首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Cytochrome c release from mitochondria is central to apoptosis, but the events leading up to it are disputed. The mitochondrial membrane potential has been reported to decrease, increase or remain unchanged during cytochrome c release. We measured mitochondrial membrane potential in Jurkat cells undergoing apoptosis by the uptake of the radiolabelled lipophilic cation TPMP, enabling small changes in potential to be determined. The ATP/ADP ratio, mitochondrial and cell volumes, plasma membrane potential and the mitochondrial membrane potential in permeabilised cells were also measured. Before cytochrome c release the mitochondrial membrane potential increased, followed by a decrease in potential associated with mitochondrial swelling and the release of cytochrome c and DDP-1, an intermembrane space house keeping protein. Mitochondrial swelling and cytochrome c release were both blocked by bongkrekic acid, an inhibitor of the permeability transition. We conclude that during apoptosis mitochondria undergo an initial priming phase associated with hyperpolarisation which leads to an effector phase, during which mitochondria swell and release cytochrome c.  相似文献   

2.
Proteins of the BCL-2 family are important regulators of apoptosis. The BCL-2 family includes three main subgroups: the anti-apoptotic group, such as BCL-2, BCL-XL, BCL-W, and MCL-1; multi-domain pro-apoptotic BAX, BAK; and pro-apoptotic “BH3-only” BIK, PUMA, NOXA, BID, BAD, and SPIKE. SPIKE, a rare pro-apoptotic protein, is highly conserved throughout the evolution, including Caenorhabditis elegans, whose expression is downregulated in certain tumors, including kidney, lung, and breast.In the literature, SPIKE was proposed to interact with BAP31 and prevent BCL-XL from binding to BAP31. Here, we utilized the Position Weight Matrix method to identify SPIKE to be a BH3-only pro-apoptotic protein mainly localized in the cytosol of all cancer cell lines tested. Overexpression of SPIKE weakly induced apoptosis in comparison to the known BH3-only pro-apoptotic protein BIK. SPIKE promoted mitochondrial cytochrome c release, the activation of caspase 3, and the caspase cleavage of caspase’s downstream substrates BAP31 and p130CAS. Although the informatics analysis of SPIKE implicates this protein as a member of the BH3-only BCL-2 subfamily, its role in apoptosis remains to be elucidated.  相似文献   

