首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
3.
Since their initial discovery in 1997, Homer/Vesl proteins have become increasingly investigated as putative regulators of receptor and ion-channel function in the central nervous system. Within a relatively brief period, numerous research reports have described manifold effects of Homer proteins, including the modulation of the trafficking of type I metabotropic glutamate receptors (mGluRs), axonal pathfinding, mGluR coupling to calcium and potassium channels, agonist-independent mGluR activity, ryanodine receptor regulation, locomotor activity, and behavioral plasticity. This review summarizes our current knowledge on the induction, expression, and structure of the various forms of Homer proteins, as well as their roles in neuronal function. In addition, we provide an outlook on novel developments with regard to the involvement of Homer-1a in hippocampal synaptic function.  相似文献   

4.
Recent evidence showing a distinctive cell loss in vestibular and cochlear ganglia of brain-derived neurotrophic factor (BDNF) versus neurotrophin-3 (NT-3) null mutant mice demonstrates that these neurotrophins play a critical role in inner ear development. In this study, biological functions of BDNF and NT-3 in the chick vestibular and cochlear ganglion development was assessed in vitro and compared to those of other neurotrophic factors. The embryonic day (E)8-12 vestibular ganglion neurons showed an extensive outgrowth in response to BDNF with less outgrowth to NT-3. In contrast, NT-3 had stronger neurotrophic effects on the E12 cochlear ganglion neurons compared to BDNF. These results support previous evidence that neurotrophins play important roles in the vestibular and cochlear ganglion neuron development. However, the responsiveness to the neurotrophins declined and became undetectable by E16. Unexpectedly, glial cell line-derived neurotrophic factor (GDNF) promoted neurite outgrowth from vestibular ganglia at E12-16, later than the stages at which BDNF had neurotrophic effects. The time of switching sensitivity of the vestibular ganglion neurons from BDNF to GDNF correlated with the time of completion of synaptogenesis on their peripheral and central targets. Furthermore, a factor released from E12 inner ears exerted neurotrophic effects on late-stage vestibular ganglion neurons that were not responsive to the E4 otocyst-derived factor. These results raise the possibility that the vestibular ganglion neurons become responsive to GDNF upon target innervation and that the changes in sensitivity are regulated by changes in available factors released from their peripheral targets, the inner ear epithelia.  相似文献   

5.
Neurotrophins are usually viewed as secreted proteins that control long-term survival and differentiation of neurons. However, recent studies have established that among the most important functions of neurotrophins is their capacity to regulate synaptic functions and plasticity. When altering synaptic function, neurotrophins are able to produce two types of outcomes, an immediate effect on synaptic transmission and long-term control of synaptic structure and function. The first effect occurs within seconds or minutes after the neurotrophic factor has been applied and usually involves acute modification of synaptic transmission. The second effect takes hours and days, as protein synthesis is required to complete the structural changes. Neurotrophins and their receptors are expressed within the neuromuscular system, making these agents ideal candidates for the short-and long-term regulation of skeletal muscle function. For instance, neurotrophins can alter neuromuscular function acutely, by modulating the amount of neurotransmitter released with each nerve impulse, or chronically, by changing postsynaptic properties or the content and size of synaptic vesicles. It is obvious that the effects of neurotrophins depend on the specific neurotrophin involved (four neurotrophins have been found in mammals; these are nerve growth factor, brain-derived neurotrophic factor, and neurotrophins-3 and-4) and on the specific synapse being studied. Growing evidence highlights the role of neurotrophins in the development and function of neuromuscular synapses. This review will examine the role of neurotrophins in the regulation of neuromuscular transmission. Neirofiziologiya/Neurophysiology, Vol. 39, Nos. 4/5, pp. 327–337, July–October, 2007.  相似文献   

6.
7.
Parasympathetic ganglia are considered simple relay systems that have cholinergic input and output, with modulation occurring centrally. Greater complexity is suggested, however, by our showing here that avian ciliary ganglion (CG) neurons also express a different excitatory receptor type--ionotropic glutamate receptors of the kainate subtype (KARs). This is the first report of glutamate receptor expression in the CG and KAR expression in any cholinergic neuron. We show that KARs form functional channels on CG neurons. KARs localize to CG neuron axons and somata as well as axons and terminals of pre-synaptic inputs to the CG. Glutamate transporters are expressed on Schwann cells that surround synapses on neuronal somata, and may provide a local source of glutamate. CG neurons express multiple KAR subunit mRNAs (GluR5, GluR7, and KA1), and their relative levels change dramatically during axon outgrowth and synaptic differentiation. The developmental role for KARs may depend upon their calcium permeability, a property regulated by mRNA editing. We show GluR5 editing increases predominantly at the time CG axons contact peripheral targets. Our data suggest that glutamatergic signaling may function as a local circuit mechanism to modulate excitability and calcium signaling during synapse formation and maturation in the CG in vivo.  相似文献   

