首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ruvinsky I  Silver LM  Gibson-Brown JJ 《Genetics》2000,156(3):1249-1257
The duplication of preexisting genes has played a major role in evolution. To understand the evolution of genetic complexity it is important to reconstruct the phylogenetic history of the genome. A widely held view suggests that the vertebrate genome evolved via two successive rounds of whole-genome duplication. To test this model we have isolated seven new T-box genes from the primitive chordate amphioxus. We find that each amphioxus gene generally corresponds to two or three vertebrate counterparts. A phylogenetic analysis of these genes supports the idea that a single whole-genome duplication took place early in vertebrate evolution, but cannot exclude the possibility that a second duplication later took place. The origin of additional paralogs evident in this and other gene families could be the result of subsequent, smaller-scale chromosomal duplications. Our findings highlight the importance of amphioxus as a key organism for understanding evolution of the vertebrate genome.  相似文献   

2.
Gene duplication has certainly played a major role in structuring vertebrate genomes but the extent and nature of the duplication events involved remains controversial. A recent study identified two major episodes of gene duplication: one episode of putative genome duplication ca. 500 Myr ago and a more recent gene-family expansion attributed to segmental or tandem duplications. We confirm this pattern using methods not reliant on molecular clocks for individual gene families. However, analysis of a simple model of the birth-death process suggests that the apparent recent episode of duplication is an artefact of the birth-death process. We show that a constant-rate birth-death model is appropriate for gene duplication data, allowing us to estimate the rate of gene duplication and loss in the vertebrate genome over the last 200 Myr (0.00115 and 0.00740 Myr(-1) lineage(-1), respectively). Finally, we show that increasing rates of gene loss reduce the impact of a genome-wide duplication event on the distribution of gene duplications through time.  相似文献   

3.
Vertebrate genomes are larger than invertebrates and show evidence of extensive gene duplication, including many collinear chromosomal segments. On the basis of this intra-genomic synteny, it has been proposed that two rounds of whole genome duplication (octaploidy) occurred early in the vertebrate lineage. Recently, this early vertebrate octaploidy has been challenged on the basis of gene trees. We report new linkage groups encompassing the matrilin (MATN), syndecan (SDC), Eyes Absent (EYA), HCK kinase and SRC kinase paralogous gene quartets. In contrast to other studies, the sequence trees are weakly supportive of ancient octaploidy. It is concluded that there is no strong evidence against the octaploidy, provided that consecutive genome duplication was rapid.  相似文献   

4.
The ParaHox cluster contains three Hox-related homeobox genes. The evolution of this sister of the Hox-gene clusters has been studied extensively in metazoans with a focus on its early evolution. Its fate within the vertebrate lineage, and in particular following the teleost-specific genome duplication, however, has not received much attention. Three of the four human ParaHox loci are linked with PDGFR family tyrosine kinases. We demonstrate that these loci arose as duplications in an ancestral vertebrate and trace the subsequent history of gene losses. Surprisingly, teleost fishes have not expanded their ParaHox repertoire following the teleost-specific genome duplication, while duplicates of the associated tyrosine kinases have survived, supporting the hypothesis of a large-scale duplication followed by extensive gene loss.  相似文献   

5.
The study of the evolutionary origin of vertebrates has been linked to the study of genome duplications since Susumo Ohno suggested that the successful diversification of vertebrate innovations was facilitated by two rounds of whole-genome duplication (2R-WGD) in the stem vertebrate. Since then, studies on the functional evolution of many genes duplicated in the vertebrate lineage have provided the grounds to support experimentally this link. This article reviews cases of gene duplications derived either from the 2R-WGD or from local gene duplication events in vertebrates, analyzing their impact on the evolution of developmental innovations. We analyze how gene regulatory networks can be rewired by the activity of transposable elements after genome duplications, discuss how different mechanisms of duplication might affect the fate of duplicated genes, and how the loss of gene duplicates might influence the fate of surviving paralogs. We also discuss the evolutionary relationships between gene duplication and alternative splicing, in particular in the vertebrate lineage. Finally, we discuss the role that the 2R-WGD might have played in the evolution of vertebrate developmental gene networks, paying special attention to those related to vertebrate key features such as neural crest cells, placodes, and the complex tripartite brain. In this context, we argue that current evidences points that the 2R-WGD may not be linked to the origin of vertebrate innovations, but to their subsequent diversification in a broad variety of complex structures and functions that facilitated the successful transition from peaceful filter-feeding non-vertebrate ancestors to voracious vertebrate predators.  相似文献   

