首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Low doses of 60Co γ radiation, which kill no more than about 5% of the zygospores, change gene recombination at only 2 short stages during the course of meiosis in Chlamydomonas reinhardi, but higher doses, which kill more than 10% of the spores, depress recombination at all stages up to pachytene. Irradiation with particles having a mean linear energy transfer (LET) of about 1300 and 1600 MeV g−1 cm2 changes recombination in a manner which appears to combine the effects characteristic of both low and high doses of γ-radiation simultaneously. The “γ high-dose” type of response has a relative biological effectiveness (RBE) of between 20 and 35, and the “γ low-dose” RBE is greater than 1 although precise evaluation is impossible due to the complexity of the response. The RBE for survival was 16.5 at the low dose levels studied.  相似文献   

2.
Locomotor activity, measured in a circular runway apparatus, declined progressively at doses of 40, 60, and 80 krad. There was no detectable difference between normal and 10 krad flies.Females tended to lose their mating inhibition with increasing dose, whereas 40 krad males in non-competitive trials tended to mate less frequently than normal or 10 krad males.A diurnal rhythm of ecdysis was not changed by exposure to chronic low doses 12 hr out of phase with the rhythm. However, a single, large dose 12 hr out of phase resulted in a bimodal emergence rhythm, with the abnormal peak shifted towards the time of exposure to radiation.  相似文献   

3.
B B Sears 《Plasmid》1980,3(1):18-34
In the investigations reported here, the length of zygospore incubation or “maturation” prior to the induction of meiosis was found to affect the inheritance pattern of chloroplast genes. The frequency of zygospores transmitting chloroplast alleles from both parents drops with increasing zygospore age following mating, while the frequencies of zygospores homoplasmic for maternal or paternal chloroplast alleles increase correspondingly. Since there is a negligible reduction in viability, zygospores which are initially biparental appear to become pure for the chloroplast genes from one or the other parent prior to the occurrence of cell division. These results are amplified in crosses of mt+ cells which have been irradiated with ultraviolet (uv) light or grown in the presence of the base analog, 5-fluorodeoxyuridine, which also perturbs maternal inheritance. Low doses of uv irradiation, applied to zygospores derived from crosses in which the maternal parent was also irradiated prior to mating, increase the biparental zygospore frequency while reducing the proportion of maternal zygospores. This indicates that at least some maternal zygospore clones are actually derived from zygospores which still contain both parental chloroplast genomes prior to the induction of germination. Thus, a subclass of zygospores must contain paternal chloroplast genomes which are either eliminated upon germination or are not expressed in the resulting zygospore clone. Tetrad analysis of biparental zygospores derived from uv-irradiated mt+ gametes demonstrates that the frequency of maternal chloroplast alleles in biparental zygospores decreases as they age. One result is an increase in the proportion of meiotic products homoplasmic for all paternal markers. The increased segregation of homoplasmic daughter cells during the meiotic divisions may result from a reduction in chloroplast ploidy by elimination of maternal genomes. Alternatively, it may reflect an altered ratio of maternal:paternal genomes due to continuous rounds of pairing and gene conversion between heterologous chloroplast DNAs leading to genetic drift within the DNA population of the organelle.  相似文献   

4.
Infections with irradiated Schistosoma mansoni were established by intramuscular (i.m.) injection of mechanically transformed schistosomula. A dose of 2.3 krad. allowed persistence of a small proportion of worms to adulthood, and of these survivors the majority of the female worms were sexually sterile. However, a small proportion of 2.3 krad.-irradiated females and a larger proportion of similarly irradiated males were capable of pairing successfully with non-irradiated partners. Radiation in the range 2.3 to 10 krad. resulted in slightly reduced peak recoveries from the lungs while 20 krad. resulted in a much reduced and 40 krad. a virtual absence of survival to the lung stage. Increasing doses of radiation in the range 2.3 to 10 krad. resulted in successively fewer parasites reaching the liver. Thus, the major sites of the radiation-induced mortality appeared to be as follows: 2.3 krad., mainly in the liver; 4 krad., in the lungs and liver; 10 krad., mainly in the lungs; 20 krad., at the injection site and in the lungs and 40 krad., mainly at the injection site. The infections studied here showed reduced survival following exposure to high doses of radiation compared with the infections, established as percutaneously applied cercariae, which have been reported by other workers. Possible reasons for the disparity are discussed.  相似文献   