3.
Caspases and the cytotoxic lymphocyte protease granzyme B (GB) induce reactive oxygen species (ROS) formation, loss of transmembrane potential and mitochondrial outer membrane permeabilization (MOMP). Whether ROS are required for GB-mediated apoptosis and how GB induces ROS is unclear. Here, we found that GB induces cell death in an ROS-dependent manner, independently of caspases and MOMP. GB triggers ROS increase in target cell by directly attacking the mitochondria to cleave NDUFV1, NDUFS1 and NDUFS2 subunits of the NADH: ubiquinone oxidoreductase complex I inside mitochondria. This leads to mitocentric ROS production, loss of complex I and III activity, disorganization of the respiratory chain, impaired mitochondrial respiration and loss of the mitochondrial cristae junctions. Furthermore, we have also found that GB-induced mitocentric ROS are necessary for optimal apoptogenic factor release, rapid DNA fragmentation and lysosomal rupture. Interestingly, scavenging the ROS delays and reduces many of the features of GB-induced death. Consequently, GB-induced ROS significantly promote apoptosis.To induce cell death, human granzyme B (GB) activates effector caspase-3 or acts directly on key caspase substrates, such as the proapoptotic BH3 only Bcl-2 family member Bid, inhibitor of caspase-activated DNase (ICAD), poly-(ADP-ribose) polymerase-1 (PARP-1), lamin B, nuclear mitotic apparatus protein 1 (NUMA1), catalytic subunit of the DNA-dependent protein kinase (DNA-PKcs) and tubulin.1, 2, 3 Consequently, caspase inhibitors have little effect on human GB-mediated cell death and DNA fragmentation.2 GB causes reactive oxygen species (ROS) production, dissipation of the mitochondrial transmembrane potential (ΔΨm) and MOMP, which leads to the release of apoptogenic factors such as cytochrome c (Cyt c), HtrA2/Omi, endonuclease G (Endo G), Smac/Diablo and apoptosis-inducing factor, from the mitochondrial intermembrane space to the cytosol.4, 5, 6, 7, 8, 9, 10, 11 Interestingly, cells deficient for Bid, Bax and Bak are still sensitive to human GB-induced cell death,5, 11, 12, 13 suggesting that human GB targets the mitochondria in another way that needs to be characterized. Altogether, much attention has been focused on the importance of MOMP in the execution of GB-mediated cell death, leaving unclear whether ROS production is a bystander effect or essential to the execution of GB-induced apoptosis. The mitochondrial NADH: ubiquinone oxidoreductase complex I is a key determinant in steady-state ROS production. This 1 MDa complex, composed of 44 subunits,14 couples the transfer of two electrons from NADH to ubiquinone with the translocation of four protons to generate the ΔΨm. The importance of ROS has been previously demonstrated for caspase-3 and granzyme A (GA) pathways through the cleavage of NDUFS1 and NDUFS3, respectively.15, 16, 17, 18 GA induces cell death in a Bcl-2-insensitive and caspase- and MOMP-independent manner that has all the morphological features of apoptosis.1, 16, 17, 18, 19, 20 As GA and GB cell death pathways are significantly different, whether ROS are also critical for GB still need to be tested. Here, we show that GB induces ROS-dependent apoptosis by directly attacking the mitochondria in a caspase-independent manner to cleave NDUFS1, NDUFS2 and NDUFV1 in complex I. Consequently, GB inhibits electron transport chain (ETC) complex I and III activities, mitochondrial ROS production is triggered and mitochondrial respiration is compromised. Interestingly, MOMP is not required for GB to cleave the mitochondrial complex I subunits and ROS production. Moreover, GB action on complex I disrupts the organization of the respiratory chain and triggers the loss of the mitochondrial cristae junctions. We also show that GB-mediated mitocentric ROS are necessary for proper apoptogenic factor release from the mitochondria to the cytosol and for the rapid DNA fragmentation, both hallmarks of apoptosis. Moreover, GB-induced ROS are necessary for lysosomal membrane rupture. Thus, our work brings a new light to the GB pathway, showing that GB-mediated mitochondrial ROS are not adventitious waste of cell death, but essential mediators of apoptosis.  相似文献   

4.
The release of reactive oxygen species (ROS) by mitochondria instigates the pathways of programmed cell death in eukaryotic cells. Gourlay and Ayscough present intriguing experimental evidence that mutations in the genes encoding the regulatory proteins End3p and Sla1p, which influence actin dynamics in budding yeast, lead to a loss of mitochondrial membrane potential, resulting in ROS production and apoptosis. This effect can be suppressed by downregulation of the RAS-cAMP signaling pathway, thus establishing the existence of a new and complex regulatory network.  相似文献   

5.
Staurosporine (STS) induces apoptosis in various cell lines. We report in this study that primary cultured mouse hepatocytes are less sensitive to STS compared with Jurkat cells and Huh-7 cells. In contrast to the cell lines, no apparent release of cytochrome c or loss of mitochondrial transmembrane potential was detected in primary hepatocytes undergoing STS-induced apoptosis. Caspase-3 was activated in primary hepatocytes by STS treatment, but caspase-9 and -12 were not activated, and caspase-3 activation is not dependent on caspase-8. These findings point to a novel pathway for caspase-3 activation by STS in primary hepatocytes. Pretreatment with caspase inhibitor converted STS-induced apoptosis of hepatocytes to necrotic cell death without significantly changing total cell death. Thus STS causes hepatocytes to commit to death upstream of the activation of caspases. We also demonstrated that STS dramatically sensitized primary hepatocytes to tumor necrosis factor-alpha-induced apoptosis. STS activated I kappa B kinase and nuclear factor-kappa B (NF-kappa B) nuclear translocation and DNA binding but inhibited transactivation of I kappa B-alpha, inducible nitric oxide synthase, and inhibitor of apoptosis protein-1 in hepatocytes and NF-kappa B reporter in transfected Huh-7 cells.  相似文献   

