首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
Although most non-long terminal repeat (non-LTR) retrotransposons are inserted throughout the host genome, many non-LTR elements in the R1 clade are inserted into specific sites within the target sequence. Four R1 clade families have distinct target specificity: R1 and RT insert into specific sites of 28S rDNA, and TRAS and SART insert into different sites within the (TTAGG)(n) telomeric repeats. To study the evolutionary history of target specificity of R1-clade retrotransposons, we have screened extensively novel representatives of the clade from various insects by in silico and degenerate polymerase chain reaction (PCR) cloning. We found four novel sequence-specific elements; Waldo (WaldoAg1, 2, and WaldoFs1) inserts into ACAY repeats, Mino (MinoAg1) into AC repeats, R6 into another specific site of the 28S rDNA, and R7 into a specific site of the 18S rDNA. In contrast, several elements (HOPE, WISHBm1, HidaAg1, NotoAg1, KagaAg1, Ha1Fs1) lost target sequence specificity, although some of them have preferred target sequences. Phylogenetic trees based on the RT and EN domains of each element showed that (1) three rDNA-specific elements, RT, R6, and R7, diverged from Waldo; (2) the elements having similar target sequences are phylogenetically related; and (3) the target specificity in the R1 clade was obtained once and thereafter altered and lost several times independently. These data indicate that the target specificity in R1 clade retroelements has changed during evolution and is more divergent than has been speculated so far.  相似文献   

2.
Composite transposable elements in the Xenopus laevis genome.   总被引:7,自引:1,他引:6       下载免费PDF全文
Members of two related families of transposable elements, Tx1 and Tx2, were isolated from the genome of Xenopus laevis and characterized. In both families, two versions of the elements were found. The smaller version in each family (Tx1d and Tx2d) consisted largely of two types of 400-base-pair tandem internal repeats. These elements had discrete ends and short inverted terminal repeats characteristic of mobile DNAs that are presumed to move via DNA intermediates, e.g., Drosophila P and maize Ac elements. The longer versions (Tx1c and Tx2c) differed from Tx1d and Tx2d by the presence of a 6.9-kilobase-pair internal segment that included two long open reading frames (ORFs). ORF1 had one cysteine-plus-histidine-rich sequence of the type found in retroviral gag proteins. ORF2 showed more substantial homology to retroviral pol genes and particularly to the analogs of pol found in a subclass of mobile DNAs that are supposed retrotransposons, such as mammalian long interspersed repetitive sequences, Drosophila I factors, silkworm R1 elements, and trypanosome Ingi elements. Thus, the Tx1 elements present a paradox by exhibiting features of two classes of mobile DNAs that are thought to have very different modes of transposition. Two possible resolutions are considered: (i) the composite versions are actually made up of two independent elements, one of the retrotransposon class, which has a high degree of specificity for insertion into a target within the other, P-like element; and (ii) the composite elements are intact, autonomous mobile DNAs, in which the pol-like gene product collaborates with the terminal inverted repeats to cause transposition of the entire unit.  相似文献   

3.
A family of transposable genetic elements in the genome of the frog, Xenopus laevis, is described. They are designated Tx1. Transposability of the elements was deduced by characterization of a chromosomal locus which is polymorphic for the presence or absence of a Tx1 element. Nucleotide sequence analysis suggested that Tx1 elements show target site specificity, as they are inserted at the pentanucleotide TTTAA in all four cases that were examined. The elements appear to have 19-base-pair (bp) inverted terminal repeats, and they are flanked by 4-bp target duplications (TTAA), although the possibility that they do not create target site duplications is discussed. Tx1 elements have several unusual characteristics: the central portion of each element is comprised of a variable number of two types of 393-bp repeating units; the rightmost 1,000 bp of the element contains separate regions potentially capable of forming bends, left-handed Z-form DNA, and alternative stem-loop structures. Comparisons among single frogs suggest that germ line transposition is relatively infrequent and that variations in numbers of internal repeats accumulate quite slowly at any locus.  相似文献   

4.
5.
6.
7.
8.
9.
10.
Zardoya R  Meyer A 《Genetics》2000,155(2):765-775
The complete nucleotide sequence (17,005 bp) of the mitochondrial genome of the caecilian Typhlonectes natans (Gymnophiona, Amphibia) was determined. This molecule is characterized by two distinctive genomic features: there are seven large 109-bp tandem repeats in the control region, and the sequence for the putative origin of replication of the L strand can potentially fold into two alternative secondary structures (one including part of the tRNA(Cys)). The new sequence data were used to assess the phylogenetic position of caecilians and to gain insights into the origin of living amphibians (frogs, salamanders, and caecilians). Phylogenetic analyses of two data sets-one combining protein-coding genes and the other combining tRNA genes-strongly supported a caecilian + frog clade and, hence, monophyly of modern amphibians. These two data sets could not further resolve relationships among the coelacanth, lungfishes, and tetrapods, but strongly supported diapsid affinities of turtles. Phylogenetic relationships among a larger set of species of frogs, salamanders, and caecilians were estimated with a mitochondrial rRNA data set. Maximum parsimony analysis of this latter data set also recovered monophyly of living amphibians and favored a frog + salamander (Batrachia) relationship. However, bootstrap support was only moderate at these nodes. This is likely due to an extensive among-site rate heterogeneity in the rRNA data set and the narrow window of time in which the three main groups of living amphibians were originated.  相似文献   