5.
To isolate Saccharomyces cerevisiae mutants defective in recombinational DNA repair, we constructed a strain that contains duplicated ura3 alleles that flank LEU2 and ADE5 genes at the ura3 locus on chromosome V. When a HO endonuclease cleavage site is located within one of the ura3 alleles, Ura+ recombination is increased over 100-fold in wild-type strains following HO induction from the GAL1, 10 promoter. This strain was used to screen for mutants that exhibited reduced levels of HO-induced intrachromosomal recombination without significantly affecting the spontaneous frequency of Ura+ recombination. One of the mutations isolated through this screen was found to affect the essential gene CDC1. This mutation, cdc1-100, completely eliminated HO-induced Ura+ recombination yet maintained both spontaneous preinduced recombination levels and cell viability, cdc1-100 mutants were moderately sensitive to killing by methyl methanesulfonate and gamma irradiation. The effect of the cdc1-100 mutation on recombinational double-strand break repair indicates that a recombinationally silent mechanism other than sister chromatid exchange was responsible for the efficient repair of DNA double-strand breaks.  相似文献   

6.
Triploid and tetraploid strains of Saccharomyces cerevisiae were constructed and the spontaneous loss during mitosis of one, two or three copies of chromosome VII was determined. In one strain, a triploid (VM2) in which expression of the recessive alleles can be observed only after loss of two copies of chromosome VII (3N-2), the spontaneous frequency of chromosome loss was lower than in the diploid D61.M. In another strain, a tetraploid (VM4) that also requires the loss of two copies of chromosome VII for observation (4N-2) of the recessive alleles, the spontaneous frequency was slightly higher than in the diploid D61.M. The spontaneous frequency of other genetic events (that is, mutation, recombination or chromosome breakage) were lower by 2-3 orders of magnitude than in the diploid strain D61.M. Induction of chromosome loss and other genetic events by nocodazole, ethyl acetate, hydroxyurea and ethyl methanesulfonate was determined in D61.M, VM2, and VM4, and the results were compared. Nocodazole and ethyl acetate induced chromosome loss in both the triploid and the tetraploid strains at lower concentrations than required in the diploid. These compounds also induced elevated frequencies of other genetic events in both the triploid and the tetraploid strains but not in the diploid. Hydroxyurea induced elevated frequencies of chromosome loss in the diploid and the tetraploid. Frequencies of chromosome loss in the triploid treated with hydroxyurea, although elevated, are based on observation of very few colonies of the correct phenotype. Ethyl methanesulfonate failed to induce chromosome loss in any of the three strains. Hydroxyurea and ethyl methanesulfonate did, however, induce very high frequencies of other genetic events.  相似文献   

7.
We have investigated the effect of gamma-radiation on the frequency of bone marrow micronucleated erythrocytes in seven inbred strains of adult male mice. Twenty animals of each strain viz. Swiss, C57BL/6, C57BR/cd, C3H, CBA, DBA, and AKR were irradiated at 0.0, 0.125, 0.25, 0.50, and 1.00Gy of gamma-rays at a dose rate of 0.46Gy/min using a 60Co-teletharapy machine. Animals were sacrificed 24h post-irradiation, bone marrow smears were made and stained in May-Grunwald Giemsa for evaluating the frequency of micronucleated erythrocytes as indicators of chromosomal damage. About 2000 polychromatic erythrocytes (PCEs) and the corresponding normochromatic erythrocytes (NCEs) were scored for each mouse. Thus, at least 8000 PCEs were scored for each dose point in all the groups. The spontaneous frequency of mn-PCEs per thousand (per thousand ) cells varied considerably among the strains with C57BR/cd (3.47 per thousand ) exhibiting highest as compared to CBA (2.47 per thousand ) and DBA (2.35 per thousand). Radiation exposure, even at lowest dose of 0.125Gy, induced a significant increase in the frequency of mn-PCEs and a dose dependent response was observed among all the strains. However, the animals irradiated at lower doses (0.125-0.50Gy) showed marked differences in the extent of radiation induced chromosomal damage among the various genotypes. At highest dose of radiation (1.00Gy), genotype dependent variability in the frequency of mn-PCEs was not so marked but relatively comparable among the various strains. This study clearly shows that the magnitude of variability of radiation induced chromosomal damage among different strains of mouse can be different at different doses. Therefore, use of single dose point comparisons and/or use of only higher doses of radiation for ascertainment of genotype dependent variability in mouse may lead to erroneous conclusions.  相似文献   

