首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Female gametophytes of knobcone pine were used to study genetic variation at 58 loci in 26 enzyme systems. Mendelian segregation and linkage were tested at 21 loci. Got1, Pgi2, Mnr3, Adh2, and Lap2 were linearly arrayed in a single linkage group. Est and Acp3, and Flest and Lap1, formed two independent linkage groups. Although Mendelian segregation was the rule, several cases of segregation distortion were observed. Pooled over trees, Lap1 and Aap1 showed significant distortion. Of 11 cases of distortion observed for individual trees, 10 showed an excess of common alleles. Pooled over both loci and trees, giving a total sample of 17,183 gametes, the common alleles were significantly overrepresented by 1.1%, and heterogeneity was highly significant. Our results, and others in the literature, suggest that segregation distortion may affect the genetic structure of conifer populations.  相似文献   

2.
Summary Thirteen enzymes (MDH, SDH, LAP, PGM, PX, IDH, GPI, 6PGD, APH, GOT, GDH, ME and SOD) of 3 cultivated beet (B. vulgaris L.) gene pools, comprising 12 accessions of fodder beet, 11 of old multigerm sugar beet and 10 of modern monogerm sugar beet, were investigated using horizontal starch gel electrophoresis. Eleven accessions of primitive or wild B. vulgaris were also included for the comparison of isozymes. Variation in isozyme phenotypes was investigated to detect diversity in the three cultivated forms of beet. Phenotypic variation was observed in all except ME and SOD, which were monomorphic. A high degree of phenotypic polymorphism (Pj) was found in GDH, PGM, IDH, APH and MDH. Differences in phenotypic polymorphism in MDH, GPI and PX were recognized between fodder beet and both sugar beet groups. Average polymorphism for 13 enzymes in both sugar beets was significantly higher than that in fodder beet. For 13 enzymes, the existence of high isozyme diversity in both sugar beet gene pools was revealed. Allele frequencies in 13 alleles of five enzyme-coding loci, Lap, Px-1, Aph-1, Got-2 and Gdh-2, were investigated. New alleles, Px-1 1 and Got-2 1, were found in fodder beet accessions. No significant differences of average allele frequencies of five loci between fodder beet and both sugar beets were recognized. Several unique alleles and different isozyme phenotypes were observed in the accessions of B. vulgaris ssp. macrocarpa and ssp. adanensis. Future utilization of cultivated beet gene pools for sugar beet breeding is discussed from the viewpoint of genetic resources.  相似文献   

3.
Summary The genetics and linkage relationships of several isozymatic and morphological markers have been investigated in different cultivars of rye (Secale cereale L.). The inheritance and the variability among cultivars of three new isozymatic zones are described: GOT2 and LAP, each of them under the control of a two-allele single locus, namely Got2 and Lap, respectively; and 6PGD1 controlled by two loci, 6Pgd1a and 6Pgd1b, which have alleles in common. Four linkage groups have been found: Acp2-Acp3, Got3-Mdh2-Lper4, Mdh1-6Pgd2-Pgi2, and Pgm-Eper2-[Eper1-Eper3]. The assignment of these four groups to the chromosomes 7R, 3R, 1R, and 4R is discussed.  相似文献   

4.
Sugar beet (Beta vulgaris L.) is highly susceptible to the beet cyst nematode (Heterodera schachtii Schm.). Three resistance genes originating from the wild beets B. procumbens (Hs1 pro-1) and B. webbiana (Hs1 web-1, Hs2 web-7) have been transferred to sugar beet via species hybridization. We describe the genetic localization of the nematode resistance genes in four different sugar beet lines using segregating F2 populations and RFLP markers from our current sugar beet linkage map. The mapping studies yielded a surprising result. Although the four parental lines carrying the wild beet translocations were not related to each other, the four genes mapped to the same locus in sugar beet independent of the original translocation event. Close linkage (0–4.6 cM) was found with marker loci at one end of linkage group IV. In two populations, RFLP loci showed segregation distortion due to gametic selection. For the first time, the non-randomness of the translocation process promoting gene transfer from the wild beet to the sugar beet is demonstrated. The data suggest that the resistance genes were incorporated into the sugar beet chromosomes by non-allelic homologous recombination. The finding that the different resistance genes are allelic will have major implications on future attempts to breed sugar beet combining the different resistance genes.  相似文献   

