首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
After neuraminidase treatment the Na+/Ca2+ exchanger of bovine rod outer segments was found to specifically bind Ricinus communis agglutinin. SDS gel electrophoresis and Western blotting of ricin-binding proteins purified from rod outer segment membranes by lectin affinity chromatography revealed the existence of two major polypeptides of Mr 215K and 103K, the former of which was found to specifically react with PMe 1B3, a monoclonal antibody specific for the 230-kDa non-neuraminidase-treated Na+/Ca2+ exchanger. Reconstitution of the ricin affinity-purified exchanger into calcium-containing liposomes revealed that neuraminidase treatment had no significant effect on the kinetics of Na+/Ca2+ exchange activation by sodium. We further investigated the density of the Na+/Ca2+ exchanger in disk and plasma membrane preparations using Western blotting, radioimmunoassays, immunoelectron microscopy, and reconstitution procedures. The results indicate that the Na+/Ca2+ exchanger is localized in the rod photoreceptor plasma membrane and is absent or present in extremely low concentrations in disk membranes, as we have previously shown to be the case for the cGMP-gated cation channel. Previous reports describing the existence of Na+/Ca2+ exchange activity in rod outer segment disk membrane preparations may be due to the fusion of plasma membrane components and/or the presence of contaminating plasma membrane vesicles.  相似文献   

2.
We have previously described a method for the solubilization and reconstitution of the cGMP-gated cation channel from the membranes of bovine rod outer segments (Cook, N. J., Zeilinger, C., Koch, K.-W., and Kaupp, U. B. (1986) J. Biol. Chem. 261, 17033-17039). Here we report that not only cGMP but also sodium is capable of releasing entrapped calcium from liposomes reconstituted with total rod outer segment membrane proteins. Other alkali cations tested were unable to induce calcium efflux; therefore, we concluded that the sodium-induced calcium efflux was due to the sodium-calcium exchanger. Sodium was found to activate calcium efflux from these liposomes with an EC50 of approximately equal to 35 mM, comparable to values reported for the sodium-calcium exchanger in native rod outer segment membranes. We found that reconstitution of the sodium-calcium exchanger is quantitative and used this method to assay the exchange protein during purification using conventional protein chromatographic techniques. In this way, we were able to purify and identify as the rod outer segment sodium-calcium exchanger a glycoprotein of apparent Mr = 220,000 to greater than 90% homogeneity. The specific activity of the purified protein at room temperature was 8.2 mumol of Ca2+ exchanged min-1 mg-1 of protein at 50 mM Na+, corresponding to a turnover number of approximately equal to 30 Ca2+ (or 90 Na+) s-1 exchanger-1. The Mr = 220,000 protein reported here appears to be distinct from another protein ("rim protein") with an identical Mr known to exist in these membranes.  相似文献   

3.
The site density of the Na2+-Ca2+ exchanger in bovine cardiac sarcolemma was estimated from measurements of the fraction of reconstituted proteoliposomes exhibiting exchange activity. Sarcolemmal vesicles were solubilized with 1% Triton X-100 in the presence of either 100 mM NaCl or 100 mM KCl; after a 20-40-min incubation period on ice, sufficient KCl, NaCl, CaCl2, and soybean phospholipids were added to each extract to give final concentrations of 40 mM NaCl, 120 mM KCl, 0.1 mM CaCl2, and 10 mg/ml phospholipid. These mixtures were then reconstituted into proteoliposomes, and the rate of 45Ca2+ isotopic exchange was measured under equilibrium conditions. Control studies showed that Na+-Ca2+ exchange activity was completely lost if Na+ was not present during solubilization. The difference in 45Ca2+ uptake between vesicles initially solubilized in the presence or absence of NaCl therefore reflected exchange activity and corresponded to 3.1 +/- 0.3% of the total 45Ca2+ uptake by the entire population of vesicles, as measured in the presence of the Ca2+ ionophore A23187. Assuming that each vesicle with exchange activity contained 1 molecule of the Na+-Ca2+ exchange carrier, a site density of 10-20 pmol/mg of protein for the exchanger was calculated. The Vmax for Na+-Ca2+ exchange activity in the proteoliposomes was approximately 20 nmol/mg of protein.s which indicates that the turnover number of the exchange carrier is 1000 s-1 or more. Thus, the Na+-Ca2+ exchanger is a low density, high turnover transport system.  相似文献   

4.
The retinal Na+:Ca2+, K+exchanger cDNA was transiently expressed in human embryonic kidney (HEK 293) cells by transfection with plasmid DNA. The correct targeting of the expressed protein to the plasma membrane was confirmed by immunocytochemistry. The reverse exchange offrent (Ca2+ imported per Na+ extruded) was measured in whole-cell voltage-clamp experiments after intracellular perfusion with Na+ (Na+i, 128 mM) and extracellular perfusion with Ca2+ (Ca2o+, 1 mM) and Ko+ (20 mM). As expected, the exchange current was suppressed by removing Ca2o+. Surprisingly, however, it was also abolished by increasing Na+o to almost abolish the Na+ gradient, and it was almost unaffected by the removal of Ko+. Apparently, then, at variance with the exchanger in the rod outer segment, the retinal exchanger expressed in 293 cells acts essentially as a Na+:Ca2+ exchanger and does not require K+ for its electrogenic activity.  相似文献   