8.
A yeast strain was constructed that had a disruption of the chromosomal RAD3 gene and carried a series of centromeric plasmids with defined mutations in this gene. Using this isogenic collection, we examined sensitivity to UV radiation, spontaneous and UV radiation-induced mutagenesis, and mitotic recombination. Several alleles resulted in a marked increase in UV sensitivity. Most of these alleles were found to carry mutations located in consensus motifs for DNA helicases. Other alleles caused a modest or no increase in UV sensitivity and carried mutations in regions of the Rad3 polypeptide that are apparently not conserved. This correlation suggests that the DNA helicase activity of Rad3 protein is required for nucleotide excision repair of DNA. Some rad3 alleles conferred a marked increase in the frequency of spontaneous mutagenesis, including nonsuppressor reversion of the lys2-1 ochre mutation. These alleles also showed a good correlation with conserved DNA helicase domains, suggesting that the Rad3 DNA helicase also plays a role in the fidelity of DNA synthesis or postreplicative mismatch correction. Several rad3 mutator alleles also resulted in increased levels of mitotic recombination. Increased spontaneous mutagenesis and mitotic recombination are characteristic features of the Rem- phenotype. However, in contrast to the prototypic Rem- phenotype, the rad3 mutator alleles identified in this study did not confer inviability in the presence of mutations in the RAD50 or RAD52 gene required for strand break repair of DNA.  相似文献   

9.
The ability of a number of Epstein-Barr virus-transformed lymphoblastoid cells from ataxia telangiectasia (AT) patients to repair γ-radiation damage to DNA was determined. All of these AT cells were previously shown to be hypersensitive to γ-irradiation. Two methods were used to determine DNA-repair synthesis: isopycnic gradient analysis and a method employing hydroxyurea to inhibit semiconservative DNA synthesis. Control, AT heterozygote and AT homozygote cells were demonstrateed to have similar capacities for repair of radiation damage to DNA. In addition at high radiation doses (10–40 krad) the extent of inhibition of DNA synthesis was similar in the different cell types.  相似文献   

10.
Gamma radiation at doses higher than 10 krad significantly lowered the fecundity of the grain mite,Acarus siro. The fecundity of irradiated females was inversely correlated with dose, both when control or irradiated males were used in the pairing.Irradiation with ionizing radiation affected sexual activity of males. At doses above 10 krad the number of formed or observed spermatophores was lowered significantly.Sexual attractiveness of irradiated and control females to irradiated males was similar. However, non-irradiated males were observed mating more often with non-irradiated than with irradiated females.No correlation was found between the numbers of spermatophores present in the spermathecae of the female and the fecundity of the female. Irradiation had a greater effect on fecundity of the female than on sexual activity of the male; it did not affect the shape or behavior of spermatophores in the spermathecae of the female.Viability of eggs laid by females decreased by at least 50% when females or males were irradiated with doses above 20 krad. Irradiation also affected the survival of adults, but females were more sensitive than males. Net sterility index indicates that doses higher than 20 krad induce more than 90% sterility.  相似文献   

11.
J S Kim  A M Rose 《Génome》1987,29(3):457-462
We have studied the effect of gamma radiation on recombination frequency for intervals across the cluster of linkage group I in Caenorhabditis elegans. Recombination frequency increased approximately twofold across the dpy-5-unc-13 interval after treatment with 2000 rads (1 rad = 10 mGy) of cobalt 60 gamma radiation. Several factors affecting the magnitude of the increase have been characterized. Recombination frequency increased more with higher doses of radiation. However, the increase in recombination frequency with increasing dose was accompanied by a reduced average number of progeny from radiation-treated individuals. The amount of the increase was affected by meiotic stage, age at the time of treatment (premeiotic), and radiation dose. The increase in recombination was detectable in the B brood and remained elevated for the remainder of egg production. X-chromosome nondisjunction was also increased by radiation treatment. A high frequency of the recombinant progeny produced with radiation treatment were sterile unlike their nonrecombinant siblings. When parameters affecting recombination frequency are held constant during treatment, chromosomal regions of high gene density on the meiotic map increased more (fourfold) than an adjacent region of low gene density (no increase). The greatest increase was across the dpy-14-unc-13 interval near the center of the gene cluster. These results may suggest that the physical length of DNA per map unit is greater within the cluster than outside.  相似文献   

12.
Non-lethal doses of gamma-irradiation (5 krad) increased meiotic recombination in Coprinus lagopus when treatments were given at the beginning of karyogamy. The division stage at this time was judged to be late leptotene and the duration of the sensitive period was assessed to be 3–4 h. In C. lagopus the radiation-sensitive stage is distinct from the cold-sensitive stage (pachytene). The additive effect of irradiation at early karyogamy followed by cold treatment in pachytene suggested that the two factors influenced different steps in the recombination process. On the other hand, irradiation followed by heat treatment did not significantly alter recombination frequency as compared to single treatments. It was surmised that radiation and high temperature act on the same factor(s) or at the same steps to bring about a similar net result. It was suggested that irradiation at leptotene may cause single-strand breaks in DNA which eventually participate in exchange.  相似文献   

