首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previously, we reported a plasmid-bearing Salmonella typhimurium strain capable of secreting human interleukin-6 (hIL-6) when genetically fused to the Escherichia coli hemolysin transport signal (HlyA(S)). Stationary phase culture supernatants of this strain revealed three major forms of hIL-6-HlyA(S) fusion protein (apparent molecular masses 32.4, 30.3, 27.0 kDa), at which the largest protein presumably represented full-length hIL-6-HlyA(S). The biological activity of the hIL-6-HlyA(S) protein mixture was similar to that of mature hIL-6. Accumulation of hIL-6-HlyA(S) in the culture supernatant occurred only during the initial growth phase, whereas in stationary phase and under in vitro conditions successive cleavage into the two truncated forms was observed. On the other hand, in whole cell lysates only full-length hIL-6-HlyA(S) could be detected, accounting for more than 50% of the totally synthesized protein. Upon cell fractionation, cellular hIL-6-HlyA(S) was exclusively found in the membrane fraction. These results suggest, that in S. typhimurium production and secretion of hIL-6-HlyA(S) is restricted to growing cells. A specific processing by a Salmonella-derived protease did not affect the biological activity of the fusion protein.  相似文献   

2.
Two mutational approaches were used to perform a thorough structure-function analysis of the first 53 residues of the 159-residue cytokine human interleukin-1 alpha (hIL-1 alpha). In this study, a total of 26 deletions, 97 multiple amino acid substitutions, and 46 single amino acid substitutions were examined. A synthetic hIL-1 alpha gene with many unique restriction sites was constructed to facilitate the molecular manipulations that were performed. The mutational methods employed include: Bal-31 exonuclease-generated deletions at unique restriction sites and combinatorial cassette mutagenesis via segment replacement with synthetic DNA. The mutant hIL-1 alpha proteins were expressed at high levels in Escherichia coli and were assayed for biological activity in a mouse T cell proliferation assay. We observed that the activity of hIL-1 alpha was extraordinarily sensitive to deletion mutations. Most internal deletions of as few as 1 or 2 residues substantially reduced biological activity. Combinatorial cassette mutagenesis on residues 13-53 of hIL-1 alpha identified 15 important residue positions. Of these, 8 displayed strong preferences for residues with hydrophilic side chains, and the remainder preferred hydrophobic side chains. We found that functional hIL-1 alpha had an absolute requirement for a basic residue (Arg, Lys, or His) at either position 15 or 16, and that Leu was preferred at position 40.  相似文献   

3.
Interleukin-6 (IL-6) triggers the formation of a high affinity receptor complex with the ligand binding subunit IL-6Ralpha and the signal transducing chain gp130. Since the intracytoplasmic region of the IL-6Ralpha does not contribute to signaling, soluble forms of the extracytoplasmic domain (sIL-6Ralpha), potentiate IL-6 bioactivity and induce a cytokine-responsive status in cells expressing gp130 only. This observation, together with the detection of high levels of circulating soluble human IL-6Ralpha (shIL-6Ralpha) in sera, suggests that the hIL-6-shIL-6Ralpha complex is an alternative form of the cytokine. Here we describe the generation of human IL-6 (hIL-6) variants with strongly enhanced shIL-6Ralpha binding activity and bioactivity. Homology modeling and site-directed mutagenesis of hIL-6 suggested that the binding interface for hIL-6Ralpha is constituted by the C-terminal portion of the D-helix and residues contained in the AB loop. Four libraries of hIL-6 mutants were generated by each time fully randomizing four different amino acids in the predicted AB loop. These libraries were displayed monovalently on filamentous phage surface and sorted separately for binding to immobilized shIL-6Ralpha. Mutants were selected which, when expressed as soluble proteins, showed a 10- to 40-fold improvement in shIL-6Ralpha binding; a further increase (up to 70-fold) was achieved by combining variants isolated from different libraries. Interestingly, high affinity hIL-6 variants show strongly enhanced bioactivity on cells expressing gp13O in the presence of shIL-6Ralpha at concentrations similar to those normally found in human sera.  相似文献   

