首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To survive at high temperature, thermophile organisms must adapt their biomolecules. In both nucleic acids and proteins, this adaptation involves a vast array of compositional and structural modifications. The archaea stand out as the only group of organisms that have species capable of growing at temperatures ranging from 0 to 110°C. In this study, we have used the archaea genome datasets to identify molecular trends related to thermal adaptation in the protein components (SRP19 and SRP54) of the signal recognition particle (SRP). Using comparative genomics and secondary structure homology modeling we have detected significant differences in the amino acids composition and distribution between the SRP proteins of thermophile and mesophile archaea. These include: a significant increase in the thermophile SRP proteins of the frequency of charged amino acids able to participate in electrostatic interactions which contribute to stabilize proteins; decreased content of both thermolabile and small/tiny amino acids which usually contribute to protein flexibility; and a significant increase in aliphatic and aromatic amino acids providing good covering and masking to produce hydrophobic pockets involved in stabilizing protein structure. Moreover, a detailed analysis of the four structural and functional domains of the SRP54 indicates a particularly robust correlation between the compositional properties of the M domain and the optimal growth temperature (OGT) of the archaea. The analysis of the bacterial SRP54(Ffh) shows similar adaptations to the OGT. Thus, natural selection has adapted the SRP proteins to the OGT of the archaea and bacteria species by modifying both, their amino acids composition and distribution.  相似文献   

2.
We carried out a comprehensive survey of small subunit ribosomal RNA sequences from archaeal, bacterial, and eukaryotic lineages in order to understand the general patterns of thermal adaptation in the rRNA genes. Within each lineage, we compared sequences from mesophilic, moderately thermophilic, and hyperthermophilic species. We carried out a more detailed study of the archaea, because of the wide range of growth temperatures within this group. Our results confirmed that there is a clear correlation between the GC content of the paired stem regions of the 16S rRNA genes and the optimal growth temperature, and we show that this correlation cannot be explained simply by phylogenetic relatedness among the thermophilic archaeal species. In addition, we found a significant, positive relationship between rRNA stem length and growth temperature. These correlations are found in both bacterial and archaeal rRNA genes. Finally, we compared rRNA sequences from warm-blooded and cold-blooded vertebrates. We found that, while rRNA sequences from the warm-blooded vertebrates have a higher overall GC content than those from the cold-blooded vertebrates, this difference is not concentrated in the paired regions of the molecule, suggesting that thermal adaptation is not the cause of the nucleotide differences between the vertebrate lineages. Electronic Supplementary Material Electronic Supplementary material is available for this article at and accessible for authorised users. [Reviewing Editor: Dr. Nicolas Galtier]  相似文献   

3.
In order to investigate the influence of temperature on the GC level of the paired sequences of ribosomal 18S RNAs in vertebrates, we have studied their base composition in cold- and warm-blooded vertebrates using a stem-by-stem comparison. We observed that a number of stems of 18S ribosomal RNAs (rRNAs) are variable among species and that the majority of such stems are GC richer in warm-blooded than in cold-blooded vertebrates. We also constructed the secondary structures of the 18S rRNAs of a polar fish, a marsupial, and a monotreme to compare them with those of temperate/tropical fishes and of eutherians, respectively. In these cases, differences similar to those already mentioned were found. We conclude that there is a correlation between stem stability and body temperature even within the relatively limited temperature range of vertebrates.  相似文献   

4.
The causes of the variation between genomes in their guanine (G) and cytosine (C) content is one of the central issues in evolutionary genomics. The thermal adaptation hypothesis conjectures that, as G:C pairs in DNA are more thermally stable than adenonine:thymine pairs, high GC content may he a selective response to high temperature. A compilation of data on genomic GC content and optimal growth temperature for numerous prokaryotes failed to demonstrate the predicted correlation. By contrast, the GC content of Structural RNAs is higher at high temperatures. The issue that we address here is whether more freely evolving sites in exons (i.e. codonic third positions) evolve in the same manner as genomic DNA as a whole, Showing no correlated response, or like structural RNAs showing a strong correlation. The latter pattern would provide strong support for the thermal adaptation hypothesis, as the variation in GC content between orthologous genes is typically most profoundly seen at codon third sites (GC3). Simple analysis of completely sequenced prokaryotic genomes shows that GC3, but not genomic GC, is higher on average in thermophilic species. This demonstrates, if nothing else, that the results from the two measures cannot be presumed to be the same. A proper analysis, however, requires phylogenetic control. Here, therefore, we report the results of a comparative analysis of GC composition and optimal growth temperature for over 100 prokaryotes. Comparative analysis fails to show, in either Archea or Eubacteria, any hint of connection between optimal growth temperature and GC content in the genome as a whole, in protein-coding regions or, more crucially at GC. Conversely, comparable analysis confirms that GC content of structural RNA is strongly correlated with optimal temperature. Against the expectations of the thermal adaptation hypothesis, within prokaryotes GC content in protein-coding genies, even at relatively freely evolving sites, cannot be considered an adaptation to the thermal environment.  相似文献   

