首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A purified low-spin form of cytochrome P-450 was isolated from phenobarbital-induced rabbit liver microsomes. The preparation was functionally active and free from cytochromes b5 and P-420 and phospholipids. The specific content of the cytochrome was 18 nmoles per mg of protein. At the molecular weight of the hemoprotein of 50,000, it corresponds to 90% of purification. The purified hemoprotein binds substrates of type II and some substrates of type I. The complexes formed reveal spectral properties, similar to those for the complexes of these substrates with the microsomal form of cytochrome P-450.  相似文献   

2.
Crystal structure of substrate-free Pseudomonas putida cytochrome P-450   总被引:6,自引:0,他引:6  
T L Poulos  B C Finzel  A J Howard 《Biochemistry》1986,25(18):5314-5322
The crystal structure of Pseudomonas putida cytochrome P-450cam in the substrate-free form has been refined at 2.20-A resolution and compared to the substrate-bound form of the enzyme. In the absence of the substrate camphor, the P-450cam heme iron atom is hexacoordinate with the sulfur atom of Cys-357 providing one axial heme ligand and a water molecule or hydroxide ion providing the other axial ligand. A network of hydrogen-bonded solvent molecules occupies the substrate pocket in addition to the iron-linked aqua ligand. When a camphor molecule binds, the active site waters including the aqua ligand are displaced, resulting in a pentacoordinate high-spin heme iron atom. Analysis of the Fno camphor - F camphor difference Fourier and a quantitative comparison of the two refined structures reveal that no detectable conformational change results from camphor binding other than a small repositioning of a phenylalanine side chain that contacts the camphor molecule. However, large decreases in the mean temperature factors of three separate segments of the protein centered on Tyr-96, Thr-185, and Asp-251 result from camphor binding. This indicates that camphor binding decreases the flexibility in these three regions of the P-450cam molecule without altering the mean position of the atoms involved.  相似文献   

3.
4.
This laboratory has previously reported the occurrence in rabbit liver microsomes of a non-inducible form of cytochrome P-450, designated P-450lm3b because of its electrophoretic mobility relative to that of phenobarbital-inducible P-450lm2 and 5,6-benzoflavone-inducible P-450lm4. In the present study, P-450lm3b was purified to electrophoretic homogeneity and a specific content of over 19 nmol per mg of protein by chromatographic procedures carried out in the presence of detergents. The isolated cytochrome has a minimal molecular weight of 52,000 and exhibits absorption maxima at 418, 537, and 571 nm in the oxidized state, 412 and 547 nm in the reduced state, and 451 and 555 nm as the CO complex. In a reconstituted system containing NADPH-cytochrome P-450 reductase and phosphatidylcholine, P-450lm3b has relatively high activity in the hydroxylation of testosterone in the 6β and 16α positions as well as significant activity toward a number of other substrates tested. The NADPH oxidase activity of P-450lm3b is less than half that of P-450lm2 and lm4.  相似文献   

5.
Purification of a new cytochrome P-450 from human liver microsomes   总被引:3,自引:0,他引:3  
Using a classical methodology of purification consisting of three chromatographic steps (Octyl-Sepharose, DEAE-cellulose, CM-cellulose) we have purified a new cytochrome P-450 from human liver microsomes. It was called cytochrome P-450(9). It has been proven to be different from all precedingly purified human liver microsomal cytochrome P-450 isozymes by its immunological and electrophoretical properties. It does not cross-react with any rat liver cytochrome P-450 and anti-cytochrome P-450(9) does not recognize rat liver microsomes; thus this cytochrome P-450(9) is specific to humans. This cytochrome P-450 isozyme exists in low amounts in human liver microsomes and exhibits an important quantitative polymorphism. In reconstituted system, cytochrome P-450(9) is able to hydroxylate all substrates tested but is not specific of any; its exact role in xenobiotic metabolism in man remains to be elucidated.  相似文献   