4.
The sequences Thr-Gly-Glu-Ser184 and Asp-Gln-Ser178 and individual residues Asp149, Asp157, and Asp162 in the sarcoplasmic reticulum Ca2(+)-ATPase are highly conserved throughout the family of cation-transporting ATPases. Mutant Thr181----Ala, Gly182----Ala, Glu183----Ala, and Glu183----Gln, created by in vitro mutagenesis, were devoid of Ca2+ transport activity. None of these mutations, however, affected phosphorylation of the enzyme by ATP in the presence of Ca2+ or by inorganic phosphate in the absence of Ca2+, indicating that the high affinity Ca2(+)-binding sites and the nucleotide-binding sites were intact. In each of these mutants, the ADP-sensitive phosphoenzyme intermediate (E1P) decayed to the ADP-insensitive form (E2P) very slowly relative to the wild-type enzyme, whereas E2P decayed at a rate similar to that of the wild-type enzyme. Thus, the inability of the mutants to transport Ca2+ was accounted for by an apparent block of the transport reaction at the E1P to E2P conformational transition. These results suggest that Thr181, Gly182, and Glu183 play essential roles in the conformational change between E1P and E2P. Mutation of Ser184, Asp157, or Ser178 had little or no effect on either Ca2+ transport activity or expression. Mutations of Asp149, Asp162, and Gln177, however, were poorly expressed. Where expression could be measured, in mutations to Asp162 and Gln177, Ca2+ transport activity was essentially equivalent to that of the wild-type enzyme.  相似文献   

5.
Using the expression system for site-specific mutagenesis in Escherichia coli, we have made deletion mutants at the N-terminal or C-terminal region of human interleukin-1 beta (IL-1 beta) consisting of 153 amino acids. The truncated mutants showed that at least 147 amino acids (numbers 4-150) in IL-1 beta are necessary for the exertion of biological activity. When we changed the arginine at the 4th position (Arg4) in IL-1 beta to other specific amino acids, there was a marked difference in the relative extent of biological and receptor binding activities among the mutants. The order of the mutants was Arg4 = Lys4 greater than Gln4 greater than Gly4 = des-Arg4 greater than Asp4. Our results demonstrate that the arginine residue at the 4th position in IL-1 beta is important, but not essential, for IL-1 beta to exhibit its biological and receptor binding activities, and the positive charge at this site plays a key role for IL-1 beta to exert the activities.  相似文献   

6.
The three-dimensional structure of human interleukin-8 (hIL-8) was determined by the use of NMR and X-ray methodology. At high concentrations interleukin-8 and many other chemokines form a non-covalent homodimer. Several studies have been performed to investigate the relevance of the dimer on receptor activation and led to contradictory results. In order to obtain a better understanding of the dimerisation process, covalently linked homo- and heterodimers were produced by photo-induced dimerisation of hIL-8 analogues that contain the photo-activatable amino acid p-benzoyl-phenylalanine (Bpa) at different positions. Whereas the N-terminal fragment (1–54) was expressed as recombinant thioester, the C-terminal fragments (55–77) that contain Bpa either at position 65 or 74 were obtained by solid-phase peptide synthesis. The segments were combined by expressed protein ligation and led to full length IL-8 variants containing the non-proteinogenic amino acid Bpa at single positions. IP3 activity tests showed high biological activity for the CXCR1–GFP receptor for both variants comparable to that of the native ligand. The refolded and purified ligation-products were used for dimer formation by UV-irradiation. The analysis of the reaction mixture was performed by gel-electrophoresis and mass spectrometry and showed that dimer formation of IL-8 occurred in a position dependent manner. [Bpa74]hIL-8 has a high tendency to form covalent dimers whereas no dimer formation was observed for the variant with Bpa at position 65. Accordingly one residue of the dimerisation interface could be identified. Dedicated to Prof. K Arnold on the occasion of his 65th birthday.  相似文献   

7.
To investigate the functional domains of the coat protein (CP; 189 amino acids) of Brome mosaic virus, a plant RNA virus, 19 alanine-scanning mutants were constructed and tested for their infectivity in barley and Nicotiana benthamiana. Despite its apparent normal replicative competence and CP production, the C-terminal mutant F184A produced no virions. Furthermore, virion-forming C-terminal mutants P178A and D182A failed to move from cell to cell in both plant species, and mutants D181A and V187A showed host-specific movement. These results indicate that the C-terminal region of CP plays some important roles in virus movement and encapsidation. The specificity of certain mutations for viral movement in two different plant species is evidence for the involvement of host-specific factors.  相似文献   

