首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aims The community succession theory is much debated in ecology. We studied succession on Zokor rodent mounds on the Tibetan Plateau to address several fundamental questions, among them: (i) During secondary succession, does the community composition converge towards one community state or multiple states depending on the initial colonization? (ii) Do mound communities located in different background communities exhibit different assembly trajectories?Methods In a sub-alpine meadow, we investigated a total of 80 mound communities at several successional stages in three different background communities resulting from different management histories and compared their changes in species composition. The distribution of plant communities over time was analyzed with quantitative classification and ordination methods. The co-occurrence patterns of species were evaluated at each successional stage, and the degree of convergence/divergence among communities was obtained by calculating two beta-diversity indices.Important findings During secondary succession, species richness of mound communities changed over time, and this change was dependent on the background community. Five life-form groups exhibited different dynamic patterns in species richness and plant cover. Community composition and the degree of species co-occurrence between communities increased over time since disturbance. There was much variation in species composition at earlier stages of succession, but communities on older mounds became more similar to each other and to their surrounding vegetation over the course of secondary succession. Post-disturbance succession of Zokor mound communities transitioned from 'multiple alternative states' to 'background-based deterministic community assembly' over time. Tradeoffs between competition and colonization, as well as the characteristics of different life-forms and mass effects within a limited species pool are the mechanisms responsible for convergence of mound communities.  相似文献   

2.
缙云山森林群落次生演替中土壤理化性质的动态变化   总被引:45,自引:0,他引:45  
刘鸿雁  黄建国 《应用生态学报》2005,16(11):2041-2046
选择典型、有代表性的不同演替阶段群落,进行了植被调查和土壤分析.结果表明,土壤理化性质在演替方向和土壤剖面上表现出较强的规律.土壤有机质随植被从低级向高级演进逐渐积累,分别是19.5(X1)、37.0(X2)、50.1(X3)和71.6 g·kg-1(X4);土壤全N、碱解氮和速效钾等也呈上升趋势;土壤pH和盐基饱和度降低,阳离子交换量增加.在土壤剖面上,有机质、全N等指标表现出A>B>C层的趋势.灰色关联度分析表明,随着演替的进行,土壤肥力提高,物种丰富度和郁闭度也相应增加.不同群落土壤理化性质在不同季节有显著差异,但这种差异并不影响植物与土壤在大时间尺度下的演变方向.土壤理化性质的动态变化与植物演替相适应.  相似文献   

3.
草原群落退化与恢复演替中的植物个体行为分析   总被引:28,自引:3,他引:25       下载免费PDF全文
定义植物个体小型化是在草原过度放牧条件下 ,草原植物植株变矮 ,叶片变短、变窄 ,节间缩短 ,以及根系分布浅层化等性状的集合。小型化个体的生态学属性介于环境饰变与生态型之间 ,特称之为扰动响应型。个体小型化逆转过程表现出集体行为 ;小型化个体具有维持其形状的保守性 ,变化的阶段性和突变性 ;小型化的逆过程即正常化过程 ,与演替时间有关。个体小型化是过度放牧下群落生产力衰退的重要表现 ,是对过度放牧的负反馈机制。在草原群落退化演替机理研究中 ,对个体小型化的深入认识是十分重要的环节。  相似文献   

4.
Humans are visiting Antarctica in increasing numbers, and the ecological effect of rapid soil habitat alteration due to human-induced physical disturbance is not well understood. An experimental soil disturbance trial was set up near Scott Base on Ross Island, to investigate the immediate and short-term changes to bacterial community structure, following surface soil disturbance. Three blocks, each comprising an undisturbed control, and an area disturbed by removing the top 2 cm of soil, were sampled over a time series (0, 7, 14, 21, and 35 days), to investigate changes to bacterial community structure using DNA profiling by terminal restriction fragment length polymorphism. The simulated disturbance did not cause any major shifts in the structure of the bacterial communities over the 35-day sampling period. Ordination showed that the bacterial community composition correlated strongly with soil EC (R 2 = 0.55) and soil pH (R 2 = 0.67), rather than the removal of the top 2 cm of surface material. Although the replicate blocks were visually indistinguishable from one another, high local spatial variability of soil chemical properties was found at the study site and different populations of bacterial communities occurred within 2 m of one another, within the same landscape unit. Given the current knowledge of the drivers of bacterial community structure, that is, soil EC, soil pH, and soil moisture content, a follow-up investigation incorporating DNA and RNA-based analyses over a time frame of 2–3 years would lead to a greater understanding of the effects of soil disturbance on bacterial communities.  相似文献   