5.
Transport of K+ by the photoreceptor Na(+)-Ca2+, K+ exchanger was investigated in isolated rod outer segments (OS) by recording membrane current under whole-cell voltage-clamp conditions. Known amounts of K+ were imported in the OS through the Ca(2+)-activated K+ channels while perfusing with high extracellular concentration of K+, [K+]o. These channels were detected in the recordings from the OS, which probably retained a small portion of the rest of the cell. The activation of forward exchange (Na+ imported per Ca2+ and K+ extruded) by intracellular K+, Ki+, was described by first-order kinetics with a Michaelis constant, Kapp(Ki+), of about 2 mM and a maximal current, Imax, of about -60 pA. [Na+]i larger than 100 mM had little effect on Kapp(Ki+) and Imax, indicating that Nai+ did not compete with Ki+ for exchange sites under physiological conditions, and that Na+ release at the exchanger intracellular side was not a rate-limiting step for the exchange process. Exchanger stoichiometry resulted in one K+ ion extruded per one positive charge imported. Exchange current was detected only if Ca2+ and K+ were present on the same membrane side, and Na+ was simultaneously present on the opposite side. Nonelectrogenic modes of ion exchange were tested taking advantage of the hindered diffusion found for Cai2+ and Ki+. Experiments were carried out so that the occurrence of a putative nonelectrogenic ion exchange, supposedly induced by the preapplication of certain extracellular ion(s), would have resulted in the transient presence of both Cai2+ and Ki+. The lack of electrogenic forward exchange in a subsequent switch to high Nao+, excluded the presence of previous nonelectrogenic transport.  相似文献   

6.
The K(+)-dependence of the rod photoreceptor sodium-calcium exchanger was investigated using the Ca2(+)-sensitive dye arsenazo III after reconstitution of the purified protein into proteoliposomes. The uptake of Ca2+ by Na(+)-loaded liposomes was found to be greatly enhanced by the presence of external K+ (EC50 approximately 1 mM) in a Michaelis-Menten manner, suggesting that one K+ ion is involved in the transport of one Ca2+ ion. We also found a minimal degree of Ca2+ uptake in the total absence of K+. Other alkali cations, notably Rb+ and, to a lesser extent, Cs+, were also able to stimulate Na(+)-Ca2+ exchange. We also investigated the K(+)-dependence of the photoreceptor Na(+)-Ca2+ exchanger by determining the effects of electrochemical K+ gradients on the Na(+)-activated Ca2+ efflux from proteoliposomes. We found that, under conditions of membrane voltage clamp with FCCP, inwardly directed electrochemical K+ gradients (i.e., K0+ greater than Ki+) inhibited, whereas an outwardly directed electrochemical K+ gradient (i.e., Ki+ greater than K0+) enhanced, Na(+)-dependent Ca2+ efflux, consistent with the notion that K+ is cotransported in the same direction as Ca2+. The investigation of the reconstituted exchanger at physiological (i.e. Ki+ = 110 mM, K0+ = 2.5 mM) potassium concentrations revealed that the Na(+)-dependence of Ca2(+)-efflux was highly cooperative (n = 3.01 from Hill plots), indicating that at least three, but possibly four, Na+ ions are exchanged for one Ca2+ ion. Under these conditions the reconstituted exchanger showed a Km for Na+ of 26.1 mM, and a turnover number of 115 Ca2+.s-1 per exchanger molecule. Our results with the purified and reconstituted sodium-calcium exchanger from rod photoreceptors are therefore consistent with previous reports (Cervetto, L., Lagnado, L., Perry, R.J., Robinson, D.W. and McNaughton, P.A. (1989) Nature 337, 740-743; Schnetkamp, P.P.M., Basu, D.K. and Szerencsei, R.T. (1989) Am. J. Physiol. 257, C153-C157) that the sodium-calcium exchanger of rod photoreceptors cotransports K+ under physiological conditions with a stoichiometry of 4 Na+:1 Ca2+, 1K+.  相似文献   