5.
Eight microsatellite loci were characterized within two cultivated beet (Beta vulgaris ssp. vulgaris) accessions and one accession of the wild progenitor of domesticated sugar beet, Beta vulgaris ssp. maritima. Allele diversity was high, yielding two to 11 alleles per locus. Polymorphism information content (PIC) values obtained for these eight loci where also high and indicate the highly informative nature of the microsatellites presented here. These described markers add to a small set of publicly available microsatellite markers for beet and will be instrumental in identifying patterns of genetic diversity and origins of domestication.  相似文献   

6.
Summary Isozymes of peroxidase (PER) and superoxide dismutase (SOD) were analyzed in vegetative buds or very young leaves of seven species and two interspecific hybrids of Populus, in progenies of seven controlled crosses of three Populus species, and in needles of five Picea species and one putative hybrid. One to three PER, and one or two SOD zones of activity were observed. Electrophoretic mobility (EM) and banding phenotypes of isozymes of one PER locus were identical to those of one SOD locus in vegetative buds of five Populus species and hybrid. In leaves of the four Populus species and hybrid and progenies of controlled crosses, EM and phenotypes of isozymes of two PER loci were identical to those of two SOD loci. In Picea species, EM of isozymes of the only SOD locus was somewhat similar but not identical to that of one PER locus, and isozyme phenotypes of all individuals at the SOD locus were not identical to those at a PER locus. Chi-square tests verified the single-gene Mendelian control of the segregating allozyme variants at each of Per-L1 and Sod-1 in the three Populus species. The results of joint two-locus segregation tests indicated a very tight linkage and no recombination between Per-L1 and Sod-1 in three Populus species. Genes coding for isozymes of one or two PER loci are either presumably the same as, or very tightly linked to, the genes coding for isozymes of one or two SOD loci in the Populus species.  相似文献   

7.
In second-generation sparctics (Salvelinus fontinalis × Salvelinus alpinus) backcrossed toS. fontinalis, we have identified tight classical linkage of phenotypic sex withLdh-1, Aat-5, andGpi-3. We designate this locusSex-1 and suggest that it may be the primary sex-determining locus in salmonids. Cumulative salmonid gene-to-centromere map distances for the three biochemical loci put the order as centromere—Ldh-1—(Aat-5 andGpi-3), with the latter two loci being tightly linked. An absence of association of phenotypic sex (presumably Sex-1) with these same three loci and other loci known to be linked to these loci is shown in splakes (S. fontinalis × Salvelinus namaycush) and cutbows (Salmo gairdneri × Salmo clarki). These data imply that the linkage ofSex-1 with these loci is found only inS. alpinus and support the view thatSex-1 lies across the centromere from these three loci inS. alpinus, representing a Robertsonian fusion not found in any of the other four species. A similar specific Robertsonian fusion is argued forS. gairdneri, whereSex-1 may be linked across a centromere to another biochemical locus (Ha). These linkage results and chromosomal observations of other investigators suggest thatSex-1 lies on an information-depauperate arm.  相似文献   

8.
 Rye has one of the most efficient group of genes for aluminium (Al) tolerance among cultivated species of Triticeae. This tolerance is controlled by at least two independent and dominant loci (Alt1 and Alt3) located on chromosomes 6RS and 4R. We used two pooled DNA samples, one of Al-tolerant individuals and another of Al-sensitive plants from one F2 that segregated for the Alt1 locus. We also used two pooled DNA samples, one with genotypes 11 and another with genotypes 22 for the Lap1 locus (leucin aminopeptidase) from another F2 progeny that segregated for this locus, located on the 6RS chromosome arm. We identified several RAPD markers associated with the pooled Al-tolerant plants and also with one of the bulks for the Lap1 locus. The RAPD fragments linked to Alt1 and Lap1 genes were transformed into SCAR markers to confirm their chromosomal location and linkage data. Two SCARs (ScR01 600 and ScB15 7900 ) were closely linked to the Alt1 locus, ScR01 600 located 2.1 cM from Alt1 and ScB15 790 located 5.5 cM from Alt1, on the 6RS chromosome arm. These SCAR markers can aid in the transfer of Al tolerance genes into Al-sensitive germplasms. Received: 9 December 1997 / Accepted: 12 May 1998  相似文献   