5.
Soil disturbance is recognized as an important driver of biodiversity in dry grasslands, and can therefore be implemented as a restoration measure. However, because community re-assembly following disturbance includes stochastic processes, a focus only on species richness or establishment success of particular species will not inform on how plant communities respond ecologically to disturbance. We therefore evaluated vegetation development following disturbance by quantifying species richness, species composition and functional trait composition. Degraded calcareous sandy grassland was subjected to experimental disturbance treatments (ploughing or rotavation), and the vegetation was surveyed during four subsequent years of succession. Treated plots were compared with control plots representing untreated grassland, as well as nearby plots characterized by plant communities representing the restoration target.Species richness and functional diversity both increased in response to soil disturbance, and rotavation, but not ploughing, had a persistent positive effect on the occurrence of specialist species of calcareous sandy grassland. However, no type of soil disturbance caused the plant species composition to develop towards the target vegetation. The disturbance had an immediate and large impact on the vegetation, but the vegetation developed rapidly back towards the control sites. Plant functional composition analysis indicated that the treatments created habitats different both from control sites and target sites. Community-weighted mean Ellenberg indicator values suggested that the observed plant community response was at least partially due to an increase in nitrogen and water availability following disturbance. This study shows that a mild type of disturbance, such as rotavation, may be most successful in promoting specialist species in calcareous sandy grassland, but that further treatments are needed to reduce nutrient availability. We conclude that a functional trait based analysis provides additional information of the vegetation response and the abiotic conditions created, complementing the information from the species composition.  相似文献   

6.
Although soil pH has been shown to be an important factor driving microbial communities, relatively little is known about the other potentially important factors that shape soil-borne microbial community structure. This study examined plant and microbial communities across a series of neutral pH fields (pH=7.0-7.5) representing a chronosequence of secondary succession after former arable fields were taken out of production. These fields ranged from 17 to >66 years since the time of abandonment, and an adjacent arable field was included as a reference. Hierarchical clustering analysis, nonmetric multidimensional scaling and analysis of similarity of 52 different plant species showed that the plant community composition was significantly different in the different chronosequences, and that plant species richness and diversity increased with time since abandonment. The microbial community structure, as analyzed by phylogenetic microarrays (PhyloChips), was significantly different in arable field and the early succession stage, but no distinct microbial communities were observed for the intermediate and the late succession stages. The most determinant factors in shaping the soil-borne microbial communities were phosphorous and NH(4)(+). Plant community composition and diversity did not have a significant effect on the belowground microbial community structure or diversity.  相似文献   

7.
The Mountain Renosterveld vegetation of the Roggeveld is an escarpment type renosterveld showing strong karroid affinities. Fire plays an important role as a landscape scale disturbance that shapes plant communities in this vegetation type, however, post-fire succession has never before been documented for renosterveld vegetation. A study was therefore conducted in the northern Roggeveld to improve our understanding of the recovery of the vegetation following fire. The natural vegetation recovery was analysed using line transect data accumulated at five different sites over a ten year period. This paper reports on the post-fire vegetation trends with respect to changes in species composition, species richness, life form composition and life form richness. Vegetation cover began to re-establish within the first nine months following the fire, and remained at a high level from years 3 to 10. At the first survey the species richness varied from 13 to 17 species, with the highest species richness (14 to 31 species) generally encountered at each transect after three years. The highest Shannon index values were generally found within the first three years and the lowest Shannon index values were found in years 9 and 10. In all cases the Principal Co-ordinate Analysis ordinations of the species composition data indicated a clear separation in the species composition between the first two years (years 1 and 2) following the fire and the remaining years (year 3 to 10). This study also supports the ‘initial floristic composition’ model of Egler (1954) in that all or the majority of species encountered during the succession were already present at the beginning of the recovery phase and there was a rapid re-establishment of the initial plant community.  相似文献   

