首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Scar formation inhibits tissue repair and regeneration in the liver and central nervous system. Activation of hepatic stellate cells (HSCs) after liver injury or of astrocytes after nervous system damage is considered to drive scar formation. HSCs are the fibrotic cells of the liver, as they undergo activation and acquire fibrogenic properties after liver injury. HSC activation has been compared to reactive gliosis of astrocytes, which acquire a reactive phenotype and contribute to scar formation after nervous system injury, much like HSCs after liver injury. It is intriguing that a wide range of neuroglia-related molecules are expressed by HSCs. We identified an unexpected role for the p75 neurotrophin receptor in regulating HSC activation and liver repair. Here we discuss the molecular mechanisms that regulate HSC activation and reactive gliosis and their contributions to scar formation and tissue repair. Juxtaposing key mechanistic and functional similarities in HSC and astrocyte activation might provide novel insight into liver regeneration and nervous system repair.Key words: p75 neurotrophin receptor, transforming growth factor-β, neurotrophins, epidermal growth factor, extracellular matrix, collagen, chondroitin sulfate proteoglycans, matrix metalloproteinases, scar, neurons, hepatocytes  相似文献   

2.
The mechanisms underlying formation of the basic network of the nervous system are of fundamental interest in developmental neurobiology. During the wiring of the nervous system, newborn neurons send axons that travel long distances to their targets. These axons are directed by environmental cues, known as guidance cues, to their correct destinations. Through extensive studies in vertebrates and invertebrates many of the guidance cues and their receptors have been identified. Recently, guidance molecules have been suggested to have important roles in pathological conditions of the nervous system. Mutations in guidance receptors have been associated with hereditary neurological disorders, and deregulation of guidance cues might be associated with predisposition to epilepsy. In addition, it was suggested that guidance molecules play roles in the ability of the adult nervous system to recover and repair after injury. Thus, molecules that were first discovered as "developmental cues" are now emerging as important factors in neurological disease and injury in the adult.  相似文献   

3.
基质金属蛋白酶是一组金属依赖性的蛋白内切酶家族,可对细胞外基质进行特异的降解,在生理和璃理过程中都发挥着重要作用。已有许多有关基质金属蛋白酶在中枢神经系统的作用的研究报道,本文对基质金属蛋白酶在脑缺血和脑出血等脑血管的急性损伤作用进行了综述,并对进一步研究方向作出展望。  相似文献   

4.
Semaphorins are a large family of proteins that are classically associated with axon guidance. These proteins and their interacting partners, the neuropilins and plexins are now known to be key mediators in a variety of processes throughout the nervous system ranging from synaptic refinement to the correct positioning of neuronal and glial cell bodies. Recently, much attention has been given to the roles semaphorins play in other body tissues including the immune and vascular systems. This review wishes to draw attention back to the nervous system, specifically focusing on the role of semaphorins in the development of the spinal cord and their proposed roles in the adult. In addition, their functions in spinal cord injury at the glial scar are also discussed.  相似文献   

5.
Abstract

The neural crest (NC) is a population of migratory stem/progenitor cells that is found in early vertebrate embryos. NC cells are induced during gastrulation, and later migrate to multiple destinations and contribute to many types of cells and tissues, such as craniofacial structures, cardiac tissues, pigment cells and the peripheral nervous system. Recently, accumulating evidence suggests that many extracellular metalloproteinases, including matrix metalloproteinases (MMPs), a disintegrin and metalloproteinases (ADAMs), and ADAMs with thrombospondin motifs (ADAMTSs), play important roles in various stages of NC development. Interference with metalloproteinase functions often causes defects in craniofacial structures, as well as in other cells and tissues that are contributed by NC cells, in humans and other vertebrates. In this review, we summarize the current state of the field concerning the roles of these three families of metalloproteinases in NC development and related tissue morphogenesis, with a special emphasis on craniofacial morphogenesis.  相似文献   

6.
The primary olfactory nervous system is unique in that it continuously renews itself and regenerates after injury. These properties are attributed to the presence of olfactory glia, termed olfactory ensheathing cells (OECs). Evidence is now emerging that individual OEC populations exist with distinct anatomical localisations and physiological properties, but their differential roles have not been determined. Unlike other glia, OECs can migrate from the periphery into the central nervous system, and organised OEC migration can enhance axonal extension after injury. Despite this, the mechanisms regulating OEC migration are largely unknown. Here, we provide an overview of the roles of OECs in development and adulthood. We review the latest research describing the differences between individual OEC subpopulations and discuss potential regulatory mechanisms for OEC guidance and migration. Using advanced time lapse techniques, we have obtained novel insights into how OECs behave in a complex multicellular environment which we discuss here with particular focus on cell-cell interactions. Significantly, transplantation of OECs constitutes a promising novel therapy for nerve injuries, but results are highly variable and the method needs improvement. We here review the roles of transplanted OECs in neural repair of damaged neuronal tracts distinct from the primary olfactory nervous system.  相似文献   