5.
Because ambient temperature affects biochemical reactions, organisms living in extreme temperature conditions adapt protein composition and structure to maintain biochemical functions. While it is not feasible to experimentally determine optimal growth temperature (OGT) for every known microbial species, organisms adapted to different temperatures have measurable differences in DNA, RNA and protein composition that allow OGT prediction from genome sequence alone. In this study, we built a ‘tRNA thermometer’ model using tRNA sequence to predict OGT. We used sequences from 100 archaea and 683 bacteria species as input to train two Convolutional Neural Network models. The first pairs individual tRNA sequences from different species to predict which comes from a more thermophilic organism, with accuracy ranging from 0.538 to 0.992. The second uses the complete set of tRNAs in a species to predict optimal growth temperature, achieving a maximum of 0.86; comparable with other prediction accuracies in the literature despite a significant reduction in the quantity of input data. This model improves on previous OGT prediction models by providing a model with minimum input data requirements, removing laborious feature extraction and data preprocessing steps and widening the scope of valid downstream analyses.  相似文献   

6.
Owing to their structural diversity, RNAs perform many diverse biological functions in the cell. RNA secondary structure is thus important for predicting RNA function. Here, we propose a new combinatorial optimization algorithm, named RGRNA, to improve the accuracy of predicting RNA secondary structure. Following the establishment of a stempool, the stems are sorted by length, and chosen from largest to smallest. If the stem selected is the true stem, the secondary structure of this stem when combined with another stem selected at random will have low free energy, and the free energy will tend to gradually diminish. The free energy is considered as a parameter and the structure is converted into binary numbers to determine stem compatibility, for step-by-step prediction of the secondary structure for all combinations of stems. The RNA secondary structure can be predicted by the RGRNA method. Our experimental results show that the proposed algorithm outperforms RNAfold in terms of sensitivity, specificity, and Matthews correlation coefficient value.  相似文献   

7.
This study presents compelling evidence that recombination significantly increases the silent GC content of a genome in a selectively neutral manner, resulting in a highly significant positive correlation between recombination and "GC3s" in the yeast Saccharomyces cerevisiae. Neither selection nor mutation can explain this relationship. A highly significant GC-biased mismatch repair system is documented for the first time in any member of the Kingdom Fungi. Much of the variation in the GC3s within yeast appears to result from GC-biased gene conversion. Evidence suggests that GC-biased mismatch repair exists in numerous organisms spanning six kingdoms. This transkingdom GC mismatch repair bias may have evolved in response to a ubiquitous AT mutational bias. A significant positive correlation between recombination and GC content is found in many of these same organisms, suggesting that the processes influencing the evolution of the yeast genome may be a general phenomenon. Nonrecombining regions of the genome and nonrecombining genomes would not be subject to this type of molecular drive. It is suggested that the low GC content characteristic of many nonrecombining genomes may be the result of three processes (1) a prevailing AT mutational bias, (2) random fixation of the most common types of mutation, and (3) the absence of the GC-biased gene conversion which, in recombining organisms, permits the reversal of the most common types of mutation. A model is proposed to explain the observation that introns, intergenic regions, and pseudogenes typically have lower GC content than the silent sites of corresponding open reading frames. This model is based on the observation that the greater the heterology between two sequences, the less likely it is that recombination will occur between them. According to this "Constraint" hypothesis, the formation and propagation of heteroduplex DNA is expected to occur, on average, more frequently within conserved coding and regulatory regions of the genome. In organisms possessing GC-biased mismatch repair, this would enhance the GC content of these regions through biased gene conversion. These findings have a number of important implications for the way we view genome evolution and suggest a new model for the evolution of sex.  相似文献   

