首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. Stereospecific deuterated benzylamine enantiomers, R(alpha-2H1)-and S(alpha-2H1)-benzylamine, were synthesized by a combined chemical and enzymatic method. 2. The retention or cleavage of the deuterium atom during deamination of benzylamine catalyzed by amine oxidases from different sources was assessed by a GC-MS procedure and confirmed by HPLC separation of the products and by the observation of a deuterium isotope effect. 3. Three types of stereospecific abstraction of hydrogen atoms from the alpha-carbon of benzylamine during deamination were observed: (a) In the first type of deamination the pro-R hydrogen is removed from the alpha-carbon. Enzymes in this category are mitochondrial MAO from different tissues; (b) The second type of deamination involves the abstraction of pro-S hydrogen. Soluble enzymes such as rat aorta benzylamine oxidase or diamine oxidase from hog kidney and pea seedling have been found to belong to this group; and (c) Bovine plasma amine oxidase exhibits the third type of deamination where no absolute stereospecificity is required. 4. The kinetic deuterium isotope effect during the deamination of benzylamine by the different amine oxidase varies greatly, i.e. VH/VD ranged from 1.7 to 4.0.  相似文献   

2.
1. Isotope effects on the catalytic activity of benzylamine oxidase at pH 7 and 9 have been studied by steady-state and transient-state kinetics methods, using [alpha,alpha-2H]benzylamine as the substrate. 2. Replacement of the alpha-hydrogen atoms in benzylamine by deuterium has no significant effect on substrate-binding to benzylamine oxidase, neither does it affect the rate of reoxidation of the reduced form of the enzyme. Conversion of the primarily formed enzyme-substrate complex into the reduced enzyme species, however, exhibits an isotope effect of about 3. 3. The data obtained are consistent with a mechanism in which reduction of benzylamine oxidase takes place by a rapid pre-equilibration between enzyme and substrate to form an amine-pyridoxal Schiff-base, which is then tautomerized by a comparatively slow prototropic shift to an amino aldehyde-pyridoxamine Schiff-base from which there is a rapid hydrolytic release of the aldehyde product corresponding to the amine substrate. Proton abstraction from the alpha-carbon of the amine moiety in the primary Schiff-base appears to be at least partially rate-limiting for the tautomerization step, and hence for the entire process of enzyme reduction.  相似文献   

3.
Copper amine oxidases (EC 1.4.3.6) exhibit atypical stereochemical patterns in the reactions they catalyze. Dopamine and tyramine are oxidized with abstraction of the pro-R hydrogen by the porcine plasma amine oxidase, the pro-S hydrogen by pea seedling amine oxidase and a net nonstereospecific proton abstraction by the bovine plasma enzyme. This provides the first example in which a reaction catalyzed by enzymes in the same formal class occurs by all three possible stereochemical routes. To assess the underlying mechanistic significance of this heterogeneity, we have established the stereochemical course of the oxidation of tyramine by five additional copper amine oxidases using 1H NMR spectroscopy. Reactions catalyzed by rabbit and sheep serum amine oxidases are nonstereospecific. These enzymes exhibit rare mirror image binding with differential flux through two opposite and stereospecific reaction pathways. Differential primary kinetic isotope effects are observed for each mode, 8 and 4.6 for pro-S abstraction and 2.6 and 2.7 for pro-R abstraction by the sheep and rabbit amine oxidases, respectively. Tyramine oxidations catalyzed by the soybean and chick pea amine oxidases and porcine kidney diamine oxidase, however, are all stereospecific, occurring with loss of the pro-S hydrogen at C-1. Solvent exchange profiles are consistent within each stereochemical class of enzyme; the pro-R and nonstereospecific enzymes exchange solvent into C-2 of product aldehydes, the pro-S enzymes do not.  相似文献   

4.
The ability of the gut to inactivate various amines by oxidative deamination was tested with a 130-fold purified amine oxidase preparation from dog small intestine. Of 34 amines tested, putrescine, benzylamine, cadaverine, and serotonin were the most favourable substrates. Histamine was inactivated rapidly by this enzyme preparation, too. Histamine derivatives methylated at the imidazole nucleus were also deaminated, whereas Nalpha-methylhistamine was only a poor substrate and Nalpha, Nalpha-dimethylhistamine was not a substrate at all. Using a second procedure for the purification of amine oxidases from gut, the separation of a soluble monoamine oxidase from diamine oxidase was achieved by gel filtration on Sephadex G-200. The diamine oxidase deaminated putrescine (Km = 1.3 x 10(-4)M) and histamine (Km = 6.6 x 10(-5)M), but not serotonin, and was inhibited by aminoguanidine, but not by pargyline. The soluble monoamine oxidase inactivated serotonin (Km = 4.5 x 10(-4)M), but not histamine and putrescine and was inhibited by pargyline, but not by aminoguanidine. It was concluded that in dog small intestine (as well as in rabbit small intestine) only diamine oxidase was capable of inactivating histamine by oxidative deamination.  相似文献   