13.
The parameters involved in the induction of resistance against Schistosoma mansoni by injection of irradiated, artificially transformed schistosomula were studied in mice. Single intramuscular injections of 500 schistosomula exposed to radiation doses in the range 2.3 to 160 krad. resulted in significant protection (in the range 20 to 50% as assessed by reduced worm burdens) against a challenge infection administered at intervals from 3 to 24 weeks post-vaccination. However, schistosomula irradiated with 20 krad. consistently resulted in better protection than those exposed to either higher or lower radiation doses despite the persistence of stunted adults from the infections irradiated with 2.3 krad. Vaccination with 40 krad. schistosomula resulted in significant protection in terms of reduced worm and tissue egg burdens and increased survival following lethal challenge. Varying the number of irradiated schistosomula, the frequency and route of their administration, the site of challenge and the strain of host all failed to enhance the level of resistance. However, percutaneously applied, irradiated cercariae were found to be more effective in stimulating resistance (60%) than intramuscularly injected, irradiated schistosomula (40%).  相似文献   

14.
The tolerance of Musa balbisiana Colla seeds to gamma irradiation was found to be considerably greater than that of rhizomes of the parthenocarpic variety ‘Gros Michel': e.g., 11.8 krad reduced the germination of rhizomes 92% and of seeds approximately 15%. Intact seeds exposed to doses higher than 48 krad did not germinate in non-sterile soil, but, when scarified and cultured axenically after irradiation, seeds which received doses as high as 70 krad germinated. Embryos excised from seeds exposed to doses as high as 285 krad formed callus, indicating that not all metabolic processes were inhibited by these extremely high doses. There was considerable variation in radiation tolerance between seed lots which was not related to their age, moisture content, or pre-exposure viability. Germination of intact seeds appeared to be stimulated by doses of 3 or 9 krad. No lasting differences attributable to the level of irradiation were apparent in the development of seedlings derived from either intact or scarified seeds nor of plantlets derived from excised embryos. Conversely, there was a significant reduction, proportional to irradiation dose, in the growth of plants developing from rhizomes, emphasizing the greater radiation sensitivity of the vegetative propagule. The radiation tolerance of seed-borne microorganisms was considerably higher than that of the plant materials, indicating that gamma irradiation is not effective as a means of obtaining pathogen-free rhizomes or surface-sterilizing seeds of M. balbisiana.  相似文献   

15.
Both ultraviolet (UV) and ionizing radiation were observed to stimulate mitotic, ectopic recombination between his3 recombinational substrates, generating reciprocal translocations in Saccharomyces cervisiae (yeast). The stimulation was greatest in diploid strains competent for sporulation and depends upon both the ploidy of the strain and heterozygosity at the MAT locus. The difference in levels of stimulation between MATa/MATα diploid and MATα haploid strains increases when cells are exposed to higher levels of UV radiation (sevenfold at 150 J/m2), whereas when cells are exposed to higher levels of ionizing radiation (23.4 krad), only a twofold difference is observed. When the MATα gene was introduced by DNA transformation into a MATa/matα::LEU2 + diploid, the levels of radiation-induced ectopic recombination approach those obtained in a strain that is heterozygous at MAT. Conversely, when the MATA gene was introduced by DNA transformation into a MATα haploid, no enhanced stimulation of ectopic recombination was observed when cells were irradiated with ionizing radiation but a threefold enhancement was observed when cells were irradiated with UV The increase in radiation-stimulated ectopic recombination resulting from heterozygosity at MAT correlated with greater spontaneous ectopic recombination and higher levels of viability after irradiation. We suggest that MAT functions that have been previously shown to control the level of mitotic, allelic recombination (homolog recombination) also control the level of mitotic, radiation-stimulated ectopic recombination between short dispersed repetitive sequences on non-homologous chromosomes.  相似文献   

16.
Mature males of Nauphoeta cinerea produce a sex pheromone 'seducin' which has short-range effects in attracting mature females of the same species. Exposure of newly-emerged adult males to 3.5, 7, 14 or 21 krad of gamma-radiation decreased their life expectancy and affected their mating behaviour. Bioassay of dichloromethane extracts of males showed that radiation doses (14 krad) sufficient to induce sterility did not affect the ability to produce pheromone but significantly reduced the release of pheromone by inhibiting wing-raising. The sterile-male technique using males sterilized by ionizing radiation in air may not be the method of choice for control of Nauphoeta cinerea.  相似文献   