8.
Klipcan L  Safro I  Temkin B  Safro M 《FEBS letters》2006,580(6):1672-1676
Partitioning of aminoacyl-tRNA synthetases and their associated amino acids into two classes allows us to distinguish between thermophilic and mesophilic species based only on amino acids composition. The CLASSDB program has been developed for amino acid content analysis in organisms treated individually or pooled together to form a pattern of characteristic properties. A strong correlation has been observed between optimal growth temperature (OGT) of organisms and class II amino acids content. Amino acid composition in organisms closely related phylogenetically but dissimilar in their OGT testifies that thermo-adaptation happens rather rapidly on the time scale of evolution.  相似文献   

9.
张帆  张兵  向华  胡松年 《微生物学报》2009,49(11):1445-1453
摘要:【目的】利用生物信息学方法了解目前拥有全基因组序列的极端嗜盐古菌中CRISPR结构的特征。【方法】通过比对,保守性分析,GC含量分析,RNA结构预测等方法对已有全基因组序列的嗜盐古菌基因组进行研究。【结果】在5株嗜盐古菌基因组中发现CRISPR结构,在leader序列内得到具有回文性质的保守motif。发现在大CRISPR结构内repeat序列具有很强的保守性。同时根据第四位碱基的不同,repeat序列可形成两类不同的RNA二级结构。【结论】leader序列中回文结构的发现对其可能为蛋白结合位点的假  相似文献   

10.
Non-coding RNAs are key players in many cellular processes within organisms from all three domains of life. The range and diversity of small RNA functions beyond their involvement in translation and RNA processing was first recognized for eukaryotes and bacteria. Since then, small RNAs were also found to be abundant in archaea. Their functions include the regulation of gene expression and the establishment of immunity against invading mobile genetic elements. This review summarizes our current knowledge about small RNAs used for regulation and defence in archaea.  相似文献   

11.
Previous studies have shown that the guanine plus cytosine (G+C) content of ribosomal RNAs (rRNAs) is highly correlated with bacterial growth temperatures. This correlation is strongest in the double-stranded stem regions of the rRNA, a fact that can be explained by selection for increased structural stability at high growth temperatures. In this study, we examined the single-stranded regions of 16S rRNAs. We reasoned that, since these regions of the molecule are subject to less structural constraint than the stem regions, their nucleotide content might simply reflect the overall nucleotide content of the genome. Contrary to this expectation, however, we found that all of the single-stranded regions are characterized by very high adenine (A) and relatively low cytosine (C) contents. Moreover, the nucleotide content of these single-stranded regions is surprisingly constant between species, despite dramatic differences in optimal growth temperatures, and despite large differences in the overall genomic G+C content. This provides compelling evidence for strong stabilizing selection acting on 16S rRNA single-stranded regions. We found that selection favors purines (A+G), and especially adenine (A), in the single-stranded regions of these rRNAs.  相似文献   

12.
There have been considerable attempts in the past to relate phenotypic trait—habitat temperature of organisms—to their genotypes, most importantly compositions of their genomes and proteomes. However, despite accumulation of anecdotal evidence, an exact and conclusive relationship between the former and the latter has been elusive. We present an exhaustive study of the relationship between amino acid composition of proteomes, nucleotide composition of DNA, and optimal growth temperature (OGT) of prokaryotes. Based on 204 complete proteomes of archaea and bacteria spanning the temperature range from −10 °C to 110 °C, we performed an exhaustive enumeration of all possible sets of amino acids and found a set of amino acids whose total fraction in a proteome is correlated, to a remarkable extent, with the OGT. The universal set is Ile, Val, Tyr, Trp, Arg, Glu, Leu (IVYWREL), and the correlation coefficient is as high as 0.93. We also found that the G + C content in 204 complete genomes does not exhibit a significant correlation with OGT (R = −0.10). On the other hand, the fraction of A + G in coding DNA is correlated with temperature, to a considerable extent, due to codon patterns of IVYWREL amino acids. Further, we found strong and independent correlation between OGT and the frequency with which pairs of A and G nucleotides appear as nearest neighbors in genome sequences. This adaptation is achieved via codon bias. These findings present a direct link between principles of proteins structure and stability and evolutionary mechanisms of thermophylic adaptation. On the nucleotide level, the analysis provides an example of how nature utilizes codon bias for evolutionary adaptation to extreme conditions. Together these results provide a complete picture of how compositions of proteomes and genomes in prokaryotes adjust to the extreme conditions of the environment.  相似文献   