8.
Soil animals are abundant in forest litter layer,but little attention has been Paid to the vertical distribution of community structure of soil animals in the layers at different plant community succession stages.The forest litter layer can be divided into fresh litter layer(L),fermentation layer(F)and humus layer(H),which may represent different litter decomposition stages.The aim of the study is to ascertain the vertical distribution features of soil animal communities among the three litter layers and the change in the succession process of the Evergreen Broad-Leaved Forest(EBLF)in Tiantong,Zhejiang Province,China.Soil animal communities in the five plant communities at different succession stages were investigated during the 2003 winter.Soil animals,which were collected by using Tullgren funnels,amounted to a total of 13381 individuals falling into 2 phyla,8 classes and 20 orders.The dominant groups were Acarina and Collembola,accounting for 94.24% of the total individuals,with the number of Acarina individuals 7.66 times than that of Collembola.The common group was Diptera.The results indicated that there was a distinctive vertical distribution of the soil animal communities in the forest litter laver,but it differed from that in soil below the litter layer.In contrast to those in the soil,the soil animals in the litter layer generally tended to increase in both group abundance and density from the top fresh litter layer to the bottom humus layer.Altogether 19 groups and 59.03% of total individuals were found in the bottom layer,while only 8 groups and 5.35% of the total individuals in the top.Moreover,there were some variations in the distribution of the soil animals at different plant succession stages.85.19% of Homoptera and 100% of Symphyla were found in the litter layer at the climax succession stage.while 75.61% of Thysanoptera at the intermediate succession stage.Therefore,these groups might be seen as indicative groups.The total numbers of soil animal groups and individuals in the litter layers greatly changed in the succession process of the EBLF.They both were greatest at the climax,moderate at the intermediate and smallest at the primary succession stage.However,the main soil animal groups in the litter at the different succession stages were essentially the same.They were Acarina,Collembola,Diptera and Lepidoptera.Although similarity analysis revealed that the soil animal communities in the litter at the intermediate succession stage were most similar to those at the climax succession stage,they differed greatly from each other in the Shannon-Wiener diversity index.The Shannon-Wiener index was highest at the climax succession stage and lowest at the intermediate succession stage.Finally,the paper discusses the following three questions:the role of soil animals as indicators for plant community succession;the role of different soil animal groups in the litter decomposition at different stages;and the major factors affecting the composition and distribution of soil animals in the litter.This paper provides a new perspective for the research on the succession mechanism of plant communities and the decomposition functions of soil animals.  相似文献   

9.
Soil animals are abundant in forest litter layer, but little attention has been paid to the vertical distribution of community structure of soil animals in the layers at different plant community succession stages. The forest litter layer can be divided into fresh litter layer (L), fermentation layer (F) and humus layer (H), which may represent different litter decomposition stages. The aim of the study is to ascertain the vertical distribution features of soil animal communities among the three litter layers and the change in the succession process of the Evergreen Broad-Leaved Forest (EBLF) in Tiantong, Zhejiang Province, China. Soil animal communities in the five plant communities at different succession stages were investigated during the 2003 winter. Soil animals, which were collected by using Tullgren funnels, amounted to a total of 13 381 individuals falling into 2 phyla, 8 classes and 20 orders. The dominant groups were Acarina and Collembola, accounting for 94.24% of the total individuals, with the number of Acarina individuals 7.66 times than that of Collembola. The common group was Diptera. The results indicated that there was a distinctive vertical distribution of the soil animal communities in the forest litter layer, but it differed from that in soil below the litter layer. In contrast to those in the soil, the soil animals in the litter layer generally tended to increase in both group abundance and density from the top fresh litter layer to the bottom humus layer. Altogether 19 groups and 59.03% of total individuals were found in the bottom layer, while only 8 groups and 5.35% of the total individuals in the top. Moreover, there were some variations in the distribution of the soil animals at different plant succession stages. 85.19% of Homoptera and 100% of Symphyla were found in the litter layer at the climax succession stage, while 75.61% of Thysanoptera at the intermediate succession stage. Therefore, these groups might be seen as indicative groups. The total numbers of soil animal groups and individuals in the litter layers greatly changed in the succession process of the EBLF. They both were greatest at the climax, moderate at the intermediate and smallest at the primary succession stage. However, the main soil animal groups in the litter at the different succession stages were essentially the same. They were Acarina, Collembola, Diptera and Lepidoptera. Although similarity analysis revealed that the soil animal communities in the litter at the intermediate succession stage were most similar to those at the climax succession stage, they differed greatly from each other in the Shannon-Wiener diversity index. The Shannon-Wiener index was highest at the climax succession stage and lowest at the intermediate succession stage. Finally, the paper discusses the following three questions: the role of soil animals as indicators for plant community succession; the role of different soil animal groups in the litter decomposition at different stages; and the major factors affecting the composition and distribution of soil animals in the litter. This paper provides a new perspective for the research on the succession mechanism of plant communities and the decomposition functions of soil animals. __________ Translated from Acta Ecologica Sinica, 2005, 25 (3) [译自: 生态学报, 2005,25(3)]  相似文献   

