首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The California (LGCA) and Butte Sink (LGBS) strains of the sterol auxotrophic fungus Lagenidium giganteum (Oomycetes: Lagenidiales) enter the sexual cycle on media supplemented with sterols. A third isolate of this mosquito pathogen, the North Carolina strain (LGNC), requires sterols plus phospholipids to produce oospores in vitro. Enrichment of the polar and neutral lipid fractions of the LGCA and LGBS strains with unsaturated fatty acids promoted oospore induction, and increased oospore viability. With the exception of the LGCA strain, there was no consistent relationship between phospholipid supplementation in growth media and mycelial phospholipid content.  相似文献   

2.
The microsomal membrane cholesterol and phospholipid content and phospholipid composition of marasmic kwashiorkor rats have been compared with those of normal rats. A Significant increase in the cholesterol/phospholipid ratio, as well as in the sphingomyelin/phosphatidyl-choline ratio was observed in the marasmic-kwashiorkor rat. These effects would tend to decrease the fluidity of the phospholipid bilayer of the endoplasmic reticulum membrane and may thus affect drug metabolism.It is well known that a change in the quality or quantity of dietary protein causes an alteration in the rates of metabolism of many xenobiotics by the mammalian liver (1–3). These metabolic alteration have been attributed mainly to changes in the levels of microsomal membrane proteins themselves, especially that of cytochrome P-450 (4–6). However, a recent report by Suzuki et al. (7) indicates that the more subtle features of drug metabolism such as interactions between NADPH-cytochrome P-450 reductase, cytochrome P-450, cytochrome b and other specific drug metabolzing enzymes in the membrane of the endoplasmic reticulum might well be affected by the fluidity of the phospholipid bilayer.There is still a high incidence of protein-energy malnutrition (PEM) diseases such as kwashiorkor in many part of the world (8). The membrane lipid composition from microsomes of marasmic-kwashiorkor rats have therefore been investigated with a view to finding out if there are any changes in these components due to protein deficiency which could contribute to the decreased metabolism of xenobiotics in this condition.  相似文献   

3.
Developmental changes in synaptic membrane lipid composition and fluidity   总被引:5,自引:0,他引:5  
Synaptic membrane enriched fractions were prepared from 7 and 14 day and adult cortical nerve endings. (a) The levels of synaptic membrane phosphatidylcholine decrease 19% during development while the levels of ethanolamine phosphoglycerides increase 21%. (b) On day 7, desmosterol accounts for 33% of the total membrane sterols. With maturity, the desmosterol disappears and the molar sterol/lipid P ratio increases 56%. (c) The fatty acid composition of the membranes change during development. 16:0 decreases 36% while 18:1 increases 49%. 16:1, a minor component of adult membranes, is found in significant quantities in pup membranes. 22:6 (n-3) increases 34% during development while 22:5 (n-6) decreases 59%. (d) The microviscosity of synaptic membranes, as measured by the fluorescence depolarization technique, increases during development. This effect is observed in both intact membranes and bilayers prepared from lipid extracts of the membrane.  相似文献   

4.
Four different plasma membrane preparations were isolated from multiple drug resistant and sensitive isolates of two isogenic groups of Saccharomyces cerevisiae strains: zymolyase ghosts, concanavalin A ghosts, pH 4 nonaggregated vesicles, and sucrose-gradient purified vesicles. The viscosities of these preparations were determined by the use of a fluorescence polarization technique with 1,6-diphenyl-1,3,5-hexatriene. The viscosities of all four membrane preparations within an isogenic set were the same for resistant and sensitive strains. A comparison of the viscosity of zymolyase ghost liposomes showed that zymolyase ghost (glyco) proteins of resistant and sensitive strains had the same effect on viscosity. There was no difference between resistant and sensitive isolates in the mole concentration of the following lipid classes extracted from zymolyase ghosts: phospholipid, sterol, sterol ester, triglyceride, diglyceride, and free fatty acid. The fatty acid distribution of esterified and free fatty acids and the distribution of nine phospholipids was the same in zymolyase ghosts from sensitive and resistant strains. It was concluded that multiple drug resistance does not result from an alteration in plasma membrane viscosity or lipid composition.  相似文献   

5.
6.
7.
Lipopolysaccharide composition of three strains of Haemophilus influenzae   总被引:6,自引:0,他引:6  
The lipopolysaccharides of three strains of Haemophilus influenzae with varying beta-lactam susceptibility were examined. All three strains contained galactose, glucose, galactosamine, glucosamine, heptose, phosphate, and a trace of mannose. None contained fucose, rhamnose, or mannosamine. Levels of 2-keto-3-deoxy-octulosonic acid were consistently detected in all three strains at levels similar to that of Salmonella typhimurium LT2, but only following hydrolysis with 4 N hydrochloric acid.  相似文献   