13.
Scott MS  Ono M 《Biochimie》2011,93(11):1987-1992
Small nucleolar RNAs (snoRNAs) are an ancient class of small non-coding RNAs present in all eukaryotes and a subset of archaea that carry out a fundamental role in the modification and processing of ribosomal RNA. In recent years, however, a large proportion of snoRNAs have been found to be further processed into smaller molecules, some of which display different functionality. In parallel, several studies have uncovered extensive similarities between snoRNAs and other types of small non-coding RNAs, and in particular microRNAs. Here, we explore the extent of the relationship between these types of non-coding RNA and the possible underlying evolutionary forces that shaped this subset of the current non-coding RNA landscape.  相似文献   

14.
Viral escape from antisense RNA   总被引:4,自引:0,他引:4  
RNA coliphage SP was propagated for several generations on a host expressing an inhibitory antisense RNA complementary to bases 31–270 of the positive-stranded genome. Phages evolved that escaped inhibition. Typically, these escape mutants contained 3–4 base substitutions, but different sequences were observed among different isolates. The mutations were located within three different types of structural features within the predicted secondary structure of SP genomic RNA: (i) hairpin loops; (ii) hairpin stems; and (iii) the 5' region of the phage genome complementary to the antisense molecule. Computer modelling of the mutant genomic RNAs showed that all of the substitutions within hairpin stems improved the Watson–Crick pairing of the stem. No major structural rearrangements were predicted for any of the mutant genomes, and most substitutions in coding regions did not alter the amino acid sequence. Although the evolved phage populations were polymorphic for substitutions, many substitutions appeared independently in two selected lines. The creation of a new, perfect, antisense RNA against an escape mutant resulted in the inhibition of that mutant but not of other escape mutants nor of the ancestral, unevolved phage. Thus, at least in this system, a population of viruses that evolved to escape from a single antisense RNA would require a cocktail of several antisense RNAs for inhibition.  相似文献   

15.
The correlation between genomic G+C content and optimal growth temperature in prokaryotes has gained renewed interest after Musto et al. [H. Musto, H. Naya, A. Zavala, H. Romero, F. Alvarex-Valin, G. Bernardi, Correlations between genomic GC levels and optimal growth temperatures in prokaryotes, FEBS Lett. 573 (2004) 73-77], reported that positive correlations exist in 15 families studied. We have reanalyzed their data and found that when genome size and data quality were adjusted for, there was no significant evidence of relationship between optimal temperature and GC content for two of the families that had previously shown strongly significant correlations. Using updated temperature optima for Halobacteriaceae species we found the correlation is insignificant in this family. For the family Enterobacteriaceae when genome size and optimal temperature are included in a multiple linear regression, only genome size is significant as a predictor of GC content. We showed that more profound statistical methods than simple two factor correlation analysis should be used for analyzing complex intrinsic and extrinsic factors that affect genomic GC content. We further found that a positive correlation between temperature and genomic GC is only evident in free-living species of low optimal growth temperatures.  相似文献   

16.
Mahale KN  Kempraj V  Dasgupta D 《Gene》2012,497(1):83-89
The formation and breaking of hydrogen bonds between nucleic acid bases are dependent on temperature. The high G+C content of organisms was surmised to be an adaptation for high temperature survival because of the thermal stability of G:C pairs. However, a survey of genomic GC% and optimum growth temperature (OGT) of several prokaryotes revoked any direct relation between them. Significantly high purine (R=A or G) content in mRNAs is also seen as a selective response for survival among thermophiles. Nevertheless, the biological relevance of thermophiles loading their unstable mRNAs with excess purines (purine-loading or R-loading) is not persuasive. Here, we analysed the mRNA sequences from the genomes of 168 prokaryotes (as obtained from NCBI Genome database) with their OGTs ranging from -5 °C to 100 °C to verify the relation between R-loading and OGT. Our analysis fails to demonstrate any correlation between R-loading of the mRNA pool and OGT of a prokaryote. The percentage of purine-loaded mRNAs in prokaryotes is found to be in a rough negative correlation with the genomic GC% (r(2)=0.655, slope=-1.478, P<000.1). We conclude that genomic GC% and bias against certain combinations of nucleotides drive the mRNA-synonymous (sense) strands of DNA towards variations in R-loading.  相似文献   