6.
7.
Bcl-2 inhibits cell proliferation by delaying G0/G1 to S phase entry. We tested the hypothesis that Bcl-2 regulates S phase entry through mitochondrial pathways. Existing evidence indicates mitochondrial adenosine tri-phosphate (ATP) and reactive oxygen species (ROS) are important signals in cell survival and cell death, however, the molecular details of how these 2 processes are linked remain unknown. In this study, 2 cell lines stably expressing Bcl-2, 3T3Bcl-2 and C3HBcl-2, and vector-alone PB controls were arrested in G0/G1 phase by serum starvation and contact inhibition, and ATP and ROS were measured during re-stimulation of cell cycle entry. Both ATP and ROS levels were decreased in G0/G1 arrested cells compared with normal growing cells. In addition, ROS levels were significant lower in synchronized Bcl-2 cells than those in PB controls. After re-stimulation, ATP levels increased with time, reaching peak value 1–3 hours ahead of S phase entry for both Bcl-2 cells and PB controls. Consistent with 2 hours of S phase delay, Bcl-2 cells reached ATP peaks 2 hours later than PB control, which suggests a rise in ATP levels is required for S phase entry. To examine the role of ATP and ROS in cell cycle regulation, ATP and ROS level were changed. We observed that elevation of ATP accelerated cell cycle progression in both PB and Bcl-2 cells, and decrease of ATP and ROS to the level equivalent to Bcl-2 cells delayed S phase entry in PB cells. Our results support the hypothesis that Bcl-2 protein regulates mitochondrial metabolism to produce less ATP and ROS, which contributes to S phase entry delay in Bcl-2 cells. These findings reveal a novel mechanistic basis for understanding the link between mitochondrial metabolism and tumor-suppressive function of Bcl-2.  相似文献   

8.
Staurosporine produced DNA fragmentation characteristic of apoptosis and a dramatic alteration of cell structure that include alterations of cytoskeletal actin and cytoplasmic condensation with vacuolization. These changes were not induced by chelerythrine, a more specific PKC inhibitor than staurosporine. The calcium chelator, BAPTA, significantly reduced staurosporine-induced DNA fragmentation but did not affect staurosporine-induced changes in cytoskeletal actin. These data suggest that DNA fragmentation and actin degradation in apoptosis, induced by staurosporine, are under different regulatory control by calcium.  相似文献   

9.
Mitochondria are the most important sensor for apoptosis. Extracellular adenosine is well reported to induce apoptosis of tumor cells. Here we found that extracellular adenosine suppresses the cell growth by induction of apoptosis in BEL-7404 liver cancer cells, and identified a novel mechanism that extracellular adenosine triggers apoptosis by increasing Reactive Oxygen Species (ROS) production and mitochondrial membrane dysfunction in the cells. We observed that adenosine increases ROS production, activates c-Caspase-8 and -9 and Caspase effectors, c-Caspase-3 and c-PARP, induces accumulation of apoptosis regulator Bak, decreases Bcl-xL and Mcl-1, and causes the mitochondrial membrane dysfunction and the release of DIABLO, Cytochrome C, and AIF from mitochondria to cytoplasm in the cells; ROS inhibitor, NAC significantly reduces adenosine-induced ROS production; it also shows the same degree of blocking adenosine-induced loss of mitochondrial membrane potential (MMP) and apoptosis. Our study first observed that adenosine increases ROS production in tumor cells and identified the positive feedback loop for ROS-mediated mitochondrial membrane dysfunction which amplifies the death signals in the cells. Our findings indicated ROS production and mitochondrial dysfunction play a key role in adenosine-induced apoptosis of 7404 cells.  相似文献   