8.
To identify the sites important for the different biological activities of human interleukin-1 alpha (hIL-1 alpha), 56 single-amino acid-substituted mutants of hIL-1 alpha were produced in Escherichia coli using site-directed mutagenesis, and were examined for their biological activities such as mouse lymphocyte activating factor activity (LAF activity), cytostatic activity against human melanoma cells A-375 (A375 activity) and prostaglandin E2 (PGE2) inducing activity in human osteosarcoma cells MG-63 (PEI activity). Two amino acid residues, Asp26 and Asp151, were found to be important for these activities. The replacement of Asp26 by Val caused a decrease in LAF and PEI activities by one or two orders of magnitude and a slight decrease in A375 activity. The Tyr or Phe substitution for Asp151 caused decreases in LAF and A375 activities by one or two orders of magnitude and complete loss of PEI activity. The change from Asp151 to Lys or Arg resulted in marked decrease in LAF activity and complete loss of A375 and PEI activities. Since Asp26 and Asp151 are close to each other in the three-dimensional structure, the region involving these amino acids seems to be important for the biological activities of hIL-1 alpha.  相似文献   

9.
通过对大量的分子生物学实验及晶体衍射结果的分析 ,从分子水平揭示人白细胞介素 6(hIL 6 )与其受体相互作用的结构模式及结合表位 .hIL 6属于促红细胞生成素受体超家族 ,首先和hIL 6受体α低亲和力结合 ,两者形成的复合物再与hIL 6受体 β(gp130 )的胞外区相互作用形成高亲和力三聚体 ,但是hIL 6不能单独和gp130结合 ,需要借助于hIL 6受体α的桥梁作用才能将二者联系起来进而促进六聚体的形成 .hIL 6是一种能够介导细胞表面信号转导 ,调节机体免疫及造血干细胞增殖和分化的细胞因子 ,许多疾病的发病机理及发展进程都和hIL 6过表达有关 .基于对hIL 6与其受体相互作用方式的探究 ,为hIL 6小分子拮抗剂的药物设计提供了理论模型 ,在此基础上已研究开发了许多不同种类的hIL 6新型分子拮抗剂 ,其中部分拮抗剂已应用于临床指导 .  相似文献   

10.
Internal deletions in human interleukin-6: structure-function analysis   总被引:1,自引:0,他引:1  
By cDNA mutagenesis, we have constructed internal and C-terminal deletions (delta 21-51, delta 52-97, delta 97-104, delta 127-174, delta 97-184 and delta 134-184) in human interleukin-6 (hIL-6). All those deletion-carrying hIL-6 (delta hIL-6) proteins were then produced in Xenopus laevis oocytes and examined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The results show that, at least in frog oocytes, the first potential N-glycosylation site (Asn45) is utilized exclusively. The IL-6 conformation of these deletion-carrying proteins has been studied by immunoprecipitation with two kinds of monoclonal antibodies (mAb's): mAb's that show preference towards denatured hIL-6, or conformation-specific mAb's. The binding pattern of these two series of mAb's indicated that the IL-6 conformation has been largely destroyed for four of our delta-proteins. Proteins delta 21-51 and delta 127-174 have kept a part of the IL-6 tertiary structure since they are still recognized by some conformation-specific mAb's. All of these delta hIL-6 proteins were inactive in the IL-6 hybridoma growth factor (HGF) assay and unable to inhibit the HGF activity of the recombinant human wild-type IL-6 (wt hIL-6). Moreover, the oocyte-synthesized delta hIL-6 (delta 21-51, delta 127-174, delta 97-184, delta 134-184) did not bind to the IL-6 receptor. Finally, we have produced two proteins with aa 29-33 or 97-104 substituted by corresponding murine IL-6 (mIL-6) sequences.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Pharaonis phoborhodopsin (ppR), also called pharaonis sensory rhodopsin II, NpSRII, is a photoreceptor of negative phototaxis in Natronomonas (Natronobacterium) pharaonis. The photocycle rate of ppR is slow compared to that of bacteriorhodopsin, despite the similarity in their x-ray structures. The decreased rate of the photocycle of ppR is a result of the longer lifetime of later photo-intermediates such as M- (ppR(M)) and O-intermediates (ppR(O)). In this study, mutants were prepared in which mutated residues were located on the extracellular surface (P182, P183, and V194) and near the Schiff base (T204) including single, triple (P182S/P183E/V194T), and quadruple mutants. The decay of ppR(O) of the triple mutant was accelerated approximately 20-times from 690 ms for the wild-type to 36 ms. Additional mutation resulting in a triple mutant at the 204th position such as T204C or T204S further decreased the decay half-time to 6.6 or 8 ms, almost equal to that of bacteriorhodopsin. The decay half-times of the ppR(O) of mutants (11 species) and those of the wild-type were well-correlated with the pK(a) value of Asp-75 in the dark for the respective mutants as spectroscopically estimated, although there are some exceptions. The implications of these observations are discussed in detail.  相似文献   