9.
Schoenus ferrugineus andS. nigricans have restricted distributions in Sweden and are almost exclusively confined to calcareous fen habitats. AtS. nigricans sites,S. ferrugineus is usually also present, and hybrids are frequently found. In this report, I used allozymes to estimate the amount of gene flow between the two species, and to compare the partitioning of genetic diversity in each of them. Thirteen loci were analysed at eight different enzyme systems. Seven loci were variable between or within the species. The two species had completely different alleles at two of the seven variable loci, whereas there was overlap at five loci. In all, 22 different alleles were found. Six of these alleles were confined toS. nigricans, and five alleles were confined toS. ferrugineus. Nei's genetic identity was 0.55.—InS. ferrugineus, three loci (23%) were polymorphic, and the average number of alleles per polymorphic locus was 2.0 (each polymorphic locus had two alleles). InS. nigricans, three loci (23%) were polymorphic, and the average number of alleles per polymorphic locus was 2.3.—The proportion of genetic diversity due to variation among sites (G ST) was fairly similar in the two species, mean over loci = 0.12 inS. ferrugineus and 0.15 inS. nigricans. However, the proportion of genetic diversity due to variation among individuals within sites (G IS) differed markedly between the two species, mean over loci = 0.54 inS. ferrugineus and 0.17 inS. nigricans. Accordingly, there was a much higher individual heterozygosity inS. nigricans than inS. ferrugineus. — Most hybrids were interpreted as F1 hybrids. However, a small proportion, 0.5–1.6 %, were Fn hybrids or back-crosses.—On the Swedish mainland, all former occurrences ofS. nigricans are extinct, but viable hybrids are still present at a few sites in southernmost Sweden.  相似文献   

10.
A cluster of esterase loci has been identified on a segment of a rat linkage group V; however, the linear order of all the loci has not been established. We estimated the recombination frequencies of two locus combinations among five esterase loci (Es-1, Es-2, Es-3, Es-4, and Es-Si) and the linear order of the loci by using three sets of backcross matings: (1) (K:W × IS) × IS, (2) (K:W × IS) × IS, and (3) (SHR × W) × W). The linear order was determined to be Es-1-Es-4-Es-2-Es-3-Es-Si, although the order of Es-2 and Es-4 remains tentative. The sexinfluenced esterase (Es-Si) was demonstrated to be distinct from Es-1 and was proposed to be Es-Si locus with two alleles of Es-Si a (positive) and Es-Si b (null).This work was partly supported by Grants-in-Aid for Scientific Research, No. 339020 (1978), from the Ministry of Education, Science and Culture, Japan.  相似文献   

11.
An extended map of the sugar beet genome containing RFLP and RAPD loci   总被引:6,自引:0,他引:6  
An updated map of sugar beet (Beta vulgaris L. ssp. vulgaris var altissima Doell) is presented. In this genetic map we have combined 248 RFLP and 50 RAPD loci. Including the loci for rhizomania resistance Rr1, hypocotyl colour R and the locus controlling the monogerm character M, 301 loci have now been mapped to the nine linkage groups covering 815 cM. In addition, the karyotype of some of the Beta vulgaris chromosomes has been correlated with existing RFLP and RAPD linkage maps.  相似文献   