5.
Oxidative deamination by monoamine oxidases of B type in the preparations of sarcoplasmic reticulum vesicles from rabbit skeletal muscles of beta-phenylethylamine or benzylamine was accompanied by a decrease of both the active transport of Ca2+ into the vesicles and Ca2+, Mg2+-dependent ATP-ase activity. This decrease was prevented by pretreatment of the vesicles with deprenyl, a specific monoamine oxidase type B inhibitor. The aldehydes formed in the course of enzymatic deamination of the substrates of type B, monoamine oxidases, are considered as possible participants in the regulation of Ca2+, Mg2+-dependent ATP-ase activity.  相似文献   

6.
Deuterium isotope effects on the kinetic parameters for deamination and N-hydroxylation of cyclohexylamine (CHA) catalyzed by rabbit liver microsomes with NADPH are investigated. Both reactions are inhibited by carbon monoxide and have the characteristics of typical cytochrome P450-dependent monooxygenase reactions. A small and significant deuterium isotope effect operates in the oxidative deamination of CHA. The apparent isotope effects, i.e., VH/VD and (V/K)H/(V/K)D ratios for deamination, are 1.75 and 1.8-2.3, respectively. On the basis of N-hydroxylation, the VH/VD and (V/K)H/(V/K)D ratios are 0.8-0.9. The N-hydroxylation rate of alpha-deuterated CHA (D-CHA) is somewhat higher than that of CHA. The increased increment of hydroxylamine formation seems to coincide with the decreased amount of deamination. Substitution of deuterium in the alpha-position of CHA results in metabolic switching of cytochrome P450 from deamination to N-hydroxylation with low deuterium isotope effects. The data are interpreted in terms of an initial one-electron abstraction from the nitrogen to form an aminium cation radical followed by recombination with iron-bound hydroxyl radical leading to N-hydroxylamine, or followed by alpha-carbon deprotonation to form a neutral carbon radical. The latter can lead to a carbinolamine intermediate for deamination by way of imine or recombination with nascent iron-bound hydroxyl radical. The relative rates of the reactions depend on the alpha-carbon deprotonation rates of amines.  相似文献   

7.
The interaction of xenon with copper/6-hydroxydopa (2,4,5-trihydroxyphenethylamine) quinone (TPQ) amine oxidases from the plant pulses lentil (Lens esculenta) and pea (Pisum sativum) (seedlings), the perennial Mediterranean shrub Euphorbia characias (latex), and the mammals cattle (serum) and pigs (kidney), were investigated by NMR and optical spectroscopy of the aqueous solutions of the enzymes. (129)Xe chemical shift provided evidence of xenon binding to one or more cavities of all these enzymes, and optical spectroscopy showed that under 10 atm of xenon gas, and in the absence of a substrate, the plant enzyme cofactor (TPQ), is converted into its reduced semiquinolamine radical. The kinetic parameters of the analyzed plant amine oxidases showed that the k(c) value of the xenon-treated enzymes was reduced by 40%. Moreover, whereas the measured K(m) value for oxygen and for the aromatic monoamine benzylamine was shown to be unchanged, the K(m) value for the diamine putrescine increased remarkably after the addition of xenon. Under the same experimental conditions, the TPQ of bovine serum amine oxidase maintained its oxidized form, whereas in pig kidney, the reduced aminoquinol species was formed without the radical species. Moreover the k(c) value of the xenon-treated pig enzyme in the presence of both benzylamine and cadaverine was shown to be dramatically reduced. It is proposed that the lysine residue at the active site of amine oxidase could be involved both in the formation of the reduced TPQ and in controlling catalytic activity.  相似文献   