10.
天童常绿阔叶林五个演替阶段凋落物中的土壤动物群落   总被引:21,自引:2,他引:21  
易兰  由文辉  宋永昌 《生态学报》2005,25(3):466-473
为探讨森林凋落物中土壤动物群落的结构特征以及土壤动物群落随植被演替而发生的变化 ,于 2 0 0 3年冬季 ,对浙江天童常绿阔叶林 5个演替阶段凋落物中的土壤动物群落 ,按代表不同分解阶段的新鲜凋落物层、腐叶层和腐殖土层进行了调查研究。共获得土壤动物 13381只 ,分别隶属于 2门 8纲 2 0目。优势类群为蜱螨目 (Arcarina)和弹尾目 (Collem bola) ,二者共占总数的 94 .2 4 % ,A/ C为 7.6 6 ;常见类群为双翅目 (Diptera)。研究结果表明 :(1)凋落物中的土壤动物群落存在明显的有别于真土层的垂直分布 ,类群数和个体数总体表现为向下递增的趋势。共有 19类、5 9.0 3%的土壤动物分布在底部腐殖土层 ,仅 8类、5 .35 %的土壤动物分布在新鲜凋落物层 ,其余共 8类分布在中间腐叶层。而且 ,不同类群在各演替阶段的分布表现出一定的差异 ;(2 )凋落物中土壤动物群落随植物群落的演替而发生明显的变化 :个体总数和类群总数在演替顶极阶段最高 ,其次为中期阶段 ,演替初期最低。但是 ,在目这一分类等级上 ,各演替阶段凋落物中土壤动物群落的主要类群基本一致 ,均为蜱螨目、弹尾目、双翅目和鳞翅目 (L epidoptera) ;(3)相似性分析表明 ,演替中期凋落物中土壤动物群落与顶极阶段最为相似 ;但它们的Shannon- Wiener多样性  相似文献   

11.
Soil factors and host plant identity can both affect the growth and functioning of mycorrhizal fungi. Both components change during primary succession, but it is unknown if their relative importance to mycorrhizas also changes. This research tested how soil type and host plant differences among primary successional stages determine the growth and plant effects of arbuscular mycorrhizal (AM) fungal communities. Mycorrhizal fungal community, plant identity, and soil conditions were manipulated among three stages of a lacustrine sand dune successional series in a fully factorial greenhouse experiment. Late succession AM fungi produced more arbuscules and soil hyphae when grown in late succession soils, although the community was from the same narrow phylogenetic group as those in intermediate succession. AM fungal growth did not differ between host species, and plant growth was similarly unaffected by different AM fungal communities. These results indicate that though ecological filtering and/or adaptation of AM fungi occurs during this primary dune succession, it more strongly reflects matching between fungi and soils, rather than interactions between fungi and host plants. Thus, AM fungal performance during this succession may not depend directly on the sequence of plant community succession.  相似文献   

12.
Summary I suggest that between-community variations in diversity patterns during succession in plant communities are due to the effects of selection on life history strategies under different disturbance regimes. Natural disturbances to plant communities are simultaneously a source of mortality for some individuals and a source of establishment sites for others. The plant community consists of a mosaic of disturbance patches (gaps) of different environmental conditions. The composition of the mosaic is described by the size-frequency distribution of the gaps and is dependent on the rates and scales of disturbance. The life-history strategies of plant species dependent on some form of disturbance for establishment of propagules should reflect this size-frequency distribution of disturbance patches. An extension of island biogeographic theory to encompass relative habitat area predicts that a community should be most rich in species adapted to growth and establishment in the spatially most common patch types. Changes in species diversity during succession following large scale disturbance reflect the prevalent life history patterns under historically common disturbance regimes. Communities in which the greatest patch area is in large-scale clearings (e.g. following fire) are most diverse in species establishing seedlings in xeric, high light conditions. Species diversity decreases during succession. Communities in which such large patches are rare are characterized by a large number of species that reach the canopy through small gaps and realtively few which regenerate in the large clearings. Diversity increases during succession following a large scale disturbance.Evidence from communities characterized by different disturbance regimes is summarized from the literature. This hypothesis provides an evolutionary mechanism with which to examine the changes in plant community structure during succession. Diversity peaks occurring at intermediate levels of disturbance as discussed by Connell and Huston are interpreted in this context.  相似文献   

