首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The emerging invasive fungal pathogen Aspergillus fumigatus causes very serious infections among immunocompromised patient populations. While the genome of this pathogen has been sequenced, a major barrier to better understanding the complex biology of this eukaryotic organism is a lack of tools for efficient genetic manipulation. To improve upon this, we have generated a new gene deletion system for A. fumigatus using yeast recombinational cloning and Agrobacterium tumefaciens mediated transformation (ATMT) employing a recyclable marker system. This system reduced the time for generating a gene deletion strain in our hands by two-thirds (12 weeks to 3 weeks) using minimal human labor, and we demonstrate that it can be used to efficiently generate multiple gene deletions within a single strain.  相似文献   

2.
Penicillium marneffei is an opportunistic pathogen of humans and displays a temperature dependent dimorphic transition. Like many fungi, exogenous DNA introduced by DNA mediated transformation is integrated randomly into the genome resulting in inefficient gene deletion and position-specific effects. To enhance successful gene targeting, the consequences of perturbing components of the non-homologous end joining recombination pathway have been examined. The deletion of the KU70 and LIG4 orthologs, pkuA and ligD, respectively, dramatically enhanced the observed homologous recombination frequency leading to efficient gene deletion. While ΔpkuA was associated with reduced genetic stability over-time, ΔligD represents a suitable recipient strain for downstream applications and combined with a modified Gateway? system for the rapid generation of gene deletion constructs, this represents an efficient pipeline for characterizing gene function in P. marneffei.  相似文献   

3.
Signature-tagged mutagenesis (STM) is a method that has been used to screen for genes required for in vivo survival of pathogenic bacteria, but has not been used to investigate a eukaryotic pathogen in an animal model of disease. We have adapted STM to identify genes required for in vivo growth of the opportunistic fungal pathogen Aspergillus fumigatus. Using a mouse model of invasive pulmonary aspergillosis, we have isolated several mutant strains with defects in their ability to replicate in vivo. One strain unable to cause lethal infection was further characterized and found to have an insertion into the promoter of a gene (pabaA) encoding para-aminobenzoic acid synthetase, an enzyme catalyzing a late step in the biosynthesis of folate. The complete inability of this strain, and other pabaA- strains constructed in this study by targeted gene deletion, to cause lethal infection in mice confirms the importance of the folate synthesis pathway for in vivo survival of this pathogen. The successful application of STM to A. fumigatus demonstrates that in vivo genetic analysis of eukaryotic pathogens is feasible and could result in the identification of potential targets, such as para-aminobenzoic acid synthetase, for novel antifungal therapies.  相似文献   

4.
The evolution of bacterial pathogens from nonpathogenic ancestors is marked principally by the acquisition of virulence gene clusters on plasmids and pathogenicity islands via horizontal gene transfer. The flip side of this evolutionary force is the equally important adaptation of the newly minted pathogen to its new host niche. Pathoadaptive mutations take the form of modification of gene expression such that the pathogen is better fit to survive within the new niche. This mini-review describes the concept of pathoadaptation by loss of gene function. In this process, genes that are no longer compatible with the novel lifestyle of the pathogen are selectively inactivated either by point mutation, insertion, or deletion. These genes are called 'antivirulence genes'. Selective pressure sometimes leads to the deletion of large regions of the genome that contain antivirulence genes generating 'black holes' in the pathogen genome. Inactivation of antivirulence genes leads to a pathogen that is highly adapted to its host niche. Identification of antivirulence genes for a particular pathogen can lead to a better understanding of how it became a pathogen and the types of genetic traits that need to be silenced in order for the pathogen to colonize its new host niche successfully.  相似文献   

5.
Magnaporthe oryzae has been used as a model fungal pathogen to study the molecular basis of plant-fungus interactions due to its economic and genetic importance. In this study, we identified a novel gene, Moplaa, which is the homologue of Homo sapiens PLAA encoding a phospholipase A(2)-activating protein. Moplaa is conserved in some eukaryotic organisms by multiple alignment analysis. The function of the Moplaa gene was studied using the gene target replacement method. The Moplaa deletion mutant exhibited retarded growth and conidial germination, reduced conidiation, appressorial turgor pressure and pathogenicity to rice CO-39. Reintroduction of the gene restored defects of the Moplaa deletion mutant.  相似文献   