8.
Potential inhibitory effects of the clinically utilized monoamine oxidase inhibitor tranylcypromine (TCP) on mammalian, plant, bacterial, and fungal copper-containing amine oxidases have been examined. The following enzymes have been investigated: human kidney diamine oxidase (HKAO), bovine plasma amine oxidase (BPAO), equine plasma amine oxidase (EPAO), pea seedling amine oxidase (PSAO), Arthrobacter globiformis amine oxidase (AGAO), and Pichia pastoris lysyl oxidase (PPLO). Only BPAO, EPAO, and AGAO were found to lose significant levels of activity when incubated with varying amounts of TCP. Inhibition of BPAO was completely reversible, with dialysis restoring full activity. TCP inhibition of AGAO was also found to be ultimately reversible; however, dialysis did not remove all bound compounds. Chemical displacement with either substrate or a substrate analogue successfully removed all bound TCP, indicating that this compound has a high affinity for the active site of AGAO. The notable lack of TCP inhibition on HKAO argues against the inhibition of diamine oxidase as a potential source for some of the deleterious side effects occurring in patients treated with this antidepressant. The marked differences observed in behavior among these enzymes speaks to the importance of intrinsic structural differences between the active sites of copper amine oxidases (CAO) which affect reactivity with a given inhibitor.  相似文献   

9.
A membrane-bound monoamine oxidase (EC 1.4.3.4) was demonstrated in homogenates of Hymenolepis diminuta. The enzyme oxidized a variety of biologically active amines (in decreasing order: dopamine, adrenaline, noradrenaline, tryptamine, tyramine, octopamine), there was, however, no activity with 5-hydroxytryptamine or benzylamine. No diamine oxidase (EC 1.4.3.6.) could be detected in H. diminuta (using histamine, cadaverine or putrescine as substrates). The monoamine oxidase from H. diminuta was not inhibited by azide, hydroxylamine or semicarbazide, but was inhibited by cupferron, alpha-alpha dipyridyl and iodoacetamide, and by the specific monoamine oxidase inhibitors pargyline, nialamide and iproniazid. Several anthelmintics were also found to be inhibitors of monoamine oxidase. The possible roles of monoamine oxidase in H. diminuta are discussed.  相似文献   

10.
P H Yu  T V Nguyen 《Life sciences》1985,37(14):1287-1291
The rate of transamination of p-tyrosine catalyzed by rat liver soluble tyrosine aminotransferase (E.C. 2.6.1.5.) was significantly reduced when the hydrogen at the alpha-carbon position is replaced by deuterium or when the reactions were conducted in 2H2O. The cleavage of carbon-hydrogen bond at alpha-carbon position is at least partly involved in the rate-limiting step of tyrosine transamination. In 2H2O solvent the reduction of the overall rates of transamination of both p-tyrosine and alpha-2H1-p-tyrosine occurred uncompetitively which suggests that the deuterium solvent effect is involved in the tautomerization of the external Schiff's base.  相似文献   

11.
To determine the steric course of the reaction of bacterial ornithine decarboxylase [EC 4.1.1.17], we have carried out the decarboxylation of L-ornithine in 2H2O and that of DL-[2-2H]ornithine in H2O, and obtained putrescine bearing a single deuterium atom in the C-1 position. The stereochemistry of [1-2H]putrescine was established by conversion to 1-(2-pyrrolidinyl)-2-propanone with acetoacetate and the pro-S hydrogen-specific diamine oxidase from pea seedlings. Analysis of deuterium content by gas chromatography-mass spectrometry showed that the deuterium label was fully retained during the conversion of [1-2H]putrescine produced by the decarboxylation of L-ornithine in 2H2O to 1-(2-pyrrolidinyl)-2-propanone, in contrast with the considerable loss of label from [1-2H]putrescine which was produced by the decarboxylation of DL-[2-2H]ornithine in H2O. The extent of loss of the deuterium label was in good agreement with the estimated value based on the isotope effect in the diamine oxidase reaction. These results indicate that the introduced deuterium (or hydrogen) is in the pro-R position at C-1 of putrescine, and consequently the ornithine decarboxylase reaction proceeds with retention of configuration.  相似文献   

