In PAN-injected rats: (a) LPx increased in kidney, liver, lung, brain and testis before day 3 and in heart on day 3; (b) GPx activity increased in kidney, liver, heart, lung and testis and diminished in brain on day 3 or after.
  相似文献   

12.
Liver microsomes, isolated from rats which had been treated with phenobarbital in vivo, were found to exhibit increased activities of oxidative demethylation and TPNH-cytochrome c reductase and an increased amount of CO-binding pigment. Simultaneous administration of actinomycin D or puromycin abolished the phenobarbital-induced enzyme synthesis. Increased rate of Pi32 incorporation into microsomal phospholipid was the first sign of phenobarbital stimulation and appeared 3 hours after a single injection of this drug. Microsomes were divided into smooth-surfaced and rough-surfaced vesicle fractions. The fraction consisting of smooth-surfaced vesicles exhibited the greatest increase in protein content and oxidative demethylation activity after phenobarbital administration in vivo. Ultrastructural studies revealed that drug treatment also gave rise to proliferation of the endoplasmic reticulum in the hepatic parenchymal cells, first noticed after two phenobarbital injections. The phenobarbital-induced synthesis of the metabolizing enzymes is discussed with special reference to the relationship to the stimulated synthesis of the endoplasmic membranes.  相似文献   

13.
The effect of ethephon (2-chloroetylphosphonic acid) on the degradation of proteins and on the induction of Lycopersicon esculentum pathogenesis-related (PR) proteins was studied in tomato leaf discs. The rate of ribulose, -1,5-bisphosphate carboxylase/oxygenase (Rubisco) degradation was maximal in discs after 48 hours of incubation with 1 millimolar ethephon, leading to complete disappearance of Rubisco after 96 hours. This effect was correlated with an increase in PR protein synthesis and the induction of the previously reported alkaline proteolytic enzyme PR-P69 (P Vera, V Conejero [1988] Plant Physiol 87: 58-63). In vivo pulse-chase experiments demonstrated that ethephon not only affected Rubisco content but that of many other 35S-labeled proteins as well, indicating that ethylene activates a general and nonspecific mechanism of protein degradation. This effect was partially inhibited in vivo by the action of pCMB, a selective inhibitor of cysteine-proteinases such as P69. These data reinforce the hypothesis that P69 and perhaps other PR proteins are involved in the mechanism of accelerated protein degradation activated by ethylene.  相似文献   

14.
Guy CL  Haskell D 《Plant physiology》1987,84(3):872-878
Spinach (Spinacia oleracea L. cv Bloomsdale) seedlings cultured in vitro were used to study changes in protein synthesis during cold acclimation. Seedlings grown for 3 weeks postsowing on an inorganic-nutrient-agar medium were able to increase their freezing tolerance when grown at 5°C. During cold acclimation at 5°C and deacclimation at 25°C, the kinetics of freezing tolerance induction and loss were similar to that of soil-grown plants. Freezing tolerance increased after 1 day of cold acclimation and reached a maximum within 7 days. Upon deacclimation at 25°C, freezing tolerance declined within 1 day and was largely lost by the 7th day. Leaf proteins of intact plants grown at 5 and 25°C were in vivo radiolabeled, without wounding or injury, to high specific activities with [35S]methionine. Leaf proteins were radiolabeled at 0, 1, 2, 3, 4, 7, and 14 days of cold acclimation and at 1, 3, and 7 days of deacclimation. Up to 500 labeled proteins were separated by two-dimensional gel electrophoresis and visualized by fluorography. A rapid and stable change in the protein synthesis pattern was observed when seedlings were transferred to the low temperature environment. Cold-acclimated leaves contained 22 polypeptides not found in nonacclimated leaves. Exposure to 5°C induced the synthesis of three high molecular weight cold acclimation proteins (CAPs) (Mr of about 160,000, 117,000, and 85,000) and greatly increased the synthesis of a fourth high molecular weight protein (Mr 79,000). These proteins were synthesized during day 1 and throughout the 14 day exposure to 5°C. During deacclimation, the synthesis of CAPs 160, 117, and 85 was greatly reduced by the first day of exposure to 25°C. However, CAP 79 was synthesized throughout the 7 day deacclimation treatment. Thus, the induction at low temperature and termination at warm temperature of the synthesis of CAPs 160, 117, and 85 was highly correlated with the induction and loss of freezing tolerance. Cold acclimation did not result in a general posttranslational modification of leaf proteins. Most of the observed changes in the two-dimensional gel patterns could be attributed to the de novo synthesis of proteins induced by low temperature. In spinach leaf tissue, heat shock altered the pattern of protein synthesis and induced the synthesis of several heat shock proteins (HSPs). One polypeptide synthesized in cold-acclimated leaves had a molecular weight and net charge (Mr 79,000, pI 4.8) similar to that of a HSP (Mr 83,000, pI 4.8). However, heat shock did not increase the freezing tolerance, and cold acclimation did not increase heat tolerance over that of nonacclimated plants, but heat-shocked leaf tissue was more tolerant to high temperatures than nonacclimated or cold-acclimated leaf tissue. When protein extracts from heat-shocked and cold-acclimated leaves were mixed and separated in the same two-dimensional gel, the CAP and HSP were shown to be two separate polypeptides with slightly different isoelectric points and molecular weights.  相似文献   