6.
The opportunistic fungal pathogen Candida glabrata is a frequent cause of candidiasis, causing infections ranging from superficial to life-threatening disseminated disease. The inherent tolerance of C. glabrata to azole drugs makes this pathogen a serious clinical threat. To identify novel genes implicated in antifungal drug tolerance, we have constructed a large-scale C. glabrata deletion library consisting of 619 unique, individually bar-coded mutant strains, each lacking one specific gene, all together representing almost 12% of the genome. Functional analysis of this library in a series of phenotypic and fitness assays identified numerous genes required for growth of C. glabrata under normal or specific stress conditions, as well as a number of novel genes involved in tolerance to clinically important antifungal drugs such as azoles and echinocandins. We identified 38 deletion strains displaying strongly increased susceptibility to caspofungin, 28 of which encoding proteins that have not previously been linked to echinocandin tolerance. Our results demonstrate the potential of the C. glabrata mutant collection as a valuable resource in functional genomics studies of this important fungal pathogen of humans, and to facilitate the identification of putative novel antifungal drug target and virulence genes.  相似文献   

7.
A gene was previously cloned from Pseudomonas syringae pv. glycinea race 6, designated avirulence gene A (avrA), that controls the expression of virulence by the pathogen on specific cultivars of soybean. A 3.2-kilobase (kb) AccI subclone from the cosmid clone pPg6L3 was shown to be active when cloned into the broad-host-range vector pRK404. Transposon Tn5 mutagenesis and deletion analysis delineated a span of approximately 2.5 kb of DNA that was necessary for gene activity. The nucleotide sequence of a 3.409-kb segment of DNA which contained the avrA gene has been determined. An open reading frame of 2.721 kb of DNA, which correlates with the region of DNA defined by transposon mutagenesis and deletion analysis, was identified. The open reading frame would encode a protein of 100.866 kilodaltons, which is in good agreement with the 100-kilodalton protein expressed by Escherichia coli maxicells.  相似文献   

8.
9.
A Garami  T Ilg 《The EMBO journal》2001,20(14):3657-3666
In eukaryotes, the enzyme GDP-mannose pyrophosphorylase (GDPMP) is essential for the formation of GDP-mannose, the central activated mannose donor in glycosylation reactions. Deletion of its gene is lethal in fungi, most likely as a consequence of disrupted glycoconjugate biosynthesis. Furthermore, absence of GDPMP enzyme activity and the expected loss of all mannose-containing glycoconjugates have so far not been observed in any eukaryotic organism. In this study we have cloned and characterized the gene encoding GDPMP from the eukaryotic protozoan parasite Leishmania mexicana. We report the generation of GDPMP gene deletion mutants of this human pathogen that are devoid of detectable GDPMP activity and completely lack mannose-containing glycoproteins and glycolipids, such as lipophosphoglycan, proteophosphoglycans, glycosylphosphatidylinositol protein membrane anchors, glycoinositolphospholipids and N-glycans. The loss of GDPMP renders the parasites unable to infect macrophages or mice, while gene addback restores virulence. Our study demonstrates that GDP-mannose biosynthesis is not essential for Leishmania viability in culture, but constitutes a virulence pathway in these human pathogens.  相似文献   

10.
Bdellovibrio bacteriovorus is a species of unique obligate predatory bacteria that utilize gram-negative bacteria as prey. Their life cycle alternates between a motile extracellular phase and a growth phase within the prey cell periplasm. The mechanism of prey cell invasion and the genetic networks and regulation during the life cycle have not been elucidated. The obligate predatory nature of the B. bacteriovorus life cycle suggests the use of this bacterium in potential applications involving pathogen control but adds complexity to the development of practical genetic systems that can be used to determine gene function. This work reports the development of a genetic technique for allelic exchange or gene inactivation by construction of in-frame markerless deletion mutants including the use of a counterselectable marker in B. bacteriovorus. A suicide plasmid carrying the sacB gene for counterselection was used to inactivate the strB gene in B. bacteriovorus HD100 by an in-frame deletion. Despite the inactivation of the strB gene, B. bacteriovorus was found to retain resistance to high concentrations of streptomycin. The stability of a plasmid for use in complementation experiments was also investigated, and it was determined that pMMB206 replicates autonomously in B. bacteriovorus. Development of this practical genetic system now facilitates the study of B. bacteriovorus at the molecular level and will aid in understanding the regulatory networks and gene function in this fascinating predatory bacterium.  相似文献   