12.
M M Palcic  J P Klinman 《Biochemistry》1983,22(25):5957-5966
Bovine plasma amine oxidase catalyzes the oxidative deamination of primary amines. The reaction can be viewed as two half-reactions: enzyme reduction by substrate followed by enzyme reoxidation by dioxygen. Anaerobic stopped-flow kinetic measurements of the first half-reaction indicate very large deuterium isotope effects for benzylamine, m-tyramine, and dopamine, Dk = 13.5 +/- 1.3, which are ascribed to an intrinsic isotope effect. From the insensitivity of these isotope effects to amine concentration, stopped-flow data provide substrate dissociation constants, K1, and rate constants for the C-H bond cleavage step, k3, directly. Steady-state isotope effects have also been measured for benzylamine and six ring-substituted phenethylamines. Whereas a small range of values for kcat, 0.38-1.2 s-1, and Dkcat, 5.4-8.8, is observed, kcat/Km = 1.3 X 10(2) to 3.8 X 10(4) M-1 S-1 and D(kcat/Km) = 5.6-16.1 indicate a marked effect of ring substituent. As described earlier [Miller, S., & Klinman, J.P. (1982) Methods Enzymol. 87, 711], the availability of an intrinsic isotope effect for an enzymatic reaction permits calculation of microscopic constants from steady-state data. By employment of a minimal mechanism for bovine plasma amine oxidase involving a single precatalytic and multiple postcatalytic enzyme-substrate complexes, equations have been derived that allow calculation of k3 and K1 when DKeq congruent to 1 less than Dk. Unexpectedly, in the case of K1, we have shown that this parameter can be calculated from steady-state parameters without the requirement for an intrinsic isotope effect. This result should have general application to both ping-pong and sequential ternary-complex enzyme mechanisms. Of significance for future applications of steady-state isotope effects to the calculation of microscopic constants, values for K1 and k3 derived from steady-state parameters and single turnover measurements indicate excellent agreement. Compilation of parameters among six ring-substituted phenethylamines reveals alteration in delta G for enzyme-substrate complex formation by 2.8 kcal/mol, together with an essentially invariant rate constant for C-H bond activation. A detailed discussion of the relevance of these findings to the interrelationship of binding energy and catalytic efficiency in enzyme reactions is presented.  相似文献   

13.
Mycobacterium sp. strain JC1 was capable of growth on benzylamine as a sole source of carbon and energy. The primary deamination of benzylamine was mediated by an inducible amine oxidase, which can also oxidize tyramine, histamine, and dopamine. Inhibitor study identified this enzyme as a copper-containing amine oxidase sensitive to semicarbazide.  相似文献   

14.
Oxidation of six amine substrates by rat, rabbit and guinea-pig lung mitochondrial monoamine oxidase (MAO) was investigated polarographically with a Clark oxygen electrode in the presence of chlorphentermine (CP). This amphiphilic drug decreased the deamination of serotonin, norepinephrine, tyramine and dopamine significantly in all three species. However, the oxidation of tryptamine and benzylamine was unchanged. Amine oxidation by MAO in guinea-pig lung mitochondria was much more sensitive to the CP-mediated inhibition than rat or rabbit. A kinetic study of serotonin oxidation in the absence and presence of CP showed that both Vmax and Km were affected. These combined data indicate that CP is a specific inhibitor of pulmonary, mitochondrial monoamine oxidase form A with mixed-type inhibition.  相似文献   

15.
The longitudinal smooth muscle of guinea pig ileum contains three different types of oxidative deaminating enzymes: monoamine oxidase types A and B, diamine oxidase and a soluble clorgyline-deprenyl-resistant benzylamine oxidase. These enzymes have different subcellular locations. The longitudinal smooth muscle of guinea pig ileum oxidatively deaminates beta-phenylethylamine at a much higher rate than benzylamine. beta-Phenylethylamine is a good substrate for monoamine oxidase type B but also for the soluble clorgyline-deprenyl-resistant benzylamine oxidase. On the other hand, benzylamine is oxidised by mitochondrial monoamine oxidase, by the clorgyline-deprenyl-resistant enzyme and by diamine oxidase.  相似文献   

16.
Reduction of benzylamine oxidase by p-methoxybenzylamine under anaerobic conditions leads to biphasic absorbance changes at 470 nm. These reflect the intermediate formation of an enzyme substrate complex with spectral properties different from those of native enzyme and fully reduced enzyme. The spectrally modified enzyme-substrate complex exhibits a broad difference absorption band centered around 360 nm. The transient accumulation of this intermediate during reaction can be conveniently followed by stopped-flow techniques at wavelengths between 320 and 360 nm, where contributions from the subsequent reduction of the enzymic 470-nm chromophore are of minor significance. 2. Analogous intermediates exhibiting similar absorption spectra seem to be formed on reduction of the enzyme by benzylamine and other amine substrates which were tested. Substitution of benzylamine as the reducing substrate by [alpha, alpha-2H]benzylamine results in a decreased accumulation of the spectrally modified intermediate. This indicates that its formation is preceded by deprotonation of the alpha-carbon of the amine substrate. 3. Circular dichroism spectra of benzylamine oxidase exhibit a positive band at 360 nm, lending support to the previous conclusion that benzylamine oxidase is a pyridoxal enzyme. Formation of the spectrally modified enzyme-substrate complex then most likely reflects the prototropic shift converting an amine-pyridoxal Schiff-base obtained by rapid pre-equilibration between enzyme and substrate into an aldehyde-pyridoxamine Schiff-base.  相似文献   