13.
Abstract. We tested the following hypotheses forthe first five years of a grassland succession: (a) community changes are mainly directional and related to time after disturbance ratherthanto environmental fluctuations; (b) rates of succession decrease over time, and (c) plant communities in different plots converge on a similar composition within five years of succession. We tested those hypotheses using a Principal Components Analysis applied to data from four successional plots established in successive y ears in a large cropland in the Inland Pampa, Argentina. Community changes were correlated to the age of the plots, and unrelated to rainfall variability, a major environmental variable in grasslands. Successional rates were constant over the five years, probably because of the continued dominance of different annuals; we conclude that successional rates depend on the life history of the dominant species rather than on any emergent community property. We found no evidence of convergence ordivergence; we concluded that the results of successional studies may depend on the temporal and spatial scale of observation.  相似文献   

14.
Question: How does vegetation develop during the initial period following severe wildfire in managed forests? Location: Southwestern Oregon, USA. Methods: In severely burned plantations, dynamics of (1) shrub, herbaceous, and cryptogam richness; (2) cover; (3) topographic, overstory, and site influences were characterized on two contrasting aspects 2 to 4 years following fire. Analysis of variance was used to examine change in structural layer richness and cover over time. Non‐metric multidimensional scaling, multi‐response permutation procedure, and indicator species analysis were used to evaluate changes in community composition over time. Results: Vegetation established rapidly following wildfire in burned plantations, following an initial floristics model of succession among structural layers. Succession within structural layers followed a combination of initial and relay floristic models. Succession occurred simultaneously within and among structural layers following wildfire, but at different rates and with different drivers. Stochastic (fire severity and site history) and deterministic (species life history traits, topography, and pre‐disturbance plant community) factors determined starting points of succession. Multiple successional trajectories were evident in early succession. Conclusions: Mixed conifer forests are resilient to interacting effects of natural and human‐caused disturbances. Predicting the development of vegetation communities following disturbances requires an understanding of the various successional components, such as succession among and within structural layers, and the fire regime. Succession among and within structural layers can follow different successional models and trajectories, occurs at different rates, and is affected by multiple interacting factors.  相似文献   

15.
Nutrient Addition Dramatically Accelerates Microbial Community Succession   总被引:1,自引:0,他引:1  
The ecological mechanisms driving community succession are widely debated, particularly for microorganisms. While successional soil microbial communities are known to undergo predictable changes in structure concomitant with shifts in a variety of edaphic properties, the causal mechanisms underlying these patterns are poorly understood. Thus, to specifically isolate how nutrients – important drivers of plant succession – affect soil microbial succession, we established a full factorial nitrogen (N) and phosphorus (P) fertilization plot experiment in recently deglaciated (∼3 years since exposure), unvegetated soils of the Puca Glacier forefield in Southeastern Peru. We evaluated soil properties and examined bacterial community composition in plots before and one year after fertilization. Fertilized soils were then compared to samples from three reference successional transects representing advancing stages of soil development ranging from 5 years to 85 years since exposure. We found that a single application of +NP fertilizer caused the soil bacterial community structure of the three-year old soils to most resemble the 85-year old soils after one year. Despite differences in a variety of soil edaphic properties between fertilizer plots and late successional soils, bacterial community composition of +NP plots converged with late successional communities. Thus, our work suggests a mechanism for microbial succession whereby changes in resource availability drive shifts in community composition, supporting a role for nutrient colimitation in primary succession. These results suggest that nutrients alone, independent of other edaphic factors that change with succession, act as an important control over soil microbial community development, greatly accelerating the rate of succession.  相似文献   

16.

Aims

Human activities can dramatically alter natural plant communities which, after disturbance cessation, undergo secondary succession. In arid environments plant succession is quite slow, and its link to the carbon (C) cycle is not well known. We assessed changes in C balance on a semiarid plant community along a chronosequence spanning ca. 100 years after land abandonment in an arid environment in SE Spain to examine temporal changes in C following human disturbance.

Methods

We selected 5 individuals of the dominant plant species along five plant community stages differing in the time since land abandonment occurred, and we used a closed-chamber infrared gas analyzer method to estimate the contribution of whole plants and bare soil to community C exchange. We estimated CO2 fluxes for each plant community stage and calculated temporal differences along the chronosequence.

Results

Plant community composition and plant cover changed throughout the chronosequence. Carbon balance was related to changes in plant photosynthesis and plant and soil respiration along the chronosequence. Overall, community C exchange shifted from source to sink as plant colonization progressed. It took 65 years for the system to recover the equivalent C sink capacity of the undisturbed site.