15.
《Insect Biochemistry》1990,20(5):493-500
The patterns of protein synthesis by the milk gland and the fat body of female Glossinapallidipes during the pregnancy cycle were studied by incubation with [35S]methionine both in vivo and in vitro. The pattern of protein synthesis by the milk gland changed with the stage of the larva in the uterus. Very little synthesis occurred in the milk gland until the first instar larva hatched. Then four proteins (13, 16, 24 and 72 kDa) were prominently synthesized. As the larva matured, the synthesis of 19, 38, 40 and 72 kDa proteins increased, whereas that of the 13 and 24 kDa proteins decreased. Just before larviposition, only the 16 and 72 kDa proteins were still being synthesized. The milk gland secreted into the medium primarily the 13, 16, 19 and 72 kDa proteins, all of which were found in the larval gut after a 5 hr pulse of labeled methionine in vivo. During most of the pregnancy cycle protein synthesis in the fat body was low compared to that of the milk gland and only small amounts of several low molecular weight proteins (less than or equal to 16 kDa) were released into the medium. But when a large third instar larva was present in the uterus, the fat body synthesized and secreted a 72 kDa and a 15–17 kDa complex of proteins.  相似文献   

16.
Abstract— The activity of tryptophan hydroxylase was measured in whole homogenates of midbrain and forebrain areas of the rat brain. A significant elevation of tryptophan hydroxylase in midbrain and forebrain was found within 1 h after injection of corticosterone hemisuccinate Na salt (10mg/kg) into normal rats. A further elevation of tryptophan hydroxylase at 4 h after injection occurred only in the midbrain region. A rapid alteration of tryptophan hydroxylase was also observed following intracistemal injection of a protein synthesis inhibitor, cydoheximide. A significant depression of 50% of normal levels occurred both in midbrain and forebrain regions within 1 h. However. 4 h after injection only the midbrain tryptophan hydroxylase level was depressed, and this depression was 16% of normal levels. This temporal and spatial pattern following cydoheximide injection was not the result of changes in the ability of cydoheximide to inhibit in vivo protein synthesis since [3H]valine incorporation into protein was shown to be equally depressed at both 1 and 5 h in both the midbrain and forebrain. Puromycin blocked [3H]valine incorporation into proteins in the midbrain and forebrain. but only caused a depression of 16% of tryptophan hydroxylase in the midbrain at 4 h. The aminonucleoside derivative of puromycin has no effect on protein synthesis or on tryptophan hydroxylase. Cydoheximide had no effect on tryptophan hydroxylase in vitro. The data suggest that cydoheximide and corticosterone produce an early (1 h) effect on tryptophan hydroxylase unrelated to de novo protein synthesis in regions known to contain perikaryon (midbrain) and axon terminals (forebrain) of 5-HT-containing neurons. The later (4h) effects of these two compounds and puromycin on tryptophan hydroxylase in the perikaryon (midbrain) region of 5-HT-containing neurons probably result from alteration in de novo protein synthesis. The half time of tryptophan hydroxylase in midbrain region is calculated to be 12 h.  相似文献   

17.
Effect of heat shock on the growth of cultured sugarcane cells (Saccharum officinarum L.) was measured. Heat shock (HS) treatment at 36 to 38°C (2 hours) induced the development of maximum thermotolerance to otherwise nonpermissive heat stress at 54°C (7 minutes). Optimum thermotolerance was observed 8 hours after heat shock. Development of thermotolerance was initiated by treatments as short as 30 minutes at 36°C. Temperatures below 36°C or above 40°C failed to induce maximum thermotolerance. In vivo labeling revealed that HS at 32 to 34°C induced several high molecular mass heat shock proteins (HSPs). A complex of 18 kilodalton HSPs required at least 36°C treatment for induction. The majority of the HSPs began to accumulate within 10 minutes, whereas the synthesis of low molecular mass peptides in the 18 kilodalton range became evident 30 minutes after initiation of HS. HS above 38°C resulted in progressively decreased HSP synthesis with inhibition first observed for HSPs larger than 50 kilodaltons. Analysis of two-dimensional gels revealed a complex pattern of label incorporation including the synthesis of four major HSPs in the 18 kilodalton range and continued synthesis of constitutive proteins during HS.  相似文献   