6.
While the proposal that large-scale genome expansions occurred early in vertebrate evolution is widely accepted, the exact mechanisms of the expansion—such as a single or multiple rounds of whole genome duplication, bloc chromosome duplications, large-scale individual gene duplications, or some combination of these—is unclear. Gene families with a single invertebrate member but four vertebrate members, such as the Hox clusters, provided early support for Ohno's hypothesis that two rounds of genome duplication (the 2R-model) occurred in the stem lineage of extant vertebrates. However, despite extensive study, the duplication history of the Hox clusters has remained unclear, calling into question its usefulness in resolving the role of large-scale gene or genome duplications in early vertebrates. Here, we present a phylogenetic analysis of the vertebrate Hox clusters and several linked genes (the Hox “paralogon”) and show that different phylogenies are obtained for Dlx and Col genes than for Hox and ErbB genes. We show that these results are robust to errors in phylogenetic inference and suggest that these competing phylogenies can be resolved if two chromosomal crossover events occurred in the ancestral vertebrate. These results resolve conflicting data on the order of Hox gene duplications and the role of genome duplication in vertebrate evolution and suggest that a period of genome reorganization occurred after genome duplications in early vertebrates.  相似文献   

7.
Extracellular matrix (ECM) is a key metazoan characteristic. In addition to providing structure and orientation to tissues, it is involved in many cellular processes such as adhesion, migration, proliferation and differentiation. Here we provide a comprehensive analysis of ECM molecules focussing on when vertebrate specific matrices evolved. We identify 60 ECM genes and 20 associated processing enzymes in the genome of the urochordate Ciona intestinalis. A comparison with vertebrate and protostome genomes has permitted the identification of both a core set of metazoan matrix genes and vertebrate-specific innovations in the ECM. We have identified a few potential cases of de novo vertebrate ECM gene innovation, but the majority of ECM genes have resulted from duplication of pre-existing genes present in the ancestral vertebrate. In conclusion, the modern complexity we see in vertebrate ECM has come about largely by duplication and modification of pre-existing matrix molecules. Extracellular matrix genes and their processing enzymes appear to be over-represented in the vertebrate genome suggesting that these genes played an active role enabling and underpinning the evolution of vertebrates.  相似文献   

8.
The number and role of whole-genome duplications in vertebrate evolution has intrigued evolutionary biologists since Ohno first proposed genome duplication as the force driving the 'big leap' in vertebrate morphological innovation. Attempts to resolve these issues have been thwarted by small and noisy datasets, and by lack of computational accuracy and statistical rigor. Recently, Ken Wolfe and colleagues presented a genome-scale, statistically rigorous analysis of evidence based on the spatial organization of duplicated genes, as well as estimates of duplication times. Their results provide the strongest evidence to date of large-scale duplication throughout the vertebrate genome, consistent with at least one whole-genome duplication.  相似文献   