10.
Apoptosis is a distinct form of programmed cell death that plays an important role in many biological processes.Although the phenotypes of apoptotic cells are well documented, little is known of the central mechanismleading to programmed cell death. Over the past few years, a number of ICE/CED-3 family proteases(also termed caspases) have been discovered and implicated as the common effectors of apoptosis. Inthis report, we demonstrate that induction of apoptosis in CHO-K1 cells by staurosporine, a broad spectruminhibitor of protein kinases, results in an increase in DEVD-dependent protease activity. These events werefollowed by nuclear DNA fragmentation and cell death. Inhibition of the DEVD-cleaving activity by a synthetictetrapeptide inhibitor DEVD-CHO, blocked staurosporine-induced downstream apoptotic phenotypes, suchas morphological characteristics and DNA fragmentation. These results suggest that staurosporine-inducedapoptosis in CHO-K1 cells is mediated through the CPP32/caspase-3-like cysteine proteases.  相似文献   

11.
12.
Measuring cytochrome c release during apoptosis provides valuable information about the nature and extent of apoptosis. Several years ago a flow cytometric method (based on selective permeabilization of the plasma membrane with digitonin) was developed that has advantages over other techniques. These experiments describe a comprehensive evaluation of that method. Apoptosis was triggered in Jurkat cells with staurosporine and then flow cytometry was used to measure three aspects of mitochondrial damage: (1) cytochrome c release (with the digitonin assay and a commercially available kit based on the same principle), using a DNA-binding dye to define cell cycle stage; (2) loss of mitochondrial cardiolipin, assessed by a decrease in 10 N-nonyl acridine orange (NAO) binding; and (3) loss of mitochondrial membrane potential, assessed by a decrease in tetramethylrhodamineethylester (TMRE) binding. The results from these three assays were compared with an antibody-based assay for cleaved caspase 3. The digitonin assay and the commercially available kit gave comparable results, showing that staurosporine caused cytochrome c release in all phases of the cell cycle and clearly defining those cells that had lost DNA due to internucleosomal DNA fragmentation. The pattern of fluorescence demonstrated that the mitochondrial apoptotic pathway was either the sole or the predominant pathway to be activated and that cytochrome c release in an individual cell was all-or-nothing. However, comparison with the other assays showed that the cytochrome c release assay underestimated the true extent of apoptosis. This was caused by the selective loss of some digitonin-treated apoptotic cells. The flow cytometry assay for cytochrome c release provides valuable information but it underestimates the percentage of apoptotic cells.  相似文献   

13.
14.
Previous studies have suggested that 1,25(OH)2D3, the active form of vitamin D3, may increase the survival of bone-forming osteoblasts through an inhibition of apoptosis. On the other hand, vitamin D3 has also been shown to trigger apoptosis in human cancer cells, including osteosarcoma-derived cell lines. In the present study, we show that 1,25(OH)2D3 induces a time- and dose-dependent loss of cell viability in the rat osteosarcoma cell line, UMR-106, and the human osteosarcoma cell line, TE-85. We were unable, however, to detect nuclear condensation, phosphatidylserine externalization, or other typical signs of apoptosis in this model. Moreover, 1,25(OH)2D3 failed to protect against apoptosis induced by serum starvation or incubation with the protein kinase inhibitor, staurosporine. These in vitro findings are thus at variance with several previous reports in the literature and suggest that induction of or protection against apoptosis of bone-derived cells may not be a primary function of vitamin D3.  相似文献   

15.
Zhang T  Li Y  Park KA  Byun HS  Won M  Jeon J  Lee Y  Seok JH  Choi SW  Lee SH  Man Kim J  Lee JH  Son CG  Lee ZW  Shen HM  Hur GM 《Autophagy》2012,8(4):559-576
Targeted disruption of STAT3 function has proven to be a useful cancer therapeutic approach by inducing apoptotic cell death. Cucurbitacin is currently under development as a small molecule of STAT3 inhibitor to trigger cell death in many cancers. Here, we systematically studied the molecular mechanisms underlying cucurbitacin-induced cell death, in particular the involvement of autophagy. Treatment with cucurbitacin resulted in non-apoptotic cell death in a caspase-independent manner. Notably, cucurbitacin enhanced excessive conversion of lipidated LC3 (LC3-II) and accumulation of autophagosomes in many cell types. Such autophagy and cell death induced by cucurbitacin were independent of its ability to inhibit STAT3 function, but mainly mediated by enhanced production of mitochondrial-derived reactive oxygen species (ROS), and subsequently activation of extracellular signal-regulated kinase (ERK) and c-jun NH2-terminal kinase (JNK). Interestingly, both the autophagy inhibitor wortmannin and knockdown of Atg5 or Beclin 1 failed to rescue the cells from cucurbitacin-induced cell death, as suppression of autophagy induced the mode of cell death to shift from autophagic cell death to caspase-dependent apoptosis. Thus the present study provides new insights into the molecular mechanisms underlying cucurbitacin-mediated cell death and supports cucurbitacin as a potential anti-cancer drug through modulating the balance between autophagic and apoptotic modes of cell death.  相似文献   