Conclusions

Recovery of arid plant communities after land abandonment may enhance long-term C sequestration and significantly contribute to C balance at the global level.
  相似文献   

17.
草原群落退化与恢复演替中的植物个体行为分析   总被引:16,自引:1,他引:16       下载免费PDF全文
定度植物个体小型化是在草原过度放牧条件下草原植物植株地片变短、变窄,节间缩短,以及根条分布浅层化等笥状的集合。小型化个体的生态学属性介于环境饰变与生态型之间,特称之为响应型。个体小型化逆转变过程表现出集体行为,小型化个体具有维持其形状的保守性,变化的阶段性和突变性;小型化的逆过程即正常化过程号常规替时间有关。个体经是过度放牧下群落生产力衰退的重要表现,是对过度放牧的负反馈机制。在草原群落经演替机理  相似文献   

18.
Abstract. We present data from the first 11 years of a longterm study of the dynamics of an annual grassland on serpentine soil in Jasper Ridge Biological Preserve, Northern California. Annual rainfall amounts and distributions varied greatly over the period 1982-1993, as did the amount and distribution of gopher disturbance. Temporal variation in gopher disturbance showed no relationship with rainfall, but spatial variation in disturbance frequency was related to soil depth. The disturbance regime experienced by the grassland is complex, both spatially and temporally, and most of the area is disturbed at least once every 3-5 years. Plant species abundances showed a variety of responses to climate variation and disturbance. Abundances of individual species in any given year could not be linked directly to rainfall amount due to hysteresis effects and other interactions. The grassland composition changed markedly over the study. Exclusion of gophers suggested that changing abundances of several species were linked to gopher disturbance. In particular, perennial species' abundances increased greatly in the years following exclosure, but then subsequently declined. Data on plant densities on gopher mounds disturbed at different times of year and in different years indicate that the local species composition remains distinct for a number of years following disturbance. Disturbance history is hence a major factor controlling local community variation. Changing species importances, a complex disturbance regime and the importance of disturbance history make prediction and modelling of this system difficult. It is suggested that the same is probably true for many plant communities, and that long-term studies must be an essential part of ecological research programs. This study illustrates the practical problems inherent in maintaining long-term field experiments and in analyzing complex time series data which suffer from inadvertent deviations from the original experimental design.  相似文献   

19.
The effects of soil disturbance on the nematode community were assessed at 30 sites on the outer coastal plain of Mississippi, representing four ages since soil disturbance plus a control group of six undisturbed sites. Thirty-five taxa were encountered, dominated in abundance and taxonomic richness by plant and bacterial feeders. Nematodes were more abundant and more taxonomically rich in sites with a low slope and deep litter cover, distant from trees. Plant feeders were more numerous at sites with a dense herb cover, suggesting limitation by food availability. When sites were arranged as a chronosequence, herb cover, litter depth, soil organic matter, soil moisture, and tree canopy cover increased through time consistent with succession to forest. The abundance of most trophic groups decreased in the 10 to 20 years following disturbance and increased thereafter, a pattern repeated in taxonomic richness of plant and bacterial feeders. Fifty years after disturbance, nematode abundance had not returned to levels observed in control sites. These results suggest that nematode succession following soil disturbance is a gradual process regulated by establishment of aboveground vegetation. There was no evidence of dispersal limitation or facilitation by colonist nematode species.  相似文献   

20.
黄河三角洲潮沟形态特征对湿地植物群落演替的影响   总被引:1,自引:0,他引:1  
通过野外调查明确黄河三角洲潮上带、潮间带、潮下带内潮沟的形态特征及植物群落演替特征, 并在此基础上探讨潮沟对植物群落的影响。结果表明: 1)潮沟共包括4级, 沿海到内陆方向, 呈现出潮沟分叉增加、级别增多、曲率变大的发育趋势。潮上带和潮下带均出现较大的宽深比, 潮间带的潮沟密度和分汊率较大; 2)共统计到植物10科15属15种, 大部分为草本植物。植物演替的方向为碱蓬-柽柳-芦苇和香蒲, 物种生态位宽度最大值随着演替的进行, 由碱蓬变为柽柳再到芦苇和香蒲; 3)潮沟曲率、潮沟密度和潮沟宽度与群落演替方向呈正相关, 而潮沟分汊率和潮沟深度与群落演替方向呈负相关。植物群落演替对潮沟分汊率的变化的反应最敏感, 潮沟密度次之。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号