17.
To study the role of nucleotide excision repair in the induction of intrachromosomal homologous recombination in mammalian cells, we introduced a plasmid containing a substrate for recombination into three human cell lines that differ in their repair capacity and compared the frequency of recombination induced by UV radiation and by 1-nitrosopyrene. One strain had a normal capacity for nucleotide excision repair, the second exhibited an intermediate rate of repair, and the third, derived from a patient with xeroderma pigmentosum, had no ability to repair UV- or 1-nitrosopyrene-induced DNA damage. The endogenous thymidine kinase genes in these cell strains had been inactivated, and the cells contained an integrated copy of a plasmid carrying duplicated copies of the herpes simplex virus type 1 thymidine kinase (Htk) gene, each inactivated by an 8-base-pair XhoI site inserted at a unique site. A functional tk gene can only be generated by a productive recombination event between the two Htk genes. In all three stains, UV and 1-nitrosopyrene induced dose-dependent increases in the frequency of recombinants. However, the doses required to cause a specific increase in recombination in the repair-deficient strains were 10 to 30 times lower than the dose required for the cell strain with a normal capacity for repair. These results strongly suggest that unexcised DNA lesions, rather than excision repair per se, stimulate intrachromosomal homologous recombination. Southern blot analysis of DNA from representative recombinants indicated that in all cases one of the two Htk genes had become wild type (XhoI resistant). The majority (90%) retained the Htk duplication, consistent with nonreciprocal transfer of genetic information (gene conversion).  相似文献   

18.
Mating competitiveness and sterility induction into cohorts of wild Anastrepha ludens (Loew) (Diptera: Tephritidae) was compared among wild and laboratory flies reared for use in the sterile insect technique Mexican program. Laboratory flies stemming from an 11-yr-old bisexual strain were either not irradiated, irradiated at 3 krad (low dose), or irradiated at 8 krad. In 30 by 30 by 30-cm Plexiglas cages, where a cohort of laboratory flies (male and female) irradiated at different doses (0, 3, and 8 krad) was introduced with a cohort of wild flies, males and females of each type mated randomly among themselves. Compared with nonirradiated laboratory and wild males, irradiated males, irrespective of dose (3 or 8 krad), induced shorter refractory periods and greater mating frequency in wild females. Nevertheless, laboratory flies irradiated at a low dose induced greater sterility into cohorts of wild flies than laboratory flies irradiated at a high dose. In a 3 by 3 by 3-m walk-in cage, wild males gained significantly more matings with wild females than nonirradiated and irradiated laboratory males a finding that revealed a strong effect of strain on mating performance. Mating incompatibility of the laboratory strain might have obscured the effect of reduced irradiation doses on male mating performance in the walk-in cage. Our results highlight an urgent need to replace the A. ludens strain currently used by the Mexican fruit fly eradication campaign and at least suggest that reducing irradiation doses result in an increase in sterility induction in wild populations.  相似文献   

19.
Sears BB  Boynton JE  Gillham NW 《Genetics》1980,96(1):95-114
In Chlamydomonas reinhardtii, gamete differentiation is induced by nitrogen deprivation. While cellular nitrogen content and amount of chloroplast DNA in cells of both mating types are reduced during gametogenesis, the spontaneous transmission of paternal (mt-) chloroplast alleles in crosses is specifically affected by the stringency of the nitrogen starvation regime used for pregrowth and gametogenesis of the mt- parent. In all cases, reciprocal crosses yielded biparental zygospores whose clones contain predominantly cells expressing only the chloroplast alleles from the maternal (mt+) parent. No differences attributable to strain divergence were seen in chloroplast gene inheritance pattern, DNA content, or the relative frequency of transmission of paternal chloroplast alleles to progeny of biparental zygospores.  相似文献   

20.
S ummary : Strains of Salmonella senftenberg isolated from Norwegian herring meal and strain 775W were exposed to gamma radiation from a 60Co source. When they were irradiated in phosphate buffered saline solution, the average D10 values for all the strains was 19·3 krad. On irradiating strains 56 and 775W in herring meal the D10 values were 192·1 and 188·5 krad, respectively, thus indicating that the suspending medium had a great effect on the radiation resistance of the organisms. Radiation doses of the order of 0·8–1·3 Mrad are recommended for the decontamination of herring meal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号