17.
Noncoding RNAs play essential roles in genetic regulation in all organisms. In eukaryotic cells, many small non-coding RNAs act in complex with Argonaute proteins and regulate gene expression by recognizing complementary RNA targets. The complexes of Argonaute proteins with small RNAs also play a key role in silencing of mobile genetic elements and, in some cases, viruses. These processes are collectively called RNA interference. RNA interference is a powerful tool for specific gene silencing in both basic research and therapeutic applications. Argonaute proteins are also found in prokaryotic organisms. Recent studies have shown that prokaryotic Argonautes can also cleave their target nucleic acids, in particular DNA. This activity of prokaryotic Argonautes might potentially be used to edit eukaryotic genomes. However, the molecular mechanisms of small nucleic acid biogenesis and the functions of Argonaute proteins, in particular in bacteria and archaea, remain largely unknown. Here we briefly review available data on the RNA interference processes and Argonaute proteins in eukaryotes and prokaryotes.  相似文献   

18.
RNA structure and function in C/D and H/ACA s(no)RNPs   总被引:8,自引:0,他引:8  
From archaea to humans, C/D- and H/ACA-type small ribonucleoprotein particles play key roles in crucial RNA processing events. Various such particles are required for pre-rRNA cleavage steps and/or for chemical modification of rRNAs, spliceosomal small nuclear RNAs, tRNAs and perhaps even mRNAs. Each C/D-type particle contains a small RNA possessing conserved C and D, as well as related C' and D', sequence motifs, whereas each H/ACA-type particle contains a small RNA featuring conserved H and ACA sequence elements. Recently published studies highlight the importance of sequence and structural elements of these RNAs in the localization, activity and assembly of the ribonucleoprotein particles. A novel sequence element, the Cajal body box, found at the apex of stem structures within a subset of H/ACA small RNAs, mediates the specific retention of particles containing these elements inside nucleoplasmic Cajal bodies. Two highly conserved elements, the m1 and m2 boxes, have been identified in the 3' stem of the atypical H/ACA snR30/U17 RNAs. These conserved sequence elements are necessary for early pre-rRNA cleavage events and consequently for mature 18S rRNA production. Finally, convincing evidence has been provided that the conserved C and D sequence motifs of C/D-type small RNAs fold into a helix-bulge-helix structure, called a kink-turn, that provides a platform for assembly of C/D-type ribonucleoprotein particles.  相似文献   

19.
Functional dissection of adenovirus VAI RNA.   总被引:14,自引:8,他引:6       下载免费PDF全文
During the course of adenovirus infection, the VAI RNA protects the translation apparatus of host cells by preventing the activation of host double-stranded RNA-activated protein kinase, which phosphorylates and thereby inactivates the protein synthesis initiation factor eIF-2. In the absence of VAI RNA, protein synthesis is drastically inhibited at late times in infected cells. The experimentally derived secondary structure of VAI RNA consists of two extended base-paired regions, stems I and III, which are joined by a short base-paired region, stem II, at the center. Stems I and II are joined by a small loop, A, and stem III contains a hairpin loop, B. At the center of the molecule and at the 3' side, stems II and III are connected by a short stem-loop (stem IV and hairpin loop C). A fourth, minor loop, D, exists between stems II and IV. To determine sequences and domains critical for function within this VAI RNA structure, we have constructed adenovirus mutants with linker-scan substitution mutations in defined regions of the molecule. Cells infected with these mutants were analyzed for polypeptide synthesis, virus yield, and eIF-2 alpha kinase activity. Our results showed that disruption of base-paired regions in the distal parts of the longest stems, I and III, did not affect function, whereas mutations causing structural perturbations in the central part of the molecule containing stem II, the proximal part of stem III, and the central short stem-loop led to loss of function. Surprisingly, one substitution mutant, sub742, although dramatically perturbing the integrity of the structure of this central portion, showed a wild-type phenotype, suggesting that an RNA with an alternate secondary structure is functional. On the basis of sensitivity to single-strand-specific RNases, we can derive a novel secondary structure for the mutant RNA in which a portion of the sequences may fold to form a structure that resembles the central part of the wild-type molecule, which suggests that only the short stem-loop located in the center of the molecule and the adjoining base-paired regions may define the functional domain. These results also imply that only a portion of the VAI RNA structure may be recognized by the host factor(s).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号