8.
Radiation-induced lipid peroxidation in phospholipid liposomes was investigated in terms of its dependence on lipid composition and oxygen concentration. Non-peroxidizable lipid incorporated in the liposomes reduced the rate of peroxidation of the peroxidizable phospholipid acyl chains, possibly by restricting the length of chain reactions. The latter effect is believed to be caused by interference of the non-peroxidizable lipids in the bilayer. At low oxygen concentration lipid peroxidation was reduced. The cause of this limited peroxidation may be a reduced number of radical initiation reactions possibly involving oxygen-derived superoxide radicals. Killing of proliferating mammalian cells, irradiated at oxygen concentrations ranging from 0 to 100 per cent, appeared to be independent of the concentration of peroxidizable phospholipids in the cell membranes. This indicates that lipid peroxidation is not the determining process in radiation-induced reproductive cell death.  相似文献   

9.
The sterol and fatty acid composition of three Adriatic Sea sponges (Geodia cydonium and two unidentified Tedania sp.), collected at the same time and same place, was established. Twenty-four sterols and forty fatty acids were identified. The identical ecological conditions, including the diet, allowed us to apply the results obtained for taxonomical conclusions, based on the biodiversity of the investigated sponges. On the basis of the sterol composition they can be separated into two groups: Tedania and Geodia sponges. The sterol and fatty acid composition indicates that the two investigated Tedania samples might be different species or subspecies.  相似文献   

10.
《Trends in microbiology》2023,31(4):323-325
In addition to glycerophospholipids, bacterial membranes often include amino acid-containing acyloxyacyl lipids. The functional implications of these aminolipids are largely unknown. However, a recent study by Stirrup et al. expands our understanding and shows that they are major determinants for membrane properties and the relative abundance of distinct membrane proteins in bacterial membranes.  相似文献   

11.
To study the effect of membrane composition on the oxidation of liposomes, different systems were prepared by adding one component at time to phosphatidylcholine (Epikuron 200). In particular, the effect of cholesterol and its ester, cholesterol stearate, on membrane structure and oxidation was studied. A first screening of the structure and net charge of the different preparation was made by means of z-potential and size measurements. Then the liposomes were oxidized by using a hydrophilic radical initiator, the (2,2-azobis(2-amidinopropane) hydrochloride, AAPH, which thermally decomposes to give a constant radical flux in water. The oxidation of liposomes, monitored by following the absorbance of the primary products of oxidation at 234 nm, was shown to be dependent on the composition of the liposomal bilayer and so on its biophysical properties. In addition, size and z-potential measurements gathered in the time course of the peroxidation reaction, revealed that the oxidation induced a modification of the superficial characteristics of the membrane bilayer so as to change its charge at the shear plane (z-potential). This behaviour was shared by all liposomal preparations independent of the composition. The change in sizes of the different liposomal preparation, instead, followed different trends, being more stable both in control samples and in oxidized ones when cholesterol was present. From the analysis of the results, it can be concluded that cholesterol affects the oxidation induced by hydrophilic radical initiator of model membranes by changing the biophysical properties of the phospholipid bilayer. The rigidity induced by cholesterol at temperatures above the Tm makes the membrane more resistant to radical attack from an external aqueous phase and this in turn delays the start of the reaction. The decrease of z-potential of the liposomal particles induced by the oxidation process can be an important clue to understand the mechanisms involved in the etiology of important diseases.  相似文献   

12.
Saccharomyces cerevisiae strain 14-12 is a highly ethanol-tolerant organism. It can grow in the presence of 13% ethanol but growth is completely prevented at 14% ethanol. A relationship was detected between yeast lipids and ethanol tolerance. A gradual decrease of lipid content was recorded as the concentration of supplemented ethanol increased. Moreover, free fatty acids were comparatively decreased in these lipid extracts. When separately added to media with 14% ethanol different lipids produced varied stimulatory effects on yeast growth. Maximum yield of yeast growth was obtained at 14% ethanol in the presence of lecithin, palmitic acid and cholesterol. Yeast lipids produced in the presence of these fractions are characterized by a relatively high percentage of free fatty acids. The change in the percentage of free fatty acids was shown to be the controlling factor in ethanol tolerance.  相似文献   

13.
The permeability barrier of the urothelium (covering the mammalian urinary tract) has stimulated interest in the role of the luminal membrane in the barrier function. To know how membrane lipids may affect the permeability barrier we prepare endocytic vesicles of different lipid composition entrapping a fluorescent dye (HPTS) and its quencher (DPX) using a dietary strategy (rats fed with commercial, oleic acid- or linoleic acid-enriched diets) followed by endocytosis induction. Vesicular leakage was measured by a fluorescence requenching technique. The results showed (1) endocytosed vesicles can release their content; (2) a linoleic acid-rich diet did not change either the mechanism of leakage or the amount of released material relative to the control; and (3) a oleic acid-rich diet greatly affected the mechanism of release. Thus, the dietary fatty acids can modify the urothelial cell physiology altering the pathway of endocytosed urinary fluid.  相似文献   

14.
15.
Fatty acid composition of hepatic mitochondrial and microsomal membranes was studied in 2-day-old chicks exposed to ethanol for 60 h (short treatment) or 18 days (chronic treatment). Short ethanol treatment induced in mitochondria an increase in the 18:1/18:0 ratio as a consequence of both an increase in the percentage of oleic and a decrease in that of stearic acid. Likewise, a clear decrease in the polyunsaturated fatty acids and in the 20:4/18:2 ratio was found in mitochondria after short ethanol administration. Microsomal membranes were practically unaffected by this treatment. However, chronic ethanol exposure produced a significant increase in the percentages of polyunsaturated fatty acids in both mitochondria and microsomes as well as a decrease in the 18:1/18:0 ratio. These results suggest that delta 9 desaturase modifies its activity in response to ethanol treatment with a different pattern to those showed by delta 6 and delta 5 desaturase activities.  相似文献   

16.

