首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mitochondrial DNA (mtDNA) polymorphism was examined in three Russian populations from the European part of Russia (Krasnodar Krai, Belgorod, and Nizhnii Novgorod oblast). This analysis revealed that mitochondrial gene pool of Russians was represented by the mtDNA types belonging to groups H, V, pre-V, HV*, J, T, U, K, I, W, and X. The major groups (average frequency over 5%) were H, V, J, T, and U. Mongoloid admixture in Russians, constituting only 1%, was revealed in the form of mtDNA types of groups C and D. Analysis of the frequency distribution of the mtDNA type groups indicated the absence of genetic differences between the Russian populations studied.  相似文献   

2.
Mitochondrial DNA (mtDNA) polymorphism was examined in three Russian populations from the European part of Russia (Stavropol krai, Orel oblast, and Saratov oblast). This analysis showed that mitochondrial gene pool of Russians was represented by the mtDNA types belonging to haplogroups H, V, HV*, J, T, U, K, I, W, and X. A mongoloid admixture (1.5%) was revealed in the form of mtDNA types of macrohaplogroup M. Comparative analysis of the mtDNA haplogroup frequency distribution patterns in six Russian populations from the European part of Russia indicated the absence of substantial genetic differences between them. However, in Russian populations from the southern and central regions the frequency of haplogroup V (average frequency 8%) was higher than in the populations from more northern regions. Based on the data on mtDNA HVS1 sequence variation, it was shown that the diversity of haplogroup V in Russians (h = 0.72) corresponded to the highest h values observed in Europe. The reasons for genetic differentiation of the Russian population (historical, ecological, and adaptive) are discussed.  相似文献   

3.
Mitochondrial DNA (mtDNA) polymorphism was examined in three Russian populations from the European part of Russia (Stavropol krai, Orel oblast, and Saratov oblast). This analysis showed that mitochondrial gene pool of Russians was represented by the mtDNA types belonging to haplogroups H, V, HV*, J, T, U, K, I, W, and X. A mongoloid admixture (1.5%) was revealed in the form of mtDNA types of macrohaplogroup M. Comparative analysis of the mtDNA haplogroup frequency distribution patterns in six Russian populations from the European part of Russia indicated the absence of substantial genetic differences between them. However, in Russian populations from the southern and central regions the frequency of haplogroup V (average frequency 8%) was higher than in the populations from more northern regions. Based on the data on mtDNA HVS1 sequence variation, it was shown that the diversity of haplogroup V in Russians (h= 0.742) corresponded to the highest h values observed in Europe. The reasons for genetic differentiation of the Russian population (historical, ecological, and adaptive) are discussed.  相似文献   

4.
New data on mitochondrial DNA polymorphism among Russian population from five oblasts, located within the main ethnic area of Russians, specifically, Ryazan' oblast, Ivanovo oblast, Vologda oblast, Orel oblast, and Tambov oblast (N = 177) are presented. RFLP analysis of the mtDNA coding region showed that most of the mtDNA diversity in the populations examined could be described by main European haplogroups H, U, T, J, K, I, V, W, and X. Haplogroup frequency distribution patterns in the populations of interest were analyzed in comparison with the European and Uralic populations. Based on the haplogroup frequencies, the indices of intraethnic population diversity, Wright's F(st) statistics, and the values of squared deviation from the mean, as well as genetic distances between Russians and European and Uralic populations were estimated. Analysis of these indices along with the anthropological data provided identification of a number of regional groups within the populations examined, which could either result from the interaction of ancient Slavs with different non-Slavic tribes, or could be caused by the ethnic heterogeneity of the ancient Slavs themselves.  相似文献   

5.
New data on mitochondrial DNA polymorphism among Russian population from five oblasts, located within the main ethnic area of Russians, specifically, Ryazan' oblast, Ivanovo oblast, Vologda oblast, Orel oblast, and Tambov oblast (N = 177) are presented. RFLP analysis of the mtDNA coding region showed that most of the mtDNA diversity in the populations examined could be described by main European haplogroups H, U, T, J, K, I, V, W, and X. Haplogroup frequency distribution patterns in the populations of interest were analyzed in comparison with the European and Uralic populations. Based on the haplogroup frequencies, the indices of intraethnic population diversity, Wright's Fst statistics, and the values of squared deviation from the mean, as well as genetic distances between Russians and European and Uralic populations were estimated. Analysis of these indices along with the anthropological data provided identification of a number of regional groups within the populations examined, which could either result from the interaction of ancient Slavs with different non-Slavic tribes, or could be caused by the ethnic heterogeneity of the ancient Slavs themselves.  相似文献   