8.
Regulation of AMPA Receptors by Phosphorylation   总被引:5,自引:0,他引:5  
The AMPA receptors for glutamate are oligomeric structures that mediate fast excitatory responses in the central nervous system. Phosphorylation of AMPA receptors is an important mechanism for short-term modulation of their function, and is thought to play an important role in synaptic plasticity in different brain regions. Recent studies have shown that phosphorylation of AMPA receptors by cAMP-dependent protein kinase (PKA) and Ca2+- and calmodulin-dependent protein kinase II (CaMKII) potentiates their activity, but phosphorylation of the receptor subunits may also affect their interaction with intracellular proteins, and their expression at the plasma membrane. Phosphorylation of AMPA receptor subunits has also been investigated in relation to processes of synaptic plasticity. This review focuses on recent advances in understanding the molecular mechanisms of regulation of AMPA receptors, and their implications in synaptic plasticity.  相似文献   

9.
Patricia Gaspar 《PSN》2003,1(5):22-30
Cortical sensory maps are topographically ordered projections of the peripheral sensory receptors. The size of the representation of different body parts is determined by the number of sensory receptors in the periphery, with substantial variations between species, even amongst closely related mammals. Maps can be modified during critical periods of development, as has been most thoroughly characterised in the visual and the somatosensory system. Recently the field has moved from a phenomenological to a molecular era: studies using mouse genetics demonstrate the importance of molecules such as neurotrophins and of neurotransmitters such as glutamate, GABA and serotonin for the developmental plasticity of these maps. Serotonin and neurotrophins acts on receptors that are transiently expressed on the thalamocortical axons. The radical changes in gene expression patterns that occurr during this period in both the thalamus and the cerebral cortex could underlie the time course of this very particular form of plasticity.  相似文献   

10.
李扬  孙心德 《生命科学》1999,11(5):215-217
离子型谷氨酸受体分为NMDA型和非NMDA型两类,其中NMDA型受体与中枢神经系统发育关系密切。本文综述了NMDA受体的分子特性及NMDA受体五种亚单位NR1、NR2A、NR2B、NR2C和NR2D在动物出生后脑内的时空表达;NMDA受体亚单位在发育中的作用以及NMDA受体活性的胞内调节机制。  相似文献   

11.
Glutamate: a truly functional amino acid   总被引:2,自引:0,他引:2  
Glutamate is one of the most abundant of the amino acids. In addition to its role in protein structure, it plays critical roles in nutrition, metabolism and signaling. Post-translational carboxylation of glutamyl residues increases their affinity for calcium and plays a major role in hemostasis. Glutamate is of fundamental importance to amino acid metabolism, yet the great bulk of dietary glutamate is catabolyzed within the intestine. It is necessary for the synthesis of key molecules, such as glutathione and the polyglutamated folate cofactors. It plays a major role in signaling. Within the central nervous system, glutamate is the major excitatory neurotransmitter and its product, GABA, the major inhibitory neurotransmitter. Glutamate interaction with specific taste cells in the tongue is a major component of umami taste. The finding of glutamate receptors throughout the gastrointestinal tract has opened up a new vista in glutamate function. Glutamate is truly a functional amino acid.  相似文献   

12.
In order to investigate the mechanisms responsible for adaptation to altered gravity, we assessed the changes in mRNA expression of glutamate receptors in vestibular ganglion cells, medial vestibular nucleus, spinal vestibular nucleus/lateral vestibular nucleus, cerebellar flocculus, and uvula/nodulus from rats exposed to hypergravity for 2 h to 1 week using real-time quantitative RT-PCR methods. The mRNA expression of GluR2 and NR1 receptors in the uvula/nodulus and NR1 receptors in the medial vestibular nucleus increased in animals exposed to 2 h of hypergravity, and it decreased gradually to the control level. The mRNA expression of GluR2 receptors in vestibular ganglion cells decreased in animals exposed to 1 week of hypergravity. Neither the metabotropic glutamate receptor 1 nor delta2 glutamate receptor in flocculus and uvula/nodulus was affected by a hypergravity load for 2 h to 1 week. It is suggested that the animals adapted to the hypergravity by enhancing the cerebellar inhibition of the vestibular nucleus neurons through activation of the NR1 and GluR2 receptors on the Purkinje cells in uvula/nodulus especially at the early phase following hypergravity. In the later phase following hypergravity, the animals adapted to the hypergravity by reducing the neurotransmission between the vestibular hair cells and the primary vestibular neurons via down-regulation of the postsynaptic GluR2 receptors in the vestibular periphery.  相似文献   