9.
The new discipline of Evolutionary Developmental Biology (Evo-Devo) is facing the fascinating paradox of explaining morphological evolution using conserved pieces or genes to build divergent animals. The cephalochordate amphioxus is the closest living relative to the vertebrates, with a simple, chordate body plan, and a genome directly descended from the ancestor prior to the genome-wide duplications that occurred close to the origin of vertebrates. Amphioxus morphology may have remained relatively invariant since the divergence from the vertebrate lineage, but the amphioxus genome has not escaped evolution. We report the isolation of a second Emx gene (AmphiEmxB) arising from an independent duplication in the amphioxus genome. We also argue that a tandem duplication probably occurred in the Posterior part of the Hox cluster in amphioxus, giving rise to AmphiHox14, and discuss the structure of the chordate and vertebrate ancestral clusters. Also, a tandem duplication of Evx in the amphioxus lineage produced a prototypical Evx gene (AmphiEvxA) and a divergent gene (AmphiEvxB), no longer involved in typical Evx functions. These examples of specific gene duplications in amphioxus, and other previously reported duplications summarized here, emphasize the fact that amphioxus is not the ancestor of the vertebrates but 'only' the closest living relative to the ancestor, with a mix of prototypical and amphioxus-specific features in its genome.  相似文献   

10.
Fibril-forming (fibrillar) collagens are extracellular matrix proteins conserved in all multicellular animals. Vertebrate members of the fibrillar collagen family are essential for the formation of bone and teeth, tissues that characterise vertebrates. The potential role played by fibrillar collagens in vertebrate evolution has not been considered previously largely because the family has been around since the sponge and it was unclear precisely how and when those particular members now found in vertebrates first arose. We present evidence that the classical vertebrate fibrillar collagens share a single common ancestor that arose at the very dawn of the vertebrate world and prior to the associated genome duplication events. Furthermore, we present a model, 'molecular incest', that not only accounts for the characteristics of the modern day vertebrate fibrillar collagen family but demonstrates the specific effects genome or gene duplications may have on the evolution of multimeric proteins in general.  相似文献   

11.
The Y receptors comprise a family of G-protein coupled receptors with neuropeptide Y-family peptides as endogenous ligands. The Y receptor family has five members in mammals and evolutionary data suggest that it diversified in the two genome duplications proposed to have occurred early in vertebrate evolution. If this theory holds true, it allows for additional family members to be present. We describe here the cloning, pharmacological characterization, tissue distribution, and chromosomal localization of a novel subtype of the Y-receptor family, named Y7, from the zebrafish. We also present Y7 sequences from rainbow trout and two amphibians. The new receptor is most similar to Y2, with 51–54% identity. As Y2 has also been cloned from some of these species, there clearly are two separate Y2-subfamily genes. Chromosomal mapping in zebrafish supports origin of Y7 as a duplicate of Y2 by chromosome duplication in an early vertebrate. Y7 has probably been lost in the lineage leading to mammals. The pharmacological profile of the zebrafish Y7 receptor is different from mammalian Y2, as it does not bind short fragments of NPY with a high affinity. The Y7 receptor supports the theory of early vertebrate genome duplications and suggests that the Y family of receptors is a result of these early genome duplications.  相似文献   

12.
Thirty years after Susumu Ohno proposed that vertebrate genomes are degenerate polyploids, the extent to which genome duplication contributed to the evolution of the vertebrate genome, if at all, is still uncertain. Sequence-level studies on model organisms whose genomes show clearer evidence of ancient polyploidy are invaluable because they indicate what the evolutionary products of genome duplication can look like. The greatest mystery is the molecular basis of diploidization, the evolutionary process by which a polyploid genome turns into a diploid one.  相似文献   

13.
It has been proposed that two events of duplication of the entire genome occurred early in vertebrate history (2R hypothesis). Several phylogenetic studies with a few gene families (mostly Hox genes and proteins from the MHC) have tried to confirm these polyploidization events. However, data from a single locus cannot explain the evolutionary history of a complete genome. To study this 2R hypothesis, we have taken advantage of the phylogenetic position of the lamprey to study the history of gene duplications in vertebrates. We selected most gene families that contain several paralogous genes in vertebrates and for which lamprey genes and an out-group are known in databases. In addition, we isolated members of the nuclear receptor superfamily in lamprey. Hagfish genes were also analyzed and found to confirm the lamprey gene analysis. Consistent with the 2R hypothesis, the phylogenetic analysis of 33 selected gene families, dispersed through the whole genome, revealed that one period of gene duplication arose before the lamprey-gnathostome split and this was followed by a second period of gene duplication after the lamprey-gnathostome split. Nevertheless, our analysis suggests that numerous gene losses and other gene-genome duplications occurred during the evolution of the vertebrate genomes. Thus, the complexity of all the paralogy groups present in vertebrates should be explained by the contribution of genome duplications (2R hypothesis), extra gene duplications, and gene losses.  相似文献   