11.
Structure, function and evolution of plant disease resistance genes   总被引:21,自引:0,他引:21  
Gene-for-gene plant disease resistance involves two basic processes: perception of pathogen attack, followed by responses to limit disease. Perception involves receptors with high degrees of specificity for pathogen strains, which are encoded by disease resistance genes. Large repertoires of distantly related resistance (R) genes with diverse recognitional specificities are found within a single plant species. The generation of R-gene polymorphism involves gene duplication, followed by DNA-sequence divergence by point mutation, and by deletion and duplication of intragenic DNA repeats encoding blocks of leucine-rich elements. Recombination between related genes reassorts this variation to further diversify gene sequences. Pathogen pressure selects functional resistance specificities and results in the maintenance of R-gene diversity. Recent genome-sequence data reveal that the NBS-LRR (i.e. nucleotide-binding site-leucine-rich repeat) class of R genes represents as much as 1% of the Arabidopsis genome. Experimental data have shown that the LRR has a role in determination of specificity. Mutation experiments, in which R-gene signaling has been dissociated from specificity in constitutive signal mutants, have provided the potential for non-specific resistance to be expressed from pathogen-infection-induced promoters in transgenic plants.  相似文献   

12.
Magnaporthe oryzae has been used as a model fungal pathogen to study the molecular basis of plant–fungus interactions due to its economic and genetic importance. In this study, we identified a novel gene, Moplaa, which is the homologue of Homo sapiens PLAA encoding a phospholipase A2-activating protein. Moplaa is conserved in some eukaryotic organisms by multiple alignment analysis. The function of the Moplaa gene was studied using the gene target replacement method. The Moplaa deletion mutant exhibited retarded growth and conidial germination, reduced conidiation, appressorial turgor pressure and pathogenicity to rice CO-39. Reintroduction of the gene restored defects of the Moplaa deletion mutant.  相似文献   

13.
Laccases are thought to be important to the virulence of many fungal pathogens by producing melanin, a presumed oxygen radical scavenger. A laccase in Cryptococcus neoformans has been shown to synthesize melanin and contributes to the virulence and the survival in macrophages of this fungal pathogen. One C. neoformans laccase gene, LAC1, previously called CNLAC1, has been extensively studied, and we describe a homologous gene, LAC2, that is found 8 kb away from LAC1 in the genome. In this study we report a role for both laccases, in addition to the thiol peroxidase, Tsa1, in oxidative and nitrosative stress resistance mechanisms of C. neoformans. With use of real-time PCR, similar changes in expression of the two laccase genes occur in response to oxidative and nitrosative stresses, but only the regulation of the LAC2 gene during stress is influenced by Tsa1. Both laccases contribute to melanin production using L-dopa as a substrate and are differentially localized in the cell based on green fluorescent protein fusions. A single deletion of either LAC1 or LAC2 alone had no effect on sensitivity to H2O2 or nitric oxide. However, deletion of either LAC1 or LAC2 in combination with a TSA1 deletion resulted in a slight peroxide sensitivity, and a lac2Delta tsa1Delta deletion strain was sensitive to nitric oxide stress. In addition, the deletion of both laccases reduces survival of C. neoformans in primary macrophages. Based on our expression and functional analysis, we propose a novel model for the interaction of these two systems, which are both important for virulence.  相似文献   

14.
Heterotrimeric G proteins are an important class of eukaryotic signaling molecules that have been identified as central elements in the pheromone response pathways of many fungi. In the fungal pathogen Candida albicans, the STE18 gene (ORF19.6551.1) encodes a potential γ subunit of a heterotrimeric G protein; this protein contains the C-terminal CAAX box characteristic of γ subunits and has sequence similarity to γ subunits implicated in the mating pathways of a variety of fungi. Disruption of this gene was shown to cause sterility of MTLa mating cells and to block pheromone-induced gene expression and shmoo formation; deletion of just the CAAX box residues is sufficient to inactivate Ste18 function in the mating process. Intriguingly, ectopic expression behind the strong ACT1 promoter of either the Gα or the Gβ subunit of the heterotrimeric G protein is able to suppress the mating defect caused by deletion of the Gγ subunit and restore both pheromone-induced gene expression and morphology changes.  相似文献   

15.
Fusarium graminearum (FG) is a serious plant pathogen causing huge losses in global production of wheat and other cereals. Tri5-gene encoded trichodiene synthase is the first key enzyme for biosynthesis of trichothecene mycotoxins in FG. To further our understandings of FG metabolism which is essential for developing novel strategies for controlling FG, we conducted a comprehensive investigation on the metabolic changes caused by Tri5-deletion by comparing metabolic differences between the wild-type FG5035 and an FG strain, Tri5(-), with Tri5 deleted. NMR methods identified more than 50 assigned fungal metabolites. Combined metabonomic and quantitative RT-PCR (qRT-PCR) analyses revealed that Tri5 deletion caused significant and comprehensive metabolic changes for FG apart from mycotoxin biosynthesis. These changes involved both carbon and nitrogen metabolisms including alterations in GABA shunt, TCA cycle, shikimate pathway, and metabolisms of lipids, amino acids, inositol, choline, pyrimidine, and purine. The hexose transporter has also been affected. These findings have shown that Tri5 gene deletion induces widespread changes in FG primary metabolism and demonstrated the combination of NMR-based metabonomics and qRT-PCR analyses as a useful way to understand the systems metabolic changes resulting from a single specific gene knockout in an eukaryotic genome and thus Tri5 gene functions.  相似文献   