18.
The BHE strain of rat is characterized by early hyperinsulinemia and maturity onset hyperlipemia and hyperglycemia. Since we have previously shown that insulin is required for the coordinate regulation of a number of lipogenic enzymes in rat liver, a comparative study of the hepatic activities of the rate-limiting enzymes of lipid synthesis and the in vivo rates of fatty acid and cholesterol synthesis in the liver and the adipose tissue has been conducted in BHE and Wistar rats. In the liver, BHE rats had 25–28% higher acetyl-CoA carboxylase and fatty acid synthetase activities as measured in vitro but a 100% greater rate of fatty acid synthesis in vivo as compared to Wistar animals. These results strongly suggest that factors other than the amount of acetyl-CoA carboxylase, such as allosteric effectors, must be operating in vivo, thereby facilitating the carboxylase to function at its maximal capacity in BHE rats. Such a regulation of fatty acid biosynthesis by allosteric modifiers of acetyl-CoA carboxylase is already known, although the mechanism of this regulation is not fully understood. BHE rats also exhibited a twofold greater rate of fatty acid synthesis in the adipose tissue compared to the Wistar rats. Thus, increased lipogenic capacity and increased lipogenesis in BHE rats are consistent with early hyperinsulinemia in this strain. Furthermore, BHE rats had 71% more 3-hydroxy-3-methylglutaryl CoA reductase activity with a 97% greater rate of cholesterol synthesis as compared to Wistar rats. In contrast, cholesterol 7α-hydroxylase activity was only 20% greater in BHE rats compared to Wistar rats, suggesting that the BHE rat does not have the capacity to degrade cholesterol to bile acids at a rate commensurate with the increased rate of cholesterol synthesis. This difference in synthesis versus degradation might account for the hypercholesterolemia which occurs in BHE rats, but not in Wistar rats.  相似文献   

19.
Plasma membranes were isolated from both unfrozen and frozen tissues of Jerusalem artichoke tubers (Helianthus tuberosus L.) in high purity utilizing an aqueous two-polymer phase partition system. Although the recovery of the plasma membranes was decreased significantly by freezing of tissues even at the nonlethal temperature (−5°C), the isolated plasma membrane samples were considered to be representative of the plasma membranes in situ. Freezing of the tissues at sublethal temperatures resulted in marked changes in the chemical composition of the plasma membrane. Those are losses of sterols and phosphatidylethanolamine from the plasma membranes, and a change of specific proteins with relatively high molecular weights into low molecular weight peptides. These specific proteins were designated as frost susceptible proteins. The properties of the plasma membrane ATPase seem to be not affected so much by the in vivo freezing of cells. However, inhibition of the plasma membrane ATPase by N,N′-dicyclohexylcarbodiimide (DCCD) was relatively low before and after freezing in vivo at the nonlethal temperature at −5°C, but was markedly enhanced by freezing in vivo at sublethal temperatures below −10°C. From the results, it is assumed either that the enzyme molecule was partially modified, especially at the presumed DCCD binding sites or that the DCCD had become more accessible to the enzyme as a result of increased permeability of the plasma membranes. These observed changes are discussed in connection with the mechanism of cell injury.  相似文献   

20.
Anti-breast cancer action of novel human carbonic anhydrase IX (hCA IX) inhibitor BSM-0004 has been investigated using in vitro and in vivo models of breast cancer. BSM-0004 was found to be a potent and selective hCA IX inhibitor with a Ki value of 96 nM. In vitro anticancer effect of BSM-0004 was analysed against MCF 7 and MDA-MA-231 cells, BSM-0004 exerted an effective cytotoxic effect under normoxic and hypoxic conditions, inducing apoptosis in MCF 7 cells. Additionally, this compound significantly regulates the expression of crucial biomarkers associated with apoptosis. The investigation was extended to confirm the efficacy of this hCA IX inhibitor against in vivo model of breast cancer. The results specified that the treatment of BSM-0004 displayed an effective in vivo anticancer effect, reducing tumour growth in a xenograft cancer model. Hence, our investigation delivers an effective anti-breast cancer agent that engenders the anticancer effect by inhibiting hCA IX.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号