14.
Nuclear hormone receptors form one evolutionary related super-family of proteins, which mediate the interaction between hormones (or other ligands) and gene expression in animals. Early phylogenetic analyses showed two main periods of gene duplication which gave rise to present-day diversity in most animals: one at the origin of the family, and another specifically in vertebrates. Moreover this second period is composed itself by, probably, two rounds of duplication, as proposed by Susumu Ohno at the origin of vertebrates. There are indeed often two, three or four vertebrate orthologs of each invertebrate nuclear receptor, in accordance with this theory. The complete genome of Drosophila melanogaster contains 21 nuclear receptors, compared to 49 in the human genome. In addition, many nuclear receptors have more paralogs in the zebrafish than in mammals, and a genome duplication has been proposed at the origin of ray-finned fishes. Nuclear receptors are a very good model to investigate the dating and functional role of these duplications, since they are dispersed in the genome, allow robust phylogenetic reconstruction, and are functionnaly well characterized, with different adaptations for different paralogs. We illustrate this with examples from differents nuclear receptors and different groups of species.  相似文献   

15.
In this paper we have analyzed 49 vertebrate gene families that were generated in the early stage of vertebrates and/or shortly before the origin of vertebrates, each of which consists of three or four member genes. We have dated the first (T1) and second (T2) gene duplications of 26 gene families with 3 member genes. The means of T1 (594 mya) and T2 (488 mya) are largely consistent to a well-cited version of two-round (2R) genome duplication theory. Moreover, in most cases, the time interval between two successive gene duplications is large enough that the fate of duplicate genes generated by the first gene duplication was likely to be determined before the second one took place. However, the phylogenetic pattern of 23 gene families with 4 members is complicated; only 5 of them are predicted by 2R model, but 11 families require an additional gene (or genome) duplication. For the rest (7 families), at least one gene duplication event had occurred before the divergence between vertebrate and Drosophila, indicating a possible misleading of the 4:1 rule (member gene ratio between vertebrates and invertebrates). Our results show that Ohno's 2R conjecture is valid as a working hypothesis for providing a most parsimonious explanation. Although for some gene families, additional gene duplication is needed, the credibility of the third genome duplication (3R) remains to be investigated. Received: 13 December 1999 / Accepted: 7 April 2000  相似文献   

16.
Complete genome sequence data led rapidly to the conclusion that ancient genome duplications had shaped the genomes of the model organisms Saccharomyces cerevisiae and Arabidopsis thaliana. Recent contributions have gone on to refine date estimates for these duplications and, in the case of Arabidopsis, to infer additional, more ancient, rounds of duplication by reconstructing gene order before the most recent duplication event. It is becoming widely accepted that an ancient duplication occurred before the radiation of the ray-finned fish. However, despite methodological advances and the availability of complete genome sequence data the debate over whether very ancient genome duplications have occurred early in the vertebrate lineage has not yet been fully resolved.  相似文献   

17.
Two rounds of whole genome duplication in the ancestral vertebrate   总被引:5,自引:0,他引:5  
Dehal P  Boore JL 《PLoS biology》2005,3(10):e314
The hypothesis that the relatively large and complex vertebrate genome was created by two ancient, whole genome duplications has been hotly debated, but remains unresolved. We reconstructed the evolutionary relationships of all gene families from the complete gene sets of a tunicate, fish, mouse, and human, and then determined when each gene duplicated relative to the evolutionary tree of the organisms. We confirmed the results of earlier studies that there remains little signal of these events in numbers of duplicated genes, gene tree topology, or the number of genes per multigene family. However, when we plotted the genomic map positions of only the subset of paralogous genes that were duplicated prior to the fish–tetrapod split, their global physical organization provides unmistakable evidence of two distinct genome duplication events early in vertebrate evolution indicated by clear patterns of four-way paralogous regions covering a large part of the human genome. Our results highlight the potential for these large-scale genomic events to have driven the evolutionary success of the vertebrate lineage.  相似文献   