13.
Organ formation at shoot and flower meristems in plants requires the maintenance of a population of centrally located stem cells and the differentiation of peripherally located daughter cells. The CLAVATA (CLV) gene products in Arabidopsis, including the CLV1 receptor-kinase, regulate this process by promoting the differentiation of stem cells on the meristem flanks. Here, we have analyzed the developmental roles of the CLV1-related BAM1 (derived from barely any meristem 1), BAM2 and BAM3 receptor-like kinases. Loss-of-function alleles of these receptors lead to phenotypes consistent with the loss of stem cells at the shoot and flower meristem, suggesting that their developmental role is opposite to that of CLV1. These closely related receptors are further distinguished from CLV1, whose expression and function is highly specific, by having broad expression patterns and multiple developmental roles. These include a requirement for BAM1, BAM2 and BAM3 in the development of high-ordered vascular strands within the leaf and a correlated control of leaf shape, size and symmetry. In addition, BAM1, BAM2 and BAM3 are required for male gametophyte development, as well as ovule specification and function. Significantly, the differing roles of CLV1 and BAM receptors in meristem and organ development are largely driven by differences in expression patterns.  相似文献   

14.
刘金变  江伟  王莉 《生命科学》2008,20(2):279-282
谷氨酸是哺乳动物中枢神经系统重要兴奋性神经递质,参与学习、记忆、药物依赖成瘾及神经系统退行性疾病等多种病理生理过程。谷氨酸通过激活离子型(iGluRs)和代谢型谷氨酸受体(mGluRs)发挥作用。业已有研究提示iGluRs和mGluRs之间存在相互作用,但具体机制尚待阐明。本文从蛋白分子结构、突触可塑性、相互作用可能涉及的信号分子和通路等方面综述了NMDAR与Ⅰ组mGluRs之间的相互作用,旨在为深入研究谷氨酸受体之间的相互作用提供线索。  相似文献   

15.
It has been recently shown that the expression of various types of neurotransmitter receptors is not restricted to neurons but also observed in a majority of glial cells. However, their function in glial cells is not known well in both physiological and pathological conditions. Here, we investigated the role of glutamate receptor on c-fos gene expression in primary cultured and BV-2 microglia. Our results demonstrated that both c-fos mRNA and protein were dramatically induced following treatment with various glutamate receptor agonists (500muM); N-methyl-d-aspartic acid, kainic acid, (S)-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, and (RS)-3,5-dihydroxyphenylglycine. The responses were significantly suppressed by specific antagonists and also by calcium chelating agents EGTA and BAPTA-AM. Our results suggest that glutamate receptor activation regulates c-fos gene expression by modifying intracellular calcium levels in microglia. These findings might provide an insight in to understanding the function of microglial glutamate receptors in neuron-to-glial interaction under the excitotoxic conditions.  相似文献   

16.
The development and evolution of the inner ear sensory patches and their innervation is reviewed. Recent molecular developmental data suggest that development of these sensory patches is a developmental recapitulation of the evolutionary history. These data suggest that the ear generates multiple, functionally diverse sensory epithelia by dividing a single sensory primordium. Those epithelia will establish distinct identities through the overlapping expression of genes of which only a few are currently known. One of these distinctions is the unique pattern of hair cell polarity. A hypothesis is presented on how the hair cell polarity may relate to the progressive segregation of the six sensory epithelia. Besides being markers for sensory epithelia development, neurotrophins are also expressed in delaminating cells that migrate toward the developing vestibular and cochlear ganglia. These delaminating cells originate from multiple sites at or near the developing sensory epithelia and some also express neuronal markers such as NeuroD. The differential origin of precursors raises the possibility that some sensory neurons acquire positional information before they delaminate the ear. Such an identity of these delaminating sensory neurons may be used both to navigate their dendrites to the area they delaminated from, as well as to help them navigate to their central target. The navigational properties of sensory neurons as well as the acquisition of discrete sensory patch phenotypes implies a much more sophisticated subdivision of the developing otocyst than the few available gene expression studies suggest.  相似文献   