6.
Mitochondrial DNA (mtDNA) polymorphism was examined in two Russian populations of Novgorod oblast, from the city of Velikii Novgorod (n = 81), and the settlement of Volot (n = 79). This analysis showed that the mitochondrial gene pool of Russians examined was represented by the mtDNA types belonging to 20 haplogroups and subhaplogroups distributed predominantly among the European populations. Haplogroups typical of the indigenous populations of Asia were found in the population sample from Velikii Novgorod with the average frequency of 3.7% (haplogroups A, Z, and D5), and with the frequency of 6.3% (haplogroups Z, D, and M*) in the Volot population. It was demonstrated that the frequency of the mitochondrial lineages combination, D5, Z, U5b-16144, and U8, typical of the Finnish-speaking populations of Northeastern Europe, was somewhat higher in the urban population (7.4%) compared to rural one (3.8%). The problem of genetic differentiation of Russians from Eastern Europe inferred from mtDNA data, is discussed.  相似文献   

7.
The polymorphism of mtDNA was examined in populations of Old Believers (n = 104) and Russians from Novosibirsk oblast (n = 270). Most of the haplogroups identified belonged to West Eurasian lineages. The frequencies of these haplogroups constituted 96.6% in Russians from Novosibirsk and 93.2% in Old Believers from Tyumen oblast. The populations examined were characterized by a high mtDNA diversity level (h = 0.98) compared to other population samples of Russians from Russia. Among the West Eurasian haplogroups, the most common (a frequency of more than 10%) were haplogroups H, U, J, and T, the proportion of which constituted 77.9% in Old Believers and 83.1% in Russians from Novosibirsk. The Mongoloid admixture in Russians (3.3%) and Old Believers (6.7%) was represented by haplogroups A, D, Z, and C, D, M*, respectively. Statistically significant differences (P < 0.05) were revealed between the Old Believers examined and Bosnians, Czechs, Slovenes, and Russians from the cities of Nizhny Novgorod and Tula. The data obtained confirm the earlier hypothesized influence of the Finno-Ugric component on the East Slavic populations.  相似文献   

8.
Mitochondrial DNA (mtDNA) polymorphism was examined in two Russian populations of Novgorod oblast, from the city of Velikii Novgorod (n = 81), and the settlement of Volot (n = 79). This analysis showed that the mitochondrial gene pool of Russians examined was represented by the mtDNA types belonging to 20 haplogroups and subhaplogroups distributed predominantly among the European populations. Haplogroups typical of the indigenous populations of Asia were found in the population sample from Velikii Novgorod with the average frequency of 3.7% (haplogroups A, Z, and D5), and with the frequency of 6.3% (haplogroups Z, D, and M*) in the Volot population. It was demonstrated that the frequency of the mitochondrial lineages combination, D5, Z, U5b-16144, and U8, typical of the Finnish-speaking populations of Northeastern Europe, was somewhat higher in the urban population (7.4%) compared to rural one (3.8%). The problem of genetic differentiation of Russians from Eastern Europe inferred from mtDNA data, is discussed.  相似文献   

9.
The data on sequence variation in the first hypervariable segment (HVSI) of human mitochondrial DNA (mtDNA) representing Caucasoid mtDNA lineages in the gene pools of Altaians and Khakassians are presented. Identification of the subgroups of Caucasoid mtDNA lineages found in the gene pools of the ethnic populations of the Altai-Sayan region and the adjacent territories, Altaians, Khakassians, Tuvinians, Buryats, and Yakuts was carried out. All Caucasoid mtDNA lineages belonged to groups H, HV1, J*, J1, J1b1, T1, T4, U1a, U2, U3, U4, U5a1, I, X and N1a. Taking into consideration possible contribution of southern Caucasoid and eastern European components to the formation of the anthropological type of Altai-Sayan ethnic populations, distribution of the revealed Caucasoid mtDNA lineages among the ethnic populations of the Central Asia, Western Asia, Caucasus, and Eastern Europe was examined. The applied approach permitted identification of 60% of mtDNA types the majority of which had southern Caucasoid origin. Less than 10% of mtDNA types were of eastern European origin. The gene pools of Altaians and Khakassians displayed the presence of autochthonous components represented by mtDNA types from subgroups U2 and U4.  相似文献   