7.
The elucidation of the cellular and molecular mechanisms governing the maturation of the central nervous system (CNS) is rapidly emerging. Cell-cell and cell-matrix interactions play critical roles in all phases of developmental tissue remodeling. Throughout development, an intricate balance between extracellular matrix synthesis and degradation is preserved by the opposing actions of matrix metalloproteinases (MMPs) and their specific inhibitors, the tissue inhibitors of metalloproteinases (TIMPs). Although recent evidence suggests that TIMPs exert diverse cell biological functions distinct from their MMP-inhibitory activities, few studies have investigated MMP or TIMP expression during CNS development. The present report analyzes the mRNA expression of the four known TIMPs throughout the course of embryonic and postnatal rat CNS development. The results clearly demonstrate the unique spatial distribution and temporal regulation of TIMP expression and suggest a distinct role for each TIMP during CNS development.  相似文献   

8.
Matrix metalloproteinases (MMPs) are a gene family of neutral proteases involved in normal and pathological processes in the central nervous system (CNS). Normally released into the extracellular space, MMPs break down the extracellular matrix (ECM) to allow cell growth and to facilitate remodeling. Proteolysis becomes pathological when the normal balance between the proteases and their inhibitors, tissue inhibitors to metalloproteinases (TIMPs), is lost. Cancer cells secrete neutral proteases to facilitate spread through the ECM. MMPs increase capillary permeability, and they have been implicated in demyelination. Neurological diseases, such as brain tumors, multiple sclerosis, Guillain-Barré, ischemia, Alzheimer's disease, and infections, lead to an increase in the matrix-degrading proteases. Two classes of neutral proteases have been extensively studied, namely the MMPs and the plasminogen activators (PAs), which act in concert to attack the ECM. After proteolytic injury occurs, the process of ECM remodeling begins, which can lead to fibrosis of blood vessels and gliosis. TIMPs are increased after the acute injury and may add to the fibrotic buildup of ECM components. Thus, an imbalance in proteolytic activity either during the acute injury or in recovery may aggravate the underlying disease process. Agents that affect the proteolytic process at any of the regulating sites are potentially useful in therapy.  相似文献   

9.

Background  

Matrix metalloproteinases (MMPs) are a family of extracellular endopeptidases that degrade the extracellular matrix and other extracellular proteins. Studies in experimental animals demonstrate that MMPs play a number of roles in the detrimental as well as in the beneficial events after spinal cord injury (SCI). In the present correlative investigation, the expression pattern of several MMPs and their inhibitors has been investigated in the human spinal cord.  相似文献   

10.
Scar formation inhibits tissue repair and regeneration in the liver and central nervous system. Activation of hepatic stellate cells (HSCs) after liver injury or of astrocytes after nervous system damage is considered to drive scar formation. HSCs are the fibrotic cells of the liver, as they undergo activation and acquire fibrogenic properties after liver injury. HSC activation has been compared to reactive gliosis of astrocytes, which acquire a reactive phenotype and contribute to scar formation after nervous system injury, much like HSCs after liver injury. It is intriguing that a wide range of neuroglia-related molecules are expressed by HSCs. We identified an unexpected role for the p75 neurotrophin receptor in regulating HSC activation and liver repair. Here we discuss the molecular mechanisms that regulate HSC activation and reactive gliosis and their contributions to scar formation and tissue repair. Juxtaposing key mechanistic and functional similarities in HSC and astrocyte activation might provide novel insight into liver regeneration and nervous system repair.  相似文献   

11.
A century and a half after first being described, glia are beginning to reveal their intricate and important roles in nervous system development and function. Recent studies in the nematode Caenorhabditis elegans suggest that this invertebrate will provide important insight into these roles. Studies of C. elegans have revealed a connection between glial ensheathment of neurons and tubulogenesis, have uncovered glial roles in neurite growth, navigation, and function, and have demonstrated roles for glia and glia-like cells in synapse formation and function. Given the conservation of basic anatomical, functional and molecular features of the nervous systems between C. elegans and vertebrates, these recent advances are likely to be informative in describing nervous system assembly and function in all organisms possessing a nervous system.  相似文献   