16.
《Autophagy》2013,9(4):559-576
Targeted disruption of STAT3 function has proven to be a useful cancer therapeutic approach by inducing apoptotic cell death. Cucurbitacin is currently under development as a small molecule of STAT3 inhibitor to trigger cell death in many cancers. Here, we systematically studied the molecular mechanisms underlying cucurbitacin-induced cell death, in particular the involvement of autophagy. Treatment with cucurbitacin resulted in non-apoptotic cell death in a caspase-independent manner. Notably, cucurbitacin enhanced excessive conversion of lipidated LC3 (LC3-II) and accumulation of autophagosomes in many cell types. Such autophagy and cell death induced by cucurbitacin were independent of its ability to inhibit STAT3 function, but mainly mediated by enhanced production of mitochondrial-derived reactive oxygen species (ROS), and subsequently activation of extracellular signal-regulated kinase (ERK) and c-jun NH2-terminal kinase (JNK). Interestingly, both the autophagy inhibitor wortmannin and knockdown of Atg5 or Beclin 1 failed to rescue the cells from cucurbitacin-induced cell death, as suppression of autophagy induced the mode of cell death to shift from autophagic cell death to caspase-dependent apoptosis. Thus the present study provides new insights into the molecular mechanisms underlying cucurbitacin-mediated cell death and supports cucurbitacin as a potential anti-cancer drug through modulating the balance between autophagic and apoptotic modes of cell death.  相似文献   

17.
Although the identification of events that occur during apoptosis is a fundamental goal of apoptotic cell death research, little is know about the precise sequence of changes in total elemental composition during apoptosis. We evaluated total elemental composition (Na, Mg, P, Cl, S, and K) in relation to molecular and morphological features in human U937 cells induced to undergo apoptosis with staurosporine, an intrinsic pathway activator. To evaluate total elemental content we used electron probe X-ray microanalysis to measure simultaneously all elements from single, individual cells. We observed two phases in the changes in elemental composition (mainly Na, Cl and K). The early phase was characterized by a decrease in intracellular K (P < 0.001) and Cl (P < 0.001) content concomitant with cell shrinkage, and preceded the increase in proteolytic activity associated with the activation of caspase-3. The later phase started with caspase-3 activation, and was characterized by a decrease in the K/Na ratio (P < 0.001) as a consequence of a significant decrease in K and increase in Na content. The inversion of intracellular K and Na content was related with the inhibition of Na+/K+ ATPase. This later phase was also characterized by a significant increase (P < 0.001) in intracellular Cl with respect to the early phase. In addition, we found a decrease in S content and an increase in the P/S ratio. These distinctive changes coincided with chromatin condensation and DNA fragmentation. Together, these findings support the concept that changes in total elemental composition take place in two phases related with molecular and morphological features during staurosporine-induced apoptosis.  相似文献   