6.
Three cytochrome P-450 preparations, designated as cytochrome P-450ca, cytochrome P-450cb, and cytochrome P-448c fraction, were separated and purified about 23-, 50-, and 29-fold, respectively, from the cholate extracts of rabbit colon mucosa microsomes. Their specific contents were 1.2, 2.6, and 1.5 nmol of cytochrome P-450 per mg of protein, respectively. Cytochrome P-450ca and cytochrome P-450cb migrated as heme-containing polypeptide bands with molecular weights of about 53,000 and 57,000, respectively, on SDS-polyacrylamide gel electrophoresis. The CO-reduced difference spectra of cytochrome P-450ca, cytochrome P-450cb, and cytochrome P-448c fraction showed maxima at 451, 450, and 449 nm, respectively. Cytochrome P-450ca efficiently catalyzed the omega-hydroxylation of prostaglandin A1 (PGA1) and the omega- and (omega-1)-hydroxylation of caprate, laurate, and myristate in the reconstituted system containing cytochrome P-450ca, NADPH-cytochrome P-450 reductase, cytochrome b5, and phosphatidylcholine. In contrast, cytochrome P-450cb and cytochrome P-448c fraction had no detectable activity toward PGA1 and fatty acids. Both catalyzed aminopyrine and benzphetamine N-demethylation. Cytochrome P-448c fraction also hydroxylated benzo(a)pyrene, and phosphatidylinositol or phosphatidylserine exhibited a stimulatory effect on this activity. The results show that rabbit colon microsomes contain catalytically different cytochrome P-450, one of which is specialized for the omega-oxidation prostaglandins, the others being involved in the metabolism of exogenous compounds such as drugs and polycyclic hydrocarbons.  相似文献   

7.
The 2.6-A crystal structure of Pseudomonas putida cytochrome P-450   总被引:19,自引:0,他引:19  
The crystal structure of Pseudomonas putida cytochrome P-450cam in the ferric, camphor bound form has been determined and partially refined to R = 0.23 at 2.6 A. The single 414 amino acid polypeptide chain (Mr = 45,000) approximates a triangular prism with a maximum dimension of approximately 60 A and a minimum of approximately 30 A. Twelve helical segments (A through L) account for approximately 40% of the structure while antiparallel beta pairs account for only approximately 10%. The unexposed iron protoporphyrin IX is sandwiched between two parallel helices designated the proximal and distal helices. The heme iron atom is pentacoordinate with the axial sulfur ligand provided by Cys 357 which extends from the N-terminal end of the proximal (L) helix. A substrate molecule, 2-bornanone (camphor), is buried in an internal pocket just above the heme distal surface adjacent to the oxygen binding site. The substrate molecule is held in place by a hydrogen bond between the side chain hydroxyl group of Tyr 96 and the camphor carbonyl oxygen atom in addition to complementary hydrophobic contacts between the camphor molecule and neighboring aliphatic and aromatic residues. The camphor is oriented such that the exo-surface of C5 would contact an iron bound, "activated" oxygen atom for stereoselective hydroxylation.  相似文献   

8.
9.
Untreated monkey liver cytochrome P-450 (monkey P-450) has been purified to a specific content of 14.9 n mole/mg protein. The purified preparation was apparently homogeneous and the minimum molecular weight was estimated to be 50,000 by SDS-PAGE. Absolute spectrum of the oxidized form showed peaks at 565, 535 and 417 nm. The monkey P-450 was active in the mixed function oxidation of benzphetamine, aminopyrine, ethylmorphine, aniline and 7-ethoxycoumarin in the presence of rat liver NADPH-cytochrome P-450 reductase and DLPC. Anti monkey P-450 IgG could not inhibit rat P-450s (PB P-450, MC P-448(1) and MC P-448(2] catalyzed 7-ethoxycoumarin O-deethylation activities.  相似文献   