12.
Tissue inhibitors of metalloproteinases (TIMPs), which inhibit matrix metalloproteinases (MMPs) as well as the closely related, a disintegrin and metalloproteinases (ADAMs) and ADAMs with thrombospondin motifs (ADAMTSs), were traditionally thought to control extracellular matrix (ECM) proteolysis through direct inhibition of MMP-dependent ECM proteolysis. This classical role for TIMPs suggests that increased TIMP levels results in ECM accumulation (or fibrosis), whereas loss of TIMPs leads to enhanced matrix proteolysis. Mice lacking TIMP family members have provided support for such a role; however, studies with these TIMP deficient mice have also demonstrated that loss of TIMPs can often be associated with an accumulation of ECM. Collectively, these studies suggest that the divergent roles of TIMPs in matrix accumulation and proteolysis, which together can be referred to as ECM turnover, are dependent on the TIMP, specific tissue, and local tissue environment (i.e. health vs. injury/disease). Ultimately, these combined factors dictate the specific metalloproteinases being regulated by a given TIMP, and it is likely the diversity of metalloproteinases and their physiological substrates that determines whether TIMPs inhibit matrix proteolysis or accumulation. In this review, we discuss the evidence for the dichotomous roles of TIMPs in ECM turnover highlighting some of the common findings between different TIMP family members. Importantly, while we now have a better understanding of the role of TIMPs in regulating ECM turnover, much remains to be determined. Data on the specific metalloproteinases inhibited by different TIMPs in vivo remains limited and must be the focus of future studies.  相似文献   

13.
Peripheral nerve injury (PNI) may lead to disability and neuropathic pain, which constitutes a substantial economic burden to patients and society. It was found that the peripheral nervous system (PNS) has the ability to regenerate after injury due to a permissive microenvironment mainly provided by Schwann cells (SCs) and the intrinsic growth capacity of neurons; however, the results of injury repair are not always satisfactory. Effective, long-distance axon regeneration after PNI is achieved by precise regulation of gene expression. Numerous studies have shown that in the process of peripheral nerve damage and repair, differential expression of non-coding RNAs (ncRNAs) significantly affects axon regeneration, especially expression of microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs). In the present article, we review the cellular and molecular mechanisms of axon regeneration after PNI, and analyze the roles of these ncRNAs in nerve repair. In addition, we discuss the characteristics and functions of these ncRNAs. Finally, we provide a thorough perspective on the functional mechanisms of ncRNAs in nervous injury repair, and explore the potential these ncRNAs offer as targets of nerve injury treatment.  相似文献   

14.
Extracellular matrix (ECM) and matrix receptors are intimately involved in most biological processes. The ECM plays fundamental developmental and physiological roles in health and disease, including processes underlying the development, maintenance, and regeneration of the nervous system. To understand the principles of ECM-mediated functions in the nervous system, genetic model organisms like Drosophila provide simple, malleable, and powerful experimental platforms. This article provides an overview of ECM proteins and receptors in Drosophila. It then focuses on their roles during three progressive phases of neural development: (1) neural progenitor proliferation, (2) axonal growth and pathfinding, and (3) synapse formation and function. Each section highlights known ECM and ECM-receptor components and recent studies done in mutant conditions to reveal their in vivo functions, all illustrating the enormous opportunities provided when merging work on the nervous system with systematic research into ECM-related gene functions.  相似文献   

15.
The epidermal growth factor (EGF) family of polypeptides is regulators for tissue development and repair, and is characterized by the fact that their mature forms are proteolytically derived from their integral membrane precursors. This article reviews roles of the prominent members of the EGF family (EGF, transforming growth factor-alpha [TGF-α] and heparin-binding EGF [HB-EGF]) and the related neuregulin family in the nerve system. These polypeptides, produced by neurons and glial cells, play an important role in the development of the nervous system, stimulating proliferation, migration, and differentiation of neuronal, glial, and Schwann precursor cells. These peptides are also neurotrophic, enhancing survival and inhibiting apoptosis of post-mitotic neurons, probably acting directly through receptors on neurons, or indirectly via stimulating glial proliferation and glial synthesis of other molecules such as neurotrophic factors. TGF-α, EGF, and neuregulins are involved in mediating glial-neuronal and axonal-glial interactions, regulating nerve injury responses, and participating in injury-associated astrocytic gliosis, brain tumors, and other disorders of the nerve system. Although the collective roles of the EGF family (as well as those of the neuregulins) are shown to be essential for the nervous system, redundancy may exist among members of the EGF family.  相似文献   