12.
Interleukin-6 (IL-6) drives the sequential assembly of a receptor complex formed by the IL-6 receptor (IL-6R alpha) and the signal transducing subunit, gp130. A model of human IL-6 (hIL-6) was constructed by homology using the structure of bovine granulocyte colony stimulating factor. The modeled cytokine was predicted to interact sequentially with the cytokine binding domains of IL-6R alpha and gp130 bridging them in a way similar to that of the interaction between growth hormone and its homodimeric receptor. Several residues on helices A and C which were predicted as contact points between IL-6 and gp130 and therefore essential for IL-6 signal transduction, were subjected to site-directed mutagenesis individually or in combined form. Interestingly, while single amino acid changes never produced major alterations in IL-6 bioactivity, a subset of double mutants of Y31 and G35 showed a considerable reduction of biological activity and were selectively impaired from associating with gp130 in binding assays in vitro, while they maintained wild-type affinity towards hIL-6-R alpha. More importantly, we demonstrated the antagonistic effect of mutant Y31D/G35F versus wild-type IL-6.  相似文献   

13.
Interleukin-18 (IL-18) is a critical proinflammatory cytokine whose extracellular bioactivity is regulated by a cellular IL-18 binding protein (IL-18BP). Many poxviruses have acquired variants of this IL-18BP gene, some of which have been shown to act as viral virulence factors. Yaba monkey tumor virus (YMTV) encodes a related family member, 14L, which is similar to the orthopoxvirus IL-18BPs. YMTV 14L was expressed from a baculovirus system and tested for its ability to bind and inhibit IL-18. We found that YMTV 14L bound both human IL-18 (hIL-18) and murine IL-18 with high affinity, at 4.1 nM and 6.5 nM, respectively. YMTV 14L was able to fully sequester hIL-18 but could only partially inhibit the biological activity of hIL-18 as measured by gamma interferon secretion from KG-1 cells. Additionally, 17 hIL-18 point mutants were tested by surface plasmon resonance for their ability to bind to YMTV 14L. Two clusters of hIL-18 surface residues were found to be important for the hIL-18-YMTV 14L interaction, in contrast to results for the Variola virus IL-18BP, which has been shown to primarily interact with a single cluster of three amino acids. The altered binding specificity of YMTV 14L most likely represents an adaptation resulting in increased fitness of the virus and affirms the plasticity of poxviral inhibitor domains that target cytokines like IL-18.  相似文献   

14.
Human interleukin-3 (hIL-3) is a regulator of proliferation and differentiation of multipotent hemopoietic progenitor cells. Mutants of hIL-3 have been constructed by oligonucleotide-directed mutagenesis and expressed in Escherichia coli and Bacillus licheniformis. Purified muteins were assayed for induction of DNA synthesis in IL-3-dependent human cells and for binding to the IL-3 receptor. Residues at the NH2 and COOH termini together comprising one-quarter of the molecule could be removed without loss of biological function. Deletions of 6-15 residues within the central part of the molecule caused a large reduction (up to 5 logs) but no complete loss of activity. Substitution of evolutionary conserved residues resulted in a strong decrease of biological activity and demonstrated that the S-S bridge is an essential structural element in hIL-3. Interestingly, four muteins displayed a significantly higher potency of binding to the IL-3 receptor than in stimulating DNA synthesis. These results demonstrate that receptor binding may be (partly) disconnected from activation of DNA synthesis. Analysis of hIL-3 muteins demonstrated that the majority of monoclonal antibodies are directed against a small portion of the IL-3 molecule. The neutralizing potential of individual monoclonal antibodies could be increased by a combination of antibodies directed against nonoverlapping epitopes.  相似文献   

15.
本文对重组人白细胞介素4高效表达克隆pBV220/hIL-4a的表达产物进行了纯化,升对纯化的人IL-4进行了N端氨基酸序列分析。人IL-4基因表达产物在大肠杆菌中以不溶性包涵体形式存在,经过超声破菌、包涵体抽提、复性浓缩、离子交換和凝胶过滤层析一系列纯化步骤,终产物纯度达98%以上,按蛋白总量计算回收率为14%,比活性达2×10~6单位/mg蛋白。通过测定纯化人IL-4的N端16个氮基酸序列,与由其DNA序列推导的氨基酸序列完全一致。本文为重组人IL-4的批量生产奠定了基础。  相似文献   