12.
Genetic control of aluminium tolerance in rye (Secale cereale L.)   总被引:4,自引:0,他引:4  
 Aluminium (Al) tolerance in roots of two cultivars (“Ailés” and “JNK”) and two inbred lines (“Riodeva” and “Pool”) of rye was studied using intact roots immersed in a nutrient solution at a controlled pH and temperature. Both the cultivars and the inbred lines analysed showed high Al tolerance, this character being under multigenic control. The inbred line “Riodeva” was sensitive (non-telerant) at a concentration of 150 μM, whereas the “Ailes” cultivar showed the highest level of Al tolerance at this concentration. The segregation of aluminium-tolerance genes and several isozyme loci in different F1s, F2s and backcrosses between plants of “Ailés” and “Riodeva” were also studied. The segregation ratios obtained for aluminium tolerance in the F2s analysed were 3 : 1 and 15 : 1 (tolerant : non-tolerant) while in backcrosses they were 1 : 1 and 3 : 1. These results indicated that Al tolerance is controlled by, at least, two major dominant and independent loci in rye (Alt1 and Alt3). Linkage analyses carried out between Al-tolerance genes and several isozyme loci revealed that the Alt1 locus was linked to the aconitase-1 (Aco1), nicotinamide adenine dinucleotide dehydrogenase-2 (Ndh2), esterase-6 (Est6) and esterase-8 (Est8) loci, located on chromosome arm 6RL. The order obtained was Alt1-Aco1-Ndh2-Est6-Est8. The Alt3 locus was not linked to the Lap1, Aco1 and Ndh2 loci, located on chromosome arms, 6RS, 6RL and 6RL respectively. Therefore, the Alt3 locus is probably on a different chromosome. Received: 18 March 1997 / Accepted: 21 March 1997  相似文献   

13.
Black sea bass (Centropristis striata) is an economically important serranid species. A number of 39 microsatellite loci were isolated from two enriched genomic library of C. striata. Eleven of these loci were polymorphic in a test population with alleles per locus ranging from 3 to 8, and observed and expected heterozygosities per locus from 0.26 to 1.00 and from 0.61 to 0.84, respectively. Four loci significantly deviated from Hardy–Weinberg equilibrium after Bonferroni correction and no significant linkage disequilibrium was found between pairs of loci. Cross-species amplification of these polymorphic microsatellite loci was performed in additional two related species. These polymorphic microsatellite loci would be useful for investigating genetic resource of C. striata and other related species.  相似文献   

14.
Summary Twelve U.S. Corn Belt open-pollinated and five adapted exotic populations of maize (Zea mays L.) were assayed for allozyme (allele) variation at 13 enzyme marker loci. Extensive allozyme variability was observed in all populations studied. No locus was monomorphic over all populations. Each of the lociIdh2, Got1, Mdh2, Pgd1, andPgd2 expressed two allozymes over all populations,Adh1, Acp1, Prx1, andEst1 each had three allozymes present,Est4, Glu1, andEnp1 had five allozymes, andAcp4 had six allozymes present. Significant deviations of genotypic frequencies were detected from Hardy-Weinberg equilibrium frequencies and 94% of average Fixation Index values indicated heterozygote deficiencies, which suggested that nonrandom mating and/or natural selection favoring homozygotes were possible factors affecting the maintenance or loss of genetic variability marked by these enzyme loci. Genetic distance and cluster analyses indicated that the observed genetic variability at the 13 enzyme loci was closely related to Dent and Flint types of maize.  相似文献   

15.
Using the near-isogenic lines, the possible location of glucose phosphate isomeras-2 (phosphoglucose isomerase-2) locus (Pgi-2) in relation to photoperiod sensitivity locus (Se-1) and blast resistance locus (Pi-z) was investigated. The recombination frequency data indicate thatPgi-2 locus locates betweenSe-1 andPi-z loci. Furthermore, 15 Indica cultivars possessed two types of glucose phosphate isomerase-2 (GPI-2) isozyme, whereas only one type of GPI-2 isozyme was found in 30 Japonica cultivars.  相似文献   

16.
An RFLP linkage map for the nine chromosomes of sugar beet (Beta vulgaris L. ssp. vulgaris var. altissima Doell) was constructed by using a segregating population from a cross between two plants which were heterozygous for several agronomically interesting characters. One hundred and eleven RFLP loci have been mapped to nine linkage groups using 92 genomic markers. The current RFLP map covers a total length of 540 cM. Evidence for the existence of a major gene for rhizomania resistance (Rr1) is given, together with its map position on linkage group IV in the interval between loci GS44 and GS28a. The presence of an RFLP fragment at the GS3d locus is, until now, the best molecular marker for rhizomania-resistant genotypes in segregating populations of sugar beet; GS3d is linked to Rr1 with 6.7 cM. The gene MM, controlling the polygerm/monogerm seed type, has been mapped on linkage group IX in a distal position at 4.2 cM from the locus GS7. The gene R controlling the hypocotyl colour maps to linkage group VII and does not recombine with the RFLP locus GS42. The inheritance of a group of RFLP loci revealed the possible presence of a translocation in the population used to establish the map. The data presented are discussed in relation to the possibility of using RFLP markers in sugar beet breeding.  相似文献   