10.
11.
Cytochrome P-450 which catalyzes the 7 alpha-hydroxylation of cholesterol was purified from liver microsomes of untreated rabbits. The minimum molecular weight of the cytochrome P-450 was estimated to be 48,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The preparation contained 7 nmol of cytochrome per mg of protein. The oxidized form of the P-450 showed absorption maxima at 568, 535, and 417 nm, which are characteristic of a low spin hemoprotein, while the reduced form showed maxima at 545 and 413 nm. The carbon monoxide complex of the reduced form showed maxima at 550 and 447 nm. The cholesterol 7 alpha-hydroxylase system of untreated rabbit liver microsomes was reconstituted with the purified P-450, NADPH-cytochrome P-450 reductase, and cytochrome b5. The P-450 catalyzed the 7 alpha-hydroxylation of cholesterol 500 times more efficiently than the starting microsomes. The reconstituted hydroxylase system showed a substantial salt dependency. In the presence of cytochrome b5 the activity was maximum at 0.4 M KCl (4.55 nmol product formed/mg of protein per min), whereas in the absence of cytochrome b5 the activity was marginal (0.65 nmol product formed/mg of protein per min) and inhibited by KCl. Thus, cytochrome b5 stimulated the hydroxylase activity by one order of magnitude. These results indicate that cytochrome b5 is an essential component of the cholesterol 7 alpha-hydroxylase system of untreated rabbit liver microsomes.  相似文献   

12.
Cytochrome P-450 was purified from phenobarbital-treated guinea pigs to a specific content of 19.8 nmoles per mg of protein, and was free of cytochrome b5 and NADPH-cytochrome c reductase. The purified cytochrome P-450 gave a single protein band on sodium dodecylsulfate-polyacrylamide gel electrophoresis, and an apparent molecular weight of about 49,000 was estimated. Benzphetamine N-demethylation activity could be reconstituted by mixing the purified cytochrome, NADPH-cytochrome c reductase and phosphatidylcholine.  相似文献   

13.
Effects of pH on the ligand-binding reactions of ferric heme in cytochrome P-450 from Pseudomonas putida (camphor 5-monooxygenase, EC 1.14.15.1) were studied by using cyanide, N-methylimidazole, pyridine, and ethylisocyanide as ligands. In all cases, affinity of the ferric heme for the ligand was found to increase as pH of the medium was raised from around 6 to 9. Depending on the ligand, the increase was 10- to 1000-fold and the shapes of their pH-affinity curves were remarkably different. Analyses such pH profiles disclosed the presence of a dissociable group in the enzyme with a pK value of approximately 9.5 and that its ionization greatly enhanced the affinity of the heme for ligands. When a dissociable ligand such as hydrogen cyanide and N-methylimidazole was used, the dissociated form of the ligand had a higher affinity toward the heme than the undissociated form. The shapes of the pH-affinity curves were successfully simulated as overlapping curves of ionization reactions of the ligand and the dissociable group. In addition, size of the ligand molecule was shown to be also important in the binding reaction: relatively large molecules such as pyridine, ethylisocyanide, and N-methylimidazole bound to the enzyme in a competitive manner against d-camphor concentration, whereas the binding of a smaller molecule such as cyanide was inhibited by the substrate in a noncompetitive manner. On the basis of these findings, control mechanisms for the ligand-binding reactions of the cytochrome P-450 from P. putida are discussed.  相似文献   

14.
15.
Cytochrome P-450cam hydroxylates d-camphor, using molecular oxygen and reducing equivalents transferred via putidaredoxin. We constructed mutant genes in which Phe-350 of P-450cam was replaced by Leu, Tyr, or His by site-directed mutagenesis, expressed them in Escherichia coli, purified the mutant proteins, and compared their enzymic properties with those of the wild type P-450cam. NADH oxidation rate of the Tyr mutant in the reconsituted system with putidaredoxin and putidaredoxin reductase was similar to that of the wild type enzyme, while the Leu mutant and the His mutant showed 67% and 17% activity of that of the wild type, respectively. The affinities of these mutant proteins for camphor and the oxidized form of putidaredoxin were much the same as those of the wild type protein. Rate constants for the reduction reaction of P-450cam by reduced putidaredoxin, a physiological electron donor for P-450cam, of Tyr and His mutants were much the same as that of the wild type enzyme, whereas the Leu mutant showed approx. half that of the wild type. Thus, the aromatic ring of Phe-350 of P-450cam probably contributes to enhancing efficiency of the electron transfer yet does not seem to be essential for the reaction.  相似文献   