10.
The mtDNA polymorphism was analyzed in eight ethnic groups (N = 979) of the Volga-Ural region. Most mtDNA variants belonged to haplogroups H, U, T, J, W, I, R, and N1 characteristic of West Eurasian populations. The most frequent were haplogroups H (12-42%) and U (18-44%). East Eurasian mtDNA types (A, B, Y, F, M, N9) were also observed. Genetic diversity was higher in Turkic than in Finno-Ugric populations. The frequency of mtDNA types characteristic of Siberian and Central Asian populations substantially increased in the ethnic groups living closer to the Urals, a boundary between Europe and Asia. Geographic distances, rather than linguistic barriers, were assumed to play the major role in distribution of mtDNA types in the Volga-Ural region. Thus, as concerns the maternal lineage, the Finno-Ugric populations of the region proved to be more similar to their Turkic neighbors rather than to linguistically related Balto-Finnish ethnic groups.  相似文献   

11.
The mtDNA polymorphism was analyzed in eight ethnic groups (N = 979) of the Volga–Ural region. Most mtDNA variants belonged to haplogroups H, U, T, J, W, I, R, and N1 characteristic of West Eurasian populations. The most frequent were haplogroups H (12–42%) and U (18–44%). East Eurasian mtDNA types (A, B, Y, F, M, N9) were also observed. Genetic diversity was higher in Turkic than in Finno-Ugric populations. The frequency of mtDNA types characteristic of Siberian and Central Asian populations substantially increased in the ethnic groups living closer to the Urals, a boundary between Europe and Asia. Geographic distances, rather than linguistic barriers, were assumed to play the major role in distribution of mtDNA types in the Volga–Ural region. Thus, as concerns the maternal lineage, the Finno-Ugric populations of the region proved to be more similar to their Turkic neighbors rather than to linguistically related Balto-Finnish ethnic groups.  相似文献   

12.
The data on mitochondrial DNA (mtDNA) restriction polymorphism in Czech population (n = 279) are presented. It was demonstrated that in terms of their structure, mitochondrial gene pools of Czechs and other Slavic populations (Russians, Poles, Slovenians, and Bosnians) were practically indistinguishable. In Czechs, the frequency of eastern-Eurasian (Mongoloid) mtDNA lineages constituted 1.8%. The spread of eastern-Eurasian mtDNA lineages belonging to different ethnolinguistic groups in the populations of Europe was examined. Frequency variations of these DNA lineages in different Slavic groups was observed, with the range from 1.2 and 1.6% in Southern and Western Slavs, respectively, to 1.3 to 5.2% in Eastern Slavs, the Russian population of Eastern Europe. The highest frequency of Mongoloid component was detected in the mitochondrial gene pools of Russian populations from the Russian North and the Northwestern region of Russia. This finding can be explained in terms of assimilation of northern-European Finno-Ugric populations during the formation of the Russian population of these regions. The origin of Mongoloid component in the gene pools of different groups of Slavs is discussed.  相似文献   

13.
The data on mitochondrial DNA (mtDNA) restriction polymorphism in Czech population (n = 279) are presented. It was demonstrated that in terms of their structure, mitochondrial gene pools of Czechs and other Slavic populations (Russians, Poles, Slovenians, and Bosnians) were practically indistinguishable. In Czechs, the frequency of eastern-Eurasian (Mongoloid) mtDNA lineages constituted 1.8%. The spread of eastern-Eurasian mtDNA lineages belonging to different ethnolinguistic groups in the populations of Europe was examined. Frequency variations of these DNA lineages in different Slavic groups was observed, with the range from 1.2 and 1.6% in Southern and Western Slavs, respectively, to 1.3 to 5.2% in Eastern Slavs, the Russian population of Eastern Europe. The highest frequency of Mongoloid component was detected in the mitochondrial gene pools of Russian populations from the Russian North and the Northwestern region of Russia. This finding can be explained in terms of assimilation of northern-European Finno--Ugric populations during the formation of the Russian population of these regions. The origin of Mongoloid component in the gene pools of different groups of Slavs is discussed.  相似文献   