18.
Teleost fishes have evolved a unique complexity and diversity of pigmentation and colour patterning that is unmatched among vertebrates. Teleost colouration is mediated by five different major types of neural‐crest derived pigment cells, while tetrapods have a smaller repertoire of such chromatophores. The genetic basis of teleost colouration has been mainly uncovered by the cloning of pigmentation genes in mutants of zebrafish Danio rerio and medaka Oryzias latipes. Many of these teleost pigmentation genes were already known as key players in mammalian pigmentation, suggesting partial conservation of the corresponding developmental programme among vertebrates. Strikingly, teleost fishes have additional copies of many pigmentation genes compared with tetrapods, mainly as a result of a whole‐genome duplication that occurred 320–350 million years ago at the base of the teleost lineage, the so‐called fish‐specific genome duplication. Furthermore, teleosts have retained several duplicated pigmentation genes from earlier rounds of genome duplication in the vertebrate lineage, which were lost in other vertebrate groups. It was hypothesized that divergent evolution of such duplicated genes may have played an important role in pigmentation diversity and complexity in teleost fishes, which therefore not only provide important insights into the evolution of the vertebrate pigmentary system but also allow us to study the significance of genome duplications for vertebrate biodiversity.  相似文献   

19.
Fourfold paralogy regions in the human genome have been considered historical remnants of whole-genome duplication events predicted to have occurred early in vertebrate evolution. Taking advantage of the well-annotated and high-quality human genomic sequence map as well as the ever-increasing accessibility of large-scale genomic sequence data from a diverse range of animal species, we investigated the prediction that the ancestral vertebrate genome was shaped by two rapid rounds of whole-genome duplication within a period of 10 million years. Both the map self-comparison approach and a phylogenetic analysis revealed that gene families identified as tetralogous on human chromosomes 1/2/8/20 arose by small-scale duplication events that occurred at widely different time points in animal evolution. Furthermore, the data discount the likelihood that tree topologies of the form ((A,B)(C,D)) are best explained by the octoploidy hypothesis. We instead propose that such symmetrical tree patterns are also consistent with local duplications and rearrangement events.  相似文献   

20.
The widely accepted notion that two whole-genome duplications occurred during early vertebrate evolution (the 2R hypothesis) stems from the fact that vertebrates often possess several genes corresponding to a single invertebrate homolog. However the number of genes predicted by the Human Genome Project is less than twice as many as in the Drosophila melanogaster or Caenorhabditis elegans genomes. This ratio could be explained by two rounds of genome duplication followed by extensive gene loss, by a single genome duplication, by sequential local duplications, or by a combination of any of the above. The traditional method used to distinguish between these possibilities is to reconstruct the phylogenetic relationships of vertebrate genes to their invertebrate orthologs; ratios of invertebrate-to-vertebrate counterparts are then used to infer the number of gene duplication events. The lancelet, amphioxus, is the closest living invertebrate relative of the vertebrates, and unlike protostomes such as flies or nematodes, is therefore the most appropriate outgroup for understanding the genomic composition of the last common ancestor of all vertebrates. We analyzed the relationships of all available amphioxus genes to their vertebrate homologs. In most cases, one to three vertebrate genes are orthologous to each amphioxus gene (median number=2). Clearly this result, and those of previous studies using this approach, cannot distinguish between alternative scenarios of chordate genome expansion. We conclude that phylogenetic analyses alone will never be sufficient to determine whether genome duplication(s) occurred during early chordate evolution, and argue that a "phylogenomic" approach, which compares paralogous clusters of linked genes from complete amphioxus and human genome sequences, will be required if the pattern and process of early chordate genome evolution is ever to be reconstructed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号