16.
Interleukin-11 (IL-11) has been expected as a drug on severe thrombocytopenia caused by myelo-suppressive chemotherapy. Whereas, development of IL-11 inhibitor is also expected for a treatment against IL-11 related cancer progression. Here, we will demonstrate the creation of various kinds of genetically modified hIL-11s. Modified vectors were constructed by introducing N- or O-glycosylation site on the region of hIL-11 that does not belong to the core α-helical motif based on the predicted secondary structure. N-terminal (N: between 22 to 23 aa), the first loop (M1:70 to 71 aa), the second loop (M2:114–115 aa), the third loop (M3:160–161 aa) and C-terminal (C: 200- aa) were selected for modification. A large scale production system was established and the characteristics of modified hIL-11s were evaluated. The structure was analyzed by amino acid sequence and composition analysis and CD-spectra. Glycan was assessed by monosaccharide composition analysis. Growth promoting activity and biological stability were analyzed by proliferation of T1165 cells. N-terminal modified proteins were well glycosylated and produced. Growth activity of 3NN with NASNASNAS sequence on N-terminal was about tenfold higher than wild type (WT). Structural and biological stabilities of 3NN were also better than WT and residence time in mouse blood was longer than WT. M1 variants lacked growth activity though they are well glycosylated and secondary structure is very stable. Both of 3NN and OM1 with AAATPAPG on M1 associated with hIL-11R strongly. These results indicate N-terminal and M1 variants will be expected for practical use as potent agonists or antagonists of hIL-11.  相似文献   

17.
18.
To study the mode of action of the binary toxin (51- and 42-kDa) of Bacillus sphaericus, amino acid residues were substituted at selected sites of the N- and C-terminal regions of both peptides. Bioassay results of the mutant binary toxins tested against mosquito larvae, Culex quinquefasciatus, revealed that most of the substitutions made on both peptides led to either decrease or total loss of the activity. Furthermore, receptor binding studies carried out for some of the mutants of the 42-kDa peptide showed mutations in N- and C-terminal regions of the 42-kDa peptide did not affect the binding of the binary toxin to brush border membrane vesicles of mosquito larvae. One of the mutants having a single amino acid substitution at the C-terminal region ((312)R) of the 42-kDa peptide completely abolished the biological activity, implicating the role of this residue in membrane pore formation. These results indicate the importance of the C-terminal region of the 42-kDa of binary toxin, in general, and particularly the residue (312)R for biological activity against mosquito larvae.  相似文献   

19.
In this study the three-dimensional (3-D) model of the ligand-binding domain (V106-P322) of human interleukin-6 receptor (hIL-6 R) was constructed by computer-guided homology modeling technique using the crystal structure of the ligand-binding domain (K52-L251) of human growth hormone receptor (hGHR) as templet. Furthermore, the active binding region of the 3-D model of hIL-6R with the ligand (hIL-6) was predicted. In light of the structural characteristics of the active region, a hydrophobic pocket shielded by two hydrophilic residues (E115 and E505) of the region was identified by a combination of molecular modelling and the site-directed or double-site mutation of the twelve crucial residues in the ligand-binding domain of hIL-6R (V106-P322). We observed and analyzed the effects of these mutants on the spatial conformation of the pocket-like region of hIL-6 R. The results indicated that any site-directed mutation of the five Cys residues (four conservative Cys residues: Cys121, Cys132, Cys165, Cys176; near membrane Cys residue: Cys193) or each double-site mutation of the five residues in WSEWS motif of hIL-6R (V106-P322) makes the corresponding spatial conformation of the pocket region block the linkage between hIL-6 R and hIL-6. However, the influence of the site-directed mutation of Cys211 and Cys277 individually on the conformation of the pocket region benefits the interaction between hIL-6R and hIL-6. Our study suggests that the predicted hydrophobic pocket in the 3-D model of hIL-6R (V106-P322) is the critical molecular basis for the binding of hIL-6R with its ligand, and the active pocket may be used as a target for designing small hIL-6R-inhibiting molecules in our further study.  相似文献   

20.
Site-directed mutagenesis of two sets of three periodic leucine residues which appear at every seventh position in the C-terminal region of human interleukin-6 (IL-6) was performed. Both receptor-binding and immunoglobulin (Ig)-induction activities of a triple mutant Leu168,175,182-->Val were only 1% compared with those of wild-type IL-6. However, the mutant Leu152,159,166-->Val had 13% receptor-binding and 2% Ig-induction activities of those of wild-type IL-6. In order to obtain more direct information on the receptor-binding region, we prepared two synthetic peptides. A significant binding activity was observed for the peptide Leu168-Met185, but not for the peptide Leu152-Arg169. These results indicate that leucine residues in the C-terminal region, especially Leu168, Leu175, and Leu182, play an important role in the receptor-binding and Ig-induction activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号