14.
To study the mitochondrial gene pool structure in Yakuts, polymorphism of mtDNA hypervariable segment I (16,024-16,390) was analyzed in 191 people sampled from the indigenous population of the Sakha Republic. In total, 67 haplotypes of 14 haplogroups were detected. Most (91.6%) haplotypes belonged to haplogroups A, B, C, D, F, G, M*, and Y, which are specific for East Eurasian ethnic groups; 8.4% haplotypes represented Caucasian haplogroups H, HV1, J, T, U, and W. A high frequency of mtDNA types belonging to Asian supercluster M was peculiar for Yakuts: mtDNA types belonging to haplogroup C, D, or G and undifferentiated mtDNA types of haplogroup M (M*) accounted for 81% of all haplotypes. The highest diversity was observed for haplogroups C and D, which comprised respectively 22 (44%) and 18 (30%) haplotypes. Yakuts showed the lowest genetic diversity (H = 0.964) among all Turkic ethnic groups. Phylogenetic analysis testified to a common genetic substrate of Yakuts, Mongols, and Central Asian (Kazakh, Kyrgyz, Uigur) populations. Yakuts proved to share 21 (55.5%) mtDNA haplogroups with the Central Asian ethnic groups and Mongols. Comparisons with modern paleo-Asian populations (Chukcha, Itelmen, Koryaks) revealed three (8.9%) haplotypes common for Yakuts and Koryaks. The results of mtDNA analysis disagree with the hypothesis of an appreciable paleo-Asian contribution to the modern Yakut gene pool.  相似文献   

15.
To study the mitochondrial gene pool structure in Yakuts, polymorphism of mtDNA hypervariable segment I (16,024–16,390) was analyzed in 191 people sampled from the indigenous population of the Sakha Republic. In total, 67 haplotypes of 14 haplogroups were detected. Most (91.6%) haplotypes belonged to haplogroups A, B, C, D, F, G, M*, and Y, which are specific for East Eurasian ethnic groups; 8.4% haplotypes represented Caucasian haplogroups H, HV1, J, T, U, and W. A high frequency of mtDNA types belonging to Asian supercluster M was peculiar for Yakuts: mtDNA types belonging to haplogroup C, D, or G and undifferentiated mtDNA types of haplogroup M (M*) accounted for 81% of all haplotypes. The highest diversity was observed for haplogroups C and D, which comprised respectively 22 (44%) and 18 (30%) haplotypes. Yakuts showed the lowest genetic diversity (H = 0.964) among all Turkic ethnic groups. Phylogenetic analysis testified to common genetic substrate of Yakuts, Mongols, and Central Asian (Kazakh, Kyrgyz, Uighur) populations. Yakuts proved to share 21 (55.5%) mtDNA haplotypes with the Central Asian ethnic groups and Mongols. Comparisons with modern Paleoasian populations (Chukcha, Itelmen, Koryaks) revealed three (8.9%) haplotypes common for Yakuts and Koryaks. The results of mtDNA analysis disagree with the hypothesis of an appreciable Paleoasian contribution to the modern Yakut gene pool.  相似文献   

16.
The data on sequence variation in the first hypervariable segment (HVSI) of human mitochondrial DNA (mtDNA) representing Caucasoid mtDNA lineages in the gene pools of Altaians and Khakassians are presented. Identification of the subgroups of Caucasoid mtDNA lineages found in the gene pools of the ethnic groups of the Altai–Sayan region and the adjacent territories, Altaians, Khakassians, Tuvinians, Buryats, and Yakuts was carried out. All Caucasoid mtDNA lineages belonged to groups H, HV1, J*, J1, J1b1, T1, T4, U1a, U2, U3, U4, U5a1, I, X and N1a. Taking into consideration possible contribution of southern Caucasoid and eastern European components to the formation of the anthropological type of Altai–Sayan ethnic groups, distribution of the revealed Caucasoid mtDNA lineages among the ethnic groups of the Central Asia, Western Asia, Caucasus, and Eastern Europe was examined. The applied approach permitted identification of 60% of mtDNA types the majority of which had southern Caucasoid origin. Less than 10% of mtDNA types were of eastern European origin. The gene pools of Altaians and Khakassians displayed the presence of autochthonous components represented by mtDNA types from subgroups U2 and U4.  相似文献   