17.
Multiple amine oxidases in cucumber seedlings   总被引:6,自引:5,他引:1       下载免费PDF全文
Cell-free extracts of cucumber (Cucumis sativus L. cv. National Pickling) seedlings were found to have amine oxidase activity when assayed with tryptamine as a substrate. Studies of the effect of lowered pH on the extract indicated that this activity was heterogeneous, and three amine oxidases could be separated by ion exchange chromatography. The partially purified enzymes were tested for their activities with several substrates and for their sensitivities to various amine oxidase inhibitors. One of the enzymes may be a monoamine oxidase, although it is inhibited by some diamine oxidase inhibitors. The other two enzymes have properties more characteristic of the diamine oxidases. The possible relationship of the amine oxidases to indoleacetic acid biosynthesis in cucumber seedlings is discussed.  相似文献   

18.
The equivalence of aminomethylene groups in selected diamine substrates of diamine oxidase was exploited for the determination of intramolecular isotope effects. In the series of substrates, [1,1-2H2]-1,3-diaminopropane, [1,1-2H2]-1,5-diaminopentane, [1,1-2H2]-1,6-diaminohexane, [1,1-2H2]-1,7-diaminoheptane and [alpha,alpha-2H2]-4-(aminomethyl)benzylamine, the preference of the enzyme for reaction at the unlabeled methylene was found to vary from 1.45 to 10.5-fold. The observed partitioning ratios go through a minimum value with 1,5-diaminopentane, the best substrate of diamine oxidase of the compounds tested. The results suggest that fast substrates have less opportunity to reorient into alternate binding conformations while bound to the active site of the enzyme. On the other hand, diamine substrates tested that cannot exist in energetically favorable conformations with internitrogen distances of about 7-8 A showed larger intramolecular isotope effects.  相似文献   

19.
Previous studies have shown that the hydrogen atom transfer (HAT) reactions of tert-butoxyl radical from the Parkinsonian proneurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) occur with low selectivity at the allylic and non-allylic alpha-C-H positions. In this paper, we report a more comprehensive regiochemical study on the reactivity of the tert-butoxyl radical as well as on the associated primary kinetic deuterium isotope effects for the various hydrogen atom abstractions of MPTP. In addition, the results of a computational study to estimate the various C-H bond dissociation energies of MPTP are presented. The results of the present study show the allylic/non-allylic selectivity is approximately 73:21. The behavior of the tert-butoxyl radical mediated oxidation of MPTP contrasts with this reaction as catalyzed by monoamine oxidase B (MAO-B) that occurs selectively at the allylic alpha-carbon. These observations lead to the conclusion that the tert-butoxyl radical is not a good chemical model for the MAO-B-catalyzed bioactivation of MPTP.  相似文献   

20.
Kinetic deuterium isotope effects for the noncompetitive, intermolecular monoamine oxidase B-catalyzed oxidation of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to the corresponding 1-methyl-4-phenyl-2,3-dihydropyridinium species MPDP+ were found to be 3.55 on Vmax and 8.01 on Vmax/Km with MPTP-6,6-d2 as the deuterated substrate. Similar values were obtained with MPTP-2,2,6-d4 and MPTP-CD3-2,2,6,6-d4. The deuterium isotope effect for the electrochemical oxidation of 1 mM MPTP-2,2,6,6-d4 was only 1.35. These results indicate that the monoamine oxidase B-catalyzed oxidation of this substrate may not proceed via a reaction pathway involving alpha-carbon deprotonation of an aminium radical intermediate. Isotope effect measurements also established that the rate of inactivation of monoamine oxidase B by MPTP is unaffected by replacement of the C-6 methylene protons with deuterons, but is retarded by replacement of the C-2 methylene protons (DKi = 1.9). The mechanism-based inactivation of monoamine oxidase B by MPTP, therefore, is likely to mediated by a species derived from the enzyme-generated 2,3-dihydropyridinium oxidation product.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号