16.
Edwardsiella ictaluri is an Enterobacteriaceae that causes lethal enteric septicemia in catfish. Being a mucosal facultative intracellular pathogen, this bacterium is an excellent candidate to develop immersion-oral live attenuated vaccines for the catfish aquaculture industry. Deletion of the cyclic 3',5'-adenosine monophosphate (cAMP) receptor protein (crp) gene in several Enterobacteriaceae has been utilized in live attenuated vaccines for mammals and birds. Here we characterize the crp gene and report the effect of a crp deletion in E. ictaluri. The E. ictaluri crp gene and encoded protein are similar to other Enterobacteriaceae family members, complementing Salmonella enterica Δcrp mutants in a cAMP-dependent fashion. The E. ictaluri Δcrp-10 in-frame deletion mutant demonstrated growth defects, loss of maltose utilization, and lack of flagella synthesis. We found that the E. ictaluri Δcrp-10 mutant was attenuated, colonized lymphoid tissues, and conferred immune protection against E. ictaluri infection to zebrafish (Danio rerio) and catfish (Ictalurus punctatus). Evaluation of the IgM titers indicated that bath immunization with the E. ictaluri Δcrp-10 mutant triggered systemic and skin immune responses in catfish. We propose that deletion of the crp gene in E. ictaluri is an effective strategy to develop immersion live attenuated antibiotic-sensitive vaccines for the catfish aquaculture industry.  相似文献   

17.
Zhou D  Tong Z  Song Y  Han Y  Pei D  Pang X  Zhai J  Li M  Cui B  Qi Z  Jin L  Dai R  Du Z  Wang J  Guo Z  Wang J  Huang P  Yang R 《Journal of bacteriology》2004,186(15):5147-5152
Yersinia pestis has been historically divided into three biovars: antiqua, mediaevalis, and orientalis. On the basis of this study, strains from Microtus-related plague foci are proposed to constitute a new biovar, microtus. Based on the ability to ferment glycerol and arabinose and to reduce nitrate, Y. pestis strains can be assigned to one of four biovars: antiqua (glycerol positive, arabinose positive, and nitrate positive), mediaevalis (glycerol positive, arabinose positive, and nitrate negative), orientalis (glycerol negative, arabinose positive, and nitrate positive), and microtus (glycerol positive, arabinose negative, and nitrate negative). A 93-bp in-frame deletion in glpD gene results in the glycerol-negative characteristic of biovar orientalis strains. Two kinds of point mutations in the napA gene may cause the nitrate reduction-negative characteristic in biovars mediaevalis and microtus, respectively. A 122-bp frameshift deletion in the araC gene may lead to the arabinose-negative phenotype of biovar microtus strains. Biovar microtus strains have a unique genomic profile of gene loss and pseudogene distribution, which most likely accounts for the human attenuation of this new biovar. Focused, hypothesis-based investigations on these specific genes will help delineate the determinants that enable this deadly pathogen to be virulent to humans and give insight into the evolution of Y. pestis and plague pathogenesis. Moreover, there may be the implications for development of biovar microtus strains as a potential vaccine.  相似文献   

18.
Deleteagene(trade mark) (Delete-a-gene) is a deletion-based gene knockout system for plants. To obtain deletion mutants for a specific gene, random deletion libraries created by fast neutron mutagenesis are screened by polymerase chain reaction (PCR) using primers flanking the target gene. By adjusting the PCR extension time to preferentially amplify the deletion alleles, deletion mutants can be identified in pools of DNA samples with each sample representing more than a thousand mutant lines. In Arabidopsis, knockout plants for greater than 80% of targeted genes have been obtained from a population of 51 840 lines. A large number of deletion mutants have been identified and multiple deletion alleles are often recovered for targeted loci. In Arabidopsis, the method is very useful for targeting small genes and can be used to find deletion mutants mutating two or three tandem homologous genes. In addition, the method is demonstrated to be effective in rice as a deletion mutant for a rice gene was obtained with a similar approach. Because fast neutron mutagenesis is applicable to all plant genetic systems, Deleteagene(trade mark) has the potential to enable reverse genetics for a wide range of plant species.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号