17.
The genetic composition of the Russian population was investigated by analyzing both mitochondrial DNA (mtDNA) and Y-chromosome loci polymorphisms that allow for the different components of a population gene pool to be studied, depending on the mode of DNA marker inheritance. mtDNA sequence variation was examined by using hypervariable segment I (HVSI) sequencing and restriction analysis of the haplogroup-specific sites in 325 individuals representing 5 Russian populations from the European part of Russia. The Y-chromosome variation was investigated in 338 individuals from 8 Russian populations (including 5 populations analyzed for mtDNA variation) using 12 binary markers. For both uniparental systems most of the observed haplogroups fell into major West Eurasian haplogroups (97.9% and 99.7% for mtDNA and Y-chromosome haplogroups, respectively). Multidimensional scaling analysis based on pairwise F(ST) values between mtDNA HVSI sequences in Russians compared to other European populations revealed a considerable heterogeneity of Russian populations; populations from the southern and western parts of Russia are separated from eastern and northern populations. Meanwhile, the multidimensional scaling analysis based on Y-chromosome haplogroup F(ST) values demonstrates that the Russian gene pool is close to central-eastern European populations, with a much higher similarity to the Baltic and Finno-Ugric male pools from northern European Russia. This discrepancy in the depth of penetration of mtDNA and Y-chromosome lineages characteristic for the most southwestern Russian populations into the east and north of eastern Europe appears to indicate that Russian colonization of the northeastern territories might have been accomplished mainly by males rather than by females.  相似文献   

18.
B A Maliarchuk  M V Derenko 《Genetika》2001,37(11):1578-1580
Analysis of mitochondrial DNA (mtDNA) restriction polymorphism carried out in a sample of Russians from Magadan (n = 150) showed that the frequency of the +4332AvaII variant (a T-C transition at nucleotide position 4336) in this population was 4.7%. All +4332AvaII types of mtDNA belonged to the mitochondrial group H. They were characterized by a back of the AluI restriction endonuclease site at position 7025. According to hypervariable segment 1 sequencing data, they contained the 16304C variant, and thus belong to the subgroup H1. Thus, the +4332AvaII (T4336C) variant is a marker of the mitochondrial subgroup H1, chiefly occurring in German-speaking populations. Utilization of the H1-mtDNA markers for the investigation of the genetic history and the origin of Slavs is discussed.  相似文献   

19.
Using the data on mitochondrial DNA (mtDNA) polymorphism, genetic structures of the ethnic groups inhabiting South and East Siberia, including Altaians, Buryats, Tuvinians, Todjins, Tofalars, Yakuts, and Evenks were described. Mitochondrial gene pools of the populations examined were characterized by different ratios between Mongoloid (M*, C, D, E/G, G, A, B, and F) and Caucasoid (H, HV, I, J, K, T, U, and X) mtDNA lineages. All the populations studied carried a marked Mongoloid component, maximum frequency of which was observed in Evenks (92.4%) and Buryats (90.1%). Maximum frequencies of Caucasoid mtDNA lineages were detected in Tofalars (20.7%) and Yakuts (14.5%). Statistically significant interpopulation differences regarding the frequencies of mtDNA haplogroups were observed between all populations examined, excluding the pairs of Evenks-Yakuts, Evenks-Tuvinians, and Tuvinians-Todjins. Differentiation of the ethnic groups inhabiting South and East Siberia, as well as Central and Middle Asia, is discussed based on genetic, linguistic, and anthropological data.  相似文献   

20.
Mitochondrial DNA (mtDNA) samples belonging to fifteen phylogenetically related mtDNA types specific to the populations of Europe (H, V, J, T, U, K, I, W, and X) and Northern Asia (A, C, D, G, Y, and Z) were typed for sequence variation in hypervariable segment I (HVSI). The approach used allowed to distinguish several hypervariable sites at nucleotide positions 16093, 16129, 16189, 16311, and 16362. Identical mutations at these sites were found in 10–11 out of 15 mtDNA groups examined. Positions 16126, 16172, 16192, 16256, 16261, 16291, 16293, and 16298 appeared to be less variable, since parallel mutations at these sites were found in 6–8 European and Asian mtDNA groups. The examples of the effects of mutations in hypervariable positions at the major noncoding mtDNA region on the frequency of reverse mutations in other mtDNA regions are presented. It was shown that such effects of nucleotide context on the mutation rate could be observed in phylogenetic mtDNA networks such as cyclic structures like rhombs and cubes. Analogous structures in the networks could be seen also in the case of the appearance of recombinant mtDNA types resulted from homologous recombination between mtDNA molecules in heteroplasmic mixture. The problem of the effect of polynucleotide context on the intensity of mtDNA mutagenesis is discussed. Recombination processes along with site-directed mutagenesis caused by action of genetic factors (of nuclear genome) and/or of the environment are considered as possible mechanisms of mitochondrial genome evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号