11.
P H Yen  A Sodja  M Cohen  S E Conrad  M Wu  N Davidson 《Cell》1977,11(4):763-777
A plasmid with the vector Col E1 attached to an insert of Drosophila melanogaster DNA carrying four tRNA genes has been cloned in E. coli. Some features of the sequence arrangement and the positions of the tRNA genes have been determined by electron microscopic methods and by restriction endonuclease mapping. tRNA genes were mapped at 1.4, 4.7, 5.9 and 8.6 kb from one of the Drosophila/Col E1 junctions in the Drosophila insert of total length 9.34 kb. There are several secondary structure features consisting of inverted repeat sequences of length about 70-100 nucleotide pairs, some with and some without intervening loops, irregularly distributed on the insert. Cross-hybridization of tRNAs isolated by hybridization to separated restriction fragments indicate that the tRNA genes at 4.7, 5.9 and 8.6 kb are identical and differ from the one at 1.4 kb. Thus the positions of the genes, of the secondary structure features and of the restriction endonuclease sites all indicate that the spacers between the genes are not identical tandem repeats. In situ hybridization with cRNA transcribed from the plasmid showed localization at region 42A of chromosome 2R.  相似文献   

12.
R1 and R2 are distantly related non-long terminal repeat retrotransposable elements each of which inserts into a specific site in the 28S rRNA genes of most insects. We have analyzed aspects of R1 and R2 abundance and sequence variation in 27 geographical isolates of Drosophila melanogaster. The fraction of 28S rRNA genes containing these elements varied greatly between strains, 17-67% for R1 elements and 2-28% for R2 elements. The total percentage of the rDNA repeats inserted ranged from 32 to 77%. The fraction of the rDNA repeats that contained both of these elements suggested that R1 and R2 exhibit neither an inhibition of nor preference for insertion into a 28S gene already containing the other type of element. Based on the conservation of restriction sites in the elements of all strains, and sequence analysis of individual elements from three strains, nucleotide divergence is very low for R1 and R2 elements within or between strains (less than 0.6%). This sequence uniformity is the expected result of the forces of concerted evolution (unequal crossovers and gene conversion) which act on the rRNA genes themselves. Evidence for the role of retrotransposition in the turnover of R1 and R2 was obtained by using naturally occurring 5' length polymorphisms of the elements as markers for independent transposition events. The pattern of these different length 5' truncations of R1 and R2 was found to be diverse and unique to most strains analyzed. Because recombination can only, with time, amplify or eliminate those length variants already present, the diversity found in each strain suggests that retrotransposition has played a critical role in maintaining these elements in the rDNA repeats of D. melanogaster.  相似文献   

13.
14.
Members of the human transposon-like family of repetitive sequences (called THE 1 repeats) like many other repetitive DNA sequences are flanked by short direct repeats. Comparison of the base sequences of twelve examples of these flanking direct repeats indicates that THE 1 repeats insert into a preferred genomic target site. In one case, we have identified the sequence of an empty site into which a THE 1 element inserted. The sequence of this empty site and sequences of truncated THE 1 LTRs are consistent with a retroviral mechanism for the insertion of THE 1 elements. Truncated transposon structures illustrate for the first time that intermediate structures of retrotransposition may also be integrated into the genome.  相似文献   

15.
A computer-aided homology search of databases found that the nucleotide sequences flanking ATLN44, a non-LTR retrotransposon (LINE) from Arabidopsis thaliana, are repeated in the A. thaliana genome. These sequences are homologous to flanking sequences of 664 bp with terminal inverted repeat sequences of about 70 bp. The 664-bp sequence and most of the 14 homologues identified were flanked by direct repeat sequences of 9 bp. These findings indicate that the repeated sequence, named Tnat1, is a transposable element that duplicates a 9-bp sequence at the target site on transposition and that ATLN44 is inserted in one Tnat1 member. Interestingly, all of the Tnat1 members had tandem repeats comprised of several units of a 60-bp sequence, the number of repeats differing among Tnat1 members. Of the Tnat1 members identified, one was inserted into another sequence repeated in the A. thaliana genome: that sequence is about 770 bp long and has terminal inverted repeat sequences of about 110 bp. The sequence is flanked by direct repeats of a 9-bp sequence, indicating that it is another transposable element, named Tnat2, from A. thaliana. Moreover, Tnat2 members had a tandem repeat about 240 bp long. Tnat1 and Tnat2 with tandem repeats in their internal regions show no homology to each other or to any of the elements identified previously; therefore they appear to be novel transposable elements.  相似文献   

16.
17.
18.
19.
Alu repeats or Line-1-ORF2 (ORF2) inhibit expression of the green fluorescent protein (GFP) gene when inserted downstream of this gene in the vector pEGFP-C1. In this work, we studied cis-acting elements that eliminated the repression of GFP gene expression induced by Alu and ORF2 and sequence characteristics of these elements. We found that sense and antisense PolyA of simian virus 40 (SV40PolyA, 240 bp) eliminated the repression of GFP gene expression when inserted between the GFP gene and the Alu (283 bp) repeats or ORF2 (3825 bp) in pAlu14 (14 tandem Alu repeats were inserted downstream of the GFP gene in the vector pEGFP-C1) or pORF2. Antisense SV40PolyA (PolyAas) induced stronger gene expression than its sense orientation (PolyA). Of four 60-bp segments of PolyAas (1F1R, 2F2R, 3F3R and 4F4R) inserted independently into pAlu14, only two (2F2R and 3F3R) eliminated the inhibition of GFP gene expression induced by Alu repeats. Deletion analysis revealed that a 17 nucleotide AT repeat (17ntAT; 5'-AAAAAAATGCTTTATTT-3') in 2F2R and the fragment 3F38d9 (5'-ATAAACAAGTTAACAACA ACAATTGCATT-3') in 3F3R were critical sequences for activating the GFP gene. Sequence and structural analyses showed that 17ntAT and 3F38d9 included imperfect palindromes and may form a variety of unstable stem-loops. We suggest that the presence of imperfect palindromes and unstable stem-loops in DNA enhancer elements plays an important role in GFP gene activation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号