16.
Considerable evidence now suggests an interrelationship among long-term potentiation (LTP), extracellular matrix (ECM) reconfiguration, synaptogenesis, and memory consolidation within the mammalian central nervous system. Extracellular matrix molecules provide the scaffolding necessary to permit synaptic remodeling and contribute to the regulation of ionic and nutritional homeostasis of surrounding cells. These molecules also facilitate cellular proliferation, movement, differentiation, and apoptosis. The present review initially focuses on characterizing the ECM and the roles of cell adhesion molecules (CAMs), matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs), in the maintenance and degradation of the ECM. The induction and maintenance of LTP is described. Debate continues over whether LTP results in some form of synaptic strengthening and in turn promotes memory consolidation. Next, the contribution of CAMs and TIMPs to the facilitation of LTP and memory consolidation is discussed. Finally, possible roles for angiotensins, MMPs, and tissue plasminogen activators in the facilitation of LTP and memory consolidation are described. These enzymatic pathways appear to be very important to an understanding of dysfunctional memory diseases such as Alzheimer's disease, multiple sclerosis, brain tumors, and infections.  相似文献   

17.
Neuropathic pain, a type of chronic and potentially disabling pain resulting from primary injury/dysfunction of the somatosensory nervous system and spinal cord injury, is one of the most intense types of chronic pain, which incurs a significant economic and public health burden. However, our understanding of its cellular and molecular pathogenesis is still far from complete. Long non‐coding RNAs (lncRNAs) are important regulators of gene expression and have recently been characterized as key modulators of neuronal functions. Emerging evidence suggested that lncRNAs are deregulated and play pivotal roles in the development of neuropathic pain. This review summarizes the current knowledge about the roles of deregulated lncRNAs (eg, KCNA2‐AS, uc.48+, NONRATT021972, MRAK009713, XIST, CCAT1) in the development of neuropathic pain. These studies suggested that specific regulation of lncRNAs or their downstream targets might provide novel therapeutic avenues for this refractory disease.  相似文献   

18.
The Eph receptors are the largest known family of receptor tyrosine kinases. The Eph receptors and their membrane-attached ligands, ephrins, show diverse expression patterns during development. Recent studies have demonstrated that Eph receptors and ephrins play important roles in many developmental processes, including neuronal network formation, the patterning of the neural tube and the paraxial mesoderm, the guidance of cell migration, and vascular formation. In the nervous system, Eph receptors and ephrins have been shown to act as positional labels to establish topographic projections. They also play a key role in pathway finding by axons and neural crest cells. The crucial roles of Eph receptors and ephrins during development suggest involvement of these genes in congenital disorders affecting the nervous system and other tissues. It has also been suggested that Eph receptors and ephrins may be involved in carcinogenesis. It is therefore of clinical importance to further analyse the function of these molecules, as manipulation of their function may have therapeutic applications.  相似文献   

19.
The liver is a large highly vascularized organ with a central function in metabolic homeostasis, detoxification, and immunity. Due to its roles, the liver is frequently exposed to various insults which can cause cell death and hepatic dysfunction. Alternatively, the liver has a remarkable ability to self-repair and regenerate after injury. Liver injury and regeneration have both been linked to complex extracellular matrix (ECM) related pathways. While normal degradation of ECM components is an important feature of tissue repair and remodeling, irregular ECM turnover contributes to a variety of liver diseases. Matrix metalloproteinases (MMPs) are the main enzymes implicated in ECM degradation. MMPs not only remodel the ECM, but also regulate immune responses. In this review, we highlight some of the MMP-attributed roles in acute and chronic liver injury and emphasize the need for further experimentation to better understand their functions during hepatic physiological conditions and disease progression.  相似文献   

20.
Recent progress in biology has shown that many if not all adult tissues contain a population of stem cells. It is believed that these cells are involved in the regeneration of the tissue or organ in which they reside as a response to the natural turnover of differentiated cells or to injury. In the adult mammalian brain, stem cells in the subventricular zone and the dentate gyrus may also play a role in the replacement of neurons. A positive beneficial response to injury does not necessarily require cell replacement. New findings suggest that some populations of endogenous neural stem cells in the central nervous system may have adopted a function different from cell replacement and are involved in the protection of neurons in diverse paradigms of disease and injury. In this article, we will focus on the immature cell populations of the central nervous system and the signal transduction pathways that regulate them which suggest new possibilities for their manipulation in injury and disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号