17.
A backcross population, derived from the cross (S. tuberosumxS. spegazzinii)xS. tuberosum was used to map QTLs involved in nematode resistance, tuber yield and root development. Complete linkage maps were available for the interspecific hybrid parent as well as the S. tuberosum parent, and interval mapping for all traits was performed for both. Additionally, the intra- and inter-locus interactions of the QTLs were examined. The Gro1.2 locus, involved in resistance to G. rostochiensis pathotype Ro1, that was previously mapped in the S. tuberosumxS. spegazzinii F1 population, was located more precisely on chromosome 10. A new resistance locus, Gro1.4, also conferring resistance to G. rostochiensis pathotype Ro1, was found on chromosome 3. Different alleles of this locus originating from both parents contributed to the resistant phenotype, indicating multiallelism at this locus. No interlocus interactions were observed between these two resistance loci. For resistance to G. pallida no QTLs were detected. One minor QTL involved in tuber yield was located on chromosome 4. Two QTLs involved in root development and having large effects were mapped on chromosomes 2 and 6 and an epistatic interaction was found between these two loci.  相似文献   

18.
Summary Seed protein extracts from 90 accessions of Gossypium arboreum and 70 accessions of Gossypium herbaceum were electrophoretically analyzed for isozyme variation. Eighteen enzyme systems were resolved, ten of which were polymorphic among accessions. No within accession isozyme variation was observed within these highly inbred lines. A minimum of 24 genes encode the isozymes resolved and data is presented for codominant inheritance at 13 loci. Tests for non-random joint segregation in 63 of the 78 possible two-locus combinations from the 13 characterized loci give evidence for four pairs of linked genes (Lap2/Me1 [r=0.160+/-0.027], Lap2/Pgi1 [r= 0.285+/-0.055], Mdh6/Tpi1 [r= 0.197+/-0.028], and 6Pgd2/6Pgd3[r 0.000]. Numerous presumptive duplicate isozyme loci were observed and these were usually expressed as patterns of nonsegregating heteromultimers within accessions. Single gene expression was also observed at several loci. The observed results are in agreement with those of previous cytological investigations which have proposed the polyploid origin of the diploid Old World Gossypiums.  相似文献   

19.
An analysis of the effects of inbreeding on the genetic structure of a colonizing population of Drosophila subobscura has been carried out. Species of Drosophila, particularly D. subobscura, may have lethal alleles associated with chromosomal inversions and our aim was to assess the extent to which the genome is balanced in this way. The frequencies of chromosomal inversions were compared between a large population and a set of 72 lines that were maintained by brother-sister mating for 10 generations. Fisher's matrix method was used to calculate the expected homozygosity in these inbred lines for 5 allozyme loci (Aph, Hk-1, Lap, Odh, and Pept-1) used as markers of large chromosomal segments. Furthermore, the expected rates of fixation corresponding to these allozyme loci were also calculated. The results show that the amount of homozygosis observed did not differ significantly from expectations (with the corresponding loss of lines as a consequence of the reduction in viability). However, two deviations from strict neutrality were observed: there was a heterozygote excess at the Lap locus, and the frequency of the O 5 inversion (always associated with a lethal gene in colonizing populations) was higher than expected.  相似文献   

20.
Starry flounder (Platichthys stellatus) is a rare fish species in China. Here, we reported 12 polymorphic microsatellite loci isolated from a dinucleotide-enriched genomic library of starry flounder (P. stellatus). The number of alleles, observed and expected heterozygosity per locus in 30 individuals ranged from two to six, from 0.2500 to 1.0000 and from 0.4512 to 0.7667, respectively. One locus significantly deviated from Hardy–Weinberg equilibrium after Bonferroni correction and no significant linkage disequilibrium between pairs of loci was found. Cross-species amplification of these microsatellite loci in additional three fish species was performed. These polymorphic microsatellite loci would be useful for investigating genetic population structure and construction of genetic linkage map in P. stellatus. Guidong Miao and Changwei Shao have contributed equally.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号