17.
Eph受体家族及其配体的信号转导途径及功能   总被引:5,自引:1,他引:4  
Eph受体是已知最大的酪氨酸蛋白激酶受体家族,Eph受体和其膜附着型配体(ephrin)在发育过程中呈现不同的表达模式,近来研究证明,Eph受体和其配体在包括神经网络形成,神经管和轴旁中胚层的成型(patterning),细胞迁移导向和轴突路径导引,血管形成等许多的发育过程中起重要作用.Eph受体及其配体也与肿瘤发生有关,因此深入分析这些分子尤其在肿瘤细胞生长中的功能而应用于治疗具有重要的临床意义.  相似文献   

18.
Glutamate acts on postsynaptic glutamate receptors to mediate excitatory communication between neurons. The discovery that additional presynaptic glutamate receptors can modulate neurotransmitter release has added complexity to the way we view glutamatergic synaptic transmission. Here we review evidence of a physiological role for presynaptic glutamate receptors in neurotransmitter release. We compare the physiological roles of ionotropic and metabotropic glutamate receptors in short- and long-term regulation of synaptic transmission. Furthermore, we discuss the physiological conditions that are necessary for their activation, the source of the glutamate that activates them, their mechanisms of action and their involvement in higher brain function.  相似文献   

19.
Synapse formation in the CNS is a complex process that involves the dynamic interplay of numerous signals exchanged between pre- and postsynaptic neurons as well as perisynaptic glia. Members of the neurotrophin family, which are widely expressed in the developing and mature CNS and are well-known for their roles in promoting neuronal survival and differentiation, have emerged as key synaptic modulators. However, the mechanisms by which neurotrophins modulate synapse formation and function are poorly understood. Here, we summarize our work on the role of neurotrophins in synaptogenesis in the CNS, in particular the role of these signaling molecules and their receptors, the Trks, in the development of excitatory and inhibitory hippocampal synapses. We discuss our results that demonstrate that postsynaptic TrkB signaling plays an important role in modulating the formation and maintenance of NMDA and GABAA receptor clusters at central synapses, and suggest that neurotrophin signaling coordinately modulates these receptors as part of mechanism that promotes the balance between excitation and inhibition in developing circuits. We also discuss our results that demonstrate that astrocytes promote the formation of GABAergic synapses in vitro by differentially regulating the development of inhibitory presynaptic terminals and postsynaptic GABAA receptor clusters, and suggest that glial modulation of inhibitory synaptogenesis is mediated by neurotrophin-dependent and -independent signaling. Together, these findings extend our understanding of how neuron-glia communication modulates synapse formation, maintenance and function, and set the stage for defining the cellular and molecular mechanisms by which neurotrophins and other cell-cell signals direct synaptogenesis in the developing brain.  相似文献   

20.
Tyro3, Axl and Mertk (TAM) receptor tyrosine kinases play multiple functional roles by either providing intrinsic trophic support for cell growth or regulating the expression of target genes that are important in the homeostatic regulation of immune responses. TAM receptors have been shown to regulate adult hippocampal neurogenesis by negatively regulation of glial cell activation in central nervous system (CNS). In the present study, we further demonstrated that all three TAM receptors were expressed by cultured primary neural stem cells (NSCs) and played a direct growth trophic role in NSCs proliferation, neuronal differentiation and survival. The cultured primary NSCs lacking TAM receptors exhibited slower growth, reduced proliferation and increased apoptosis as shown by decreased BrdU incorporation and increased TUNEL labeling, than those from the WT NSCs. In addition, the neuronal differentiation and maturation of the mutant NSCs were impeded, as characterized by less neuronal differentiation (β-tubulin III+) and neurite outgrowth than their WT counterparts. To elucidate the underlying mechanism that the TAM receptors play on the differentiating NSCs, we examined the expression profile of neurotrophins and their receptors by real-time qPCR on the total RNAs from hippocampus and primary NSCs; and found that the TKO NSC showed a significant reduction in the expression of both nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF), but accompanied by compensational increases in the expression of the TrkA, TrkB, TrkC and p75 receptors. These results suggest that TAM receptors support NSCs survival, proliferation and differentiation by regulating expression of neurotrophins, especially the NGF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号