16.
NADPH-cytochrome P-450 reductase has been purified to electrophoretic homogeneity from rabbit liver microsomes by a procedure that may be used in conjunction with the isolation of the major forms of cytochrome P-450. The purified reductase is active in a reconstituted hydroxylation system containing P-450LM2 or P-450LM4. The enzyme contains one molecule each of FMN and FAD per polypeptide chain having an apparent minimal molecular weight of 74,000. Immunological techniques provided evidence for only a single form of the reductase; lower molecular weight forms occasionally seen are believed to be due to degradation by contaminating microsomal or bacterial proteases. Upon anaerobic photochemical reduction, the rabbit liver reductase undergoes spectral changes highly similar to those previously described by Vermilion and Coon for the rat liver enzyme; the fully reduced rabbit liver enzyme is converted to the three-electron-reduced form by the addition of NADP and then to the stable one-electron-reduced form by exposure to oxygen. The CD spectra of the fully oxidized enzyme, one-electron-reduced form (air-stable semiquinone), three-electron-reduced form, and fully reduced form are presented. The results obtained provide evidence that the FMN and FAD are in highly different environments in the enzyme, as also indicated by the different redox potentials and oxygen reactivities of the flavins.  相似文献   

17.
Two forms of cytochrome P-450 with different substrate specificities were isolated from liver microsomes of rabbits treated with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). A specific antibody was produced toward the major form of the cytochrome. The antibody inhibits microsomal acetanilide hydroxylation (80%). It does not cross-react with the minor fraction of the cytochrome or inhibit the hydroxylation of 3,4-benzpyrene or coumarin, the N-demethylation of aminopyrine or the O-deethylation of 7-ethoxycoumarin catalyzed by rabbit liver microsomes. The major form has an estimated Mr = 54,000 and displays an n-octylamine difference spectrum with an absorption maximum at 426 nm and a minimum at 391 nm. When reconstituted, this cytochrome catalyzes acetanilide hydroxylation at a higher rate than microsomes or the minor fraction. The n-octylamine difference spectrum of the minor fraction displays an absorption maximum at 431 nm and a minimum at 410 nm. When reconstituted, this fraction catalyzes the hydroxylation of 3,4-benzpyrene and the O-deethylation of 7-ethoxycoumarin. The two cytochromes appear to be distinct entities and function in different catalytic pathways.  相似文献   

18.
19.
The interaction of alyphatic alcohols and cyclohexanol with cytochrome P-450 in microsomes has been investigated. All alchohols induced the modified 11 type spectral changes by mixing with microsomes. These changes are characterized by lambdamax = 412 and lambdamin = 380-382 nm in difference spectra. The dissociation constants of the alcohol cytochrome P-450 complexes are determined. On this dissociation constants influence pH and Triton X-100 presence. The interaction of the alcohols with cytochrome P-450 in phosphate buffer pH = 6,0 in the detergents absence is characterized by one dissociation constant for MeOH, EtOH, n-BuOH and cyclohexanol and by two dissociation constants for i-PrOH, i-BuOH and tert.-BuOH. The interaction of the alcohols with cytochrome P-450 in Tris-HCL-buffer (pH 7.5) in the Triton X-100 presence is characterized for all above alcohols by the dissociations constants, which are described by Taft equation with coefficient rho =-1.55. This fact confirms the interaction of alcohols HO-groups with heme iron of cytochrome P-450. The scheme of interaction of alcohols with cytochrome P-450 is discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号