Background  

A wide range of cellular responses occur when plants are exposed to elevated temperature, including adjustments in the unsaturation level of membrane fatty acids. Although membrane bound desaturase enzymes mediate these adjustments, it is unknown how they are regulated to achieve these specific membrane compositions. Furthermore, the precise roles that different membrane fatty acid compositions play in photosynthesis are only beginning to be understood. To explore the regulation of the membrane composition and photosynthetic function in response to temperature, we examined the effect of temperature in a collection of mutants with altered membrane lipid fatty acid composition.  相似文献   

17.
Cyclooxygenase (COX)-2 plays an important role in brain arachidonic acid (20:4n-6) metabolism, and its expression is upregulated in animal models of neuroinflammation and excitotoxicity. Our hypothesis was that brain lipid composition would be altered in COX-2 knockout (COX-2(-/-)) compared with wild-type (COX-2(+/+)) mice, reflecting the important role of COX-2 in brain lipid metabolism. Concentrations of different lipids were measured in high-energy microwaved brain from COX-2(-/-) and COX-2(+/+) mice. Compared with the COX-2(+/+) mouse brain, the brain of the COX-2(-/-) mouse had a statistically significant 15% increase in phosphatidylserine (PtdSer) and significant 37, 27, and 32% reductions in triacylglycerol and cholesterol concentrations and in the cholesterol-to-phospholipid ratio, respectively. The normalized concentration of palmitic acid (16:0) was increased in PtdSer, as was the brain concentration of unesterified arachidic acid (20:0). A lifetime absence of COX-2 produces multiple changes in brain lipid composition. These changes may be related to reported changes in fatty acid kinetics and in resistance to neuroinflammation and excitotoxicity in the COX-2(-/-) mouse.  相似文献   

18.
19.
Naturally occurring antimicrobial peptides and their synthetic analogues are promising candidates for new antifungal drugs. We focused on three groups of peptides isolated from the venom of bees and their synthetic analogues (lasioglossins, halictines and hylanines), which all rapidly permeabilised the plasma membrane. We compared peptides' potency against six pathogenic Candida species (C. albicans, C. glabrata, C. parapsilosis, C. tropicalis, C. krusei and C. dubliniensis) and the non‐pathogenic model yeast Saccharomyces cerevisiae. Their activity was independent of the presence of the multidrug‐resistant pumps of C. glabrata but was influenced by the lipid composition of cell plasma membranes. Although the direct interaction of the peptides with ergosterol was negligible in comparison with amphotericin B, the diminished ergosterol content after terbinafine pretreatment resulted in an increased resistance of C. glabrata to the peptides. The tested peptides strongly interacted with phosphatidylglycerol, phosphatidic acid and cardiolipin and partly with phosphatidylinositol and phosphatidylethanolamine. The interactions between predominantly anionic phospholipids and cationic peptides indicated a mainly electrostatic binding of peptides to the membranes. The results obtained also pointed to a considerable role of the components of lipid rafts (composed from sphingolipids and ergosterol) in the interaction of yeast cells with the peptides.  相似文献   

20.
Molecules analogous to biological and synthetic lipids have been prepared with conjugated diacetylene moieties in the long alkyl chain. These lipid diacetylenes form bilayer structures when suspended in aqueous buffers. Ultraviolet light (254 nm) exposure initiates the polymerization of the diacetylenes in the lipid bilayer to give a fully conjugated, highly colored product. The reaction is topotactic, and its efficiency depends on the correct alignment of the monomeric units. Thus, the lipid diacetylenes are photopolymerizable if the hydrocarbon chains are in a regular lattice found at temperatures below the lipid transition temperature; polymerization is inhibited above this transition. The photopolymerization of a diacetylenic glycerophosphocholine in lipid bilayer membranes was observed in two-component mixtures with a nonpolymerizable lipid, either dioleoylphosphatidylcholine or distearoylphosphatidylcholine. The photochemical and thermochemical characteristics suggest that the diacetylenic glycerophosphocholine exists largely in separate domains in the mixed bilayers. Lipid diacetylenes analogous to a dialkyldimethylammonium salt and to a dialkyl phosphate have a plane of symmetry, which suggests that both chains penetrate equally into the bilayer. The photopolymerization of these symmetrical synthetic species is more than 103-times more efficient than that of the diacetylenic glycerophosphocholine. These differences are interpretable in terms of the expected conformational preference of the lipid molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号