18.
《BBA》2014,1837(2):287-295
The Redox-Optimized ROS Balance [R-ORB] hypothesis postulates that the redox environment [RE] is the main intermediary between mitochondrial respiration and reactive oxygen species [ROS]. According to R-ORB, ROS emission levels will attain a minimum vs. RE when respiratory rate (VO2) reaches a maximum following ADP stimulation, a tenet that we test herein in isolated heart mitochondria under forward electron transport [FET]. ROS emission increased two-fold as a function of changes in the RE (~ 400 to ~ 900 mV·mM) in state 4 respiration elicited by increasing glutamate/malate (G/M). In G/M energized mitochondria, ROS emission decreases two-fold for RE ~ 500 to ~ 300 mV·mM in state 3 respiration at increasing ADP. Stressed mitochondria released higher ROS, that was only weakly dependent on RE under state 3. As a function of VO2, the ROS dependence on RE was strong between ~ 550 and ~ 350 mV·mM, when VO2 is maximal, primarily due to changes in glutathione redox potential. A similar dependence was observed with stressed mitochondria, but over a significantly more oxidized RE and ~ 3-fold higher ROS emission overall, as compared with non-stressed controls. We conclude that under non-stressful conditions mitochondrial ROS efflux decreases when the RE becomes less reduced within a range in which VO2 is maximal. These results agree with the R-ORB postulate that mitochondria minimize ROS emission as they maximize VO2 and ATP synthesis. This relationship is altered quantitatively, but not qualitatively, by oxidative stress although stressed mitochondria exhibit diminished energetic performance and increased ROS release.  相似文献   

19.
M Khan  F Yi  A Rasul  T Li  N Wang  H Gao  R Gao  T Ma 《IUBMB life》2012,64(9):783-794
Glioblastoma multiforme (GBM) is the most malignant and aggressive primary brain tumor in adults. Despite concerted efforts to improve current therapies, the prognosis of glioblastoma remains very poor. Alantolactone, a sesquiterpene lactone compound, has been reported to exhibit antifungal, antibacteria, antihelminthic, and anticancer properties. In this study, we found that alantolactone effectively inhibits growth and triggers apoptosis in glioblastoma cells in a time- and dose-dependent manner. The alantolactone-induced apoptosis was found to be associated with glutathione (GSH) depletion, reactive oxygen species (ROS) generation, mitochondrial transmembrane potential dissipation, cardiolipin oxidation, upregulation of p53 and Bax, downregulation of Bcl-2, cytochrome c release, activation of caspases (caspase 9 and 3), and cleavage of poly (ADP-ribose) polymerase. This alantolactone-induced apoptosis and GSH depletion were effectively inhibited or abrogated by a thiol antioxidant, N-acetyl-L-cysteine, whereas other antioxidant (polyethylene glycol (PEG)-catalase and PEG-superoxide-dismutase) did not prevent apoptosis and GSH depletion. Alantolactone treatment inhibited the translocation of NF-κB into nucleus; however, NF-κB inhibitor, SN50 failed to potentiate alantolactone-induced apoptosis indicating that alantolactone induces NF-κB-independent apoptosis in glioma cells. These findings suggest that the sensitivity of tumor cells to alantolactone appears to results from GSH depletion and ROS production. Furthermore, our in vivo toxicity study demonstrated that alantolactone did not induce significant hepatotoxicity and nephrotoxicity in mice. Therefore, alantolactone may become a potential lead compound for future development of antiglioma therapy. ? ? 2012 IUBMB Life, 64(9): 783-794, 2012.  相似文献   

20.
Although it has been reported that thiazolidinediones (TZDs) may reduce cardiovascular events in type 2 diabetic patients, its precise mechanism is unclear. We previously demonstrated that hyperglycemia-induced production of reactive oxygen species from mitochondria (mtROS) contributed to the development of diabetic complications, and metformin normalized mt ROS production by induction of MnSOD and promotion of mitochondrial biogenesis by activating the PGC-1α pathway. In this study, we examined whether TZDs could inhibit hyperglycemia-induced mtROS production by activating the PGC-1α pathway. We revealed that pioglitazone and ciglitazone attenuated hyperglycemia-induced ROS production in human umbilical vein endothelial cells (HUVECs). Both TZDs increased the expression of NRF-1, TFAM and MnSOD mRNA. Moreover, pioglitazone increased mtDNA and mitochondrial density. These results suggest that TZDs normalize hyperglycemia-induced mtROS production by induction of MnSOD and promotion of mitochondrial biogenesis by activating PGC-1α. This phenomenon could contribute to the prevention of diabetic vascular complications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号