7.
Na+- and cGMP-induced Ca2+ fluxes in frog rod photoreceptors   总被引:2,自引:1,他引:1       下载免费PDF全文
We have examined the Ca2+ content and pathways of Ca2+ transport in frog rod outer segments using the Ca2+-indicating dye arsenazo III. The experiments employed suspensions of outer segments of truncated, but physiologically functional, frog rods (OS-IS), intact isolated outer segments (intact OS), and leaky outer segments (leaky OS with a plasma membrane leaky to small solutes, but with sealed disk membranes). We observed the following. Intact OS or OS-IS isolated and purified in Percoll-Ringer's solution contained an average of 2.2 mM total Ca2+, while leaky OS contained 2.0 mM total Ca2+. This suggests that most of the Ca2+ in OS-IS is contained inside OS disks. Phosphodiesterase inhibitors increased the Ca2+ content to approximately 4.2 mM in intact OS or OS-IS, whereas the Ca2+ content of leaky OS was not altered. Na-Ca exchange was the dominant pathway for Ca2+ efflux in both intact and leaky OS/OS-IS. The rate of Na-Ca exchange in intact OS/OS-IS was half-maximal between 30 and 50 mM Na+; at 50 mM Na+, this amounted to 5.8 X 10(7) Ca2+/OS X s or 0.05 mM total Ca2+/s. This is much larger than the Ca2+ component of the dark current. Other alkali cations could not replace Na+ in Na-Ca exchange in either OS-IS or leaky OS. They inhibited the rate of Na-Ca exchange (K greater than or equal to Rb greater than Cs greater than or equal to Li greater than TMA) and, as the inhibition became greater, a delay developed in the onset of Na-Ca exchange. The inhibition of Na-Ca exchange by alkali cations correlates with the prolonged duration of the photoresponse induced by these cations (Hodgkin, A. L., P. A. McNaughton, and B. J. Nunn. 1985. Journal of Physiology. 358:447-468). In addition to Na-Ca exchange, disk membranes in leaky OS showed a second pathway of Ca2+ transport activated by cyclic GMP (cGMP). The cGMP-activated pathway required the presence of alkali cations and had a maximal rate of 9.7 X 10(6) Ca2+/OS X s. cGMP caused the release of only 30% of the total Ca2+ from leaky OS. The rate of Na-Ca exchange in leaky OS amounted to 1.9 X 10(7) Ca2+/OS X s.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
Ca2+-dependent GTPase activity is found to be present in the rod outer segments of frog retina. GTPase localization in rod outer segments is shown by fractionating the rod outer segment preparation in the sucrose density gradient. The enzyme is readily washed out of cells with isotonic NaCl solution. The Km is 0.6 mM for GTP. The activity is inhibited by 78 +/- 12% with the increase in Ca2+ concentration from 10(-9) to 10(-7) M. GTP hydrolysis is inhibited by the same concentrations of Ca2+ which block the sodium conductivity of the rod outer segment cytoplasmic membrane.  相似文献   

9.
Regulation of cytosolic free Ca2+ in the physiologically relevant submicromolar range was measured in isolated intact bovine rod outer segments (ROS) with the intracellular Ca(2+)-indicating dye fluo-3. Changes in free Ca2+ were compared with changes in total Ca2+ measured with 45Ca fluxes and a good qualitative correlation was observed. Ca2+ homeostasis in isolated bovine ROS was exclusively mediated via the Na-Ca-K exchanger. Free cytosolic Ca2+ concentration was lowered by an increase in the inward Na+ gradient, was raised by an increase in external K+, and was raised by depolarization of the plasma membrane. The simplest stoichiometry consistent with these qualitative observations is 4Na:(1Ca + 1K). The individual K:Ca, Na:Ca, and K:Na coupling ratios were deduced from quantitative changes in cytosolic free Ca2+ upon changes in the transmembrane Na+ and K+ gradients. The observed changes in free Ca2+ did not agree with changes in free Ca2+ calculated on the basis of the above fixed stoichiometry which may reflect the flexibility in the Ca:K coupling ratio observed before in flux experiments (Schnetkamp, P. P. M., Szerencsei, R. T., and Basu, D. K. (1991) J. Biol. Chem. 266, 198-206). The most dramatic discrepancy was observed for the Na:Ca coupling ratio: the expected very large changes in cytosolic free Ca2+ upon changes in the transmembrane Na+ gradient were not observed. Rapid Na(+)-induced Ca2+ extrusion was unable to lower cytosolic free Ca2+ below 100 nM, even under nonequilibrium conditions and despite the observation that Ca2+ influx via reverse Na-Ca-K exchange readily occurred at a free external Ca2+ concentration of 20 nM. We conclude that the Na(+)-dependent extrusion mode of the Na-Ca-K exchanger occurs in a brief (20-s) burst of high maximal velocity transport followed by a nearly complete inactivation of transport. The importance of our findings for Ca2+ homeostasis in functioning rod photoreceptors is discussed.  相似文献   

10.
Two recent studies reported that Na-Ca exchange in the outer segments of tiger salamander rod photoreceptors (Cervetto, L., Lagnado, L., Perry, R. J., Robinson, D. W., and McNaughton, P. A. (1989) Nature 337, 740-743) and of bovine rod photoreceptors (Schnetkamp, P. P. M., Basu, D. K., and Szerencsei, R. T. (1989) Am. J. Physiol. 257, C153-157) requires and transports K+ in a 4Na/(1Ca+1K) stoichiometry. In this study, we have examined the effects of K+ ions and membrane potential on the kinetics of Na-Ca and Ca-Ca exchange in rod outer segments isolated from bovine retinas. The objective was to establish the ion selectivity and voltage dependence of the different cation binding sites on the Na-Ca-K exchange protein. Potassium ions activated Na-Ca exchange when present on the Ca2+ side, although the extent of activation decreased with decreasing Na+ concentration. Potassium ions inhibited Na-Ca exchange when present on the Na+ side; inhibition arose from competition between Na+ and K+ for a common single cation-binding site. Activation of Na-Ca exchange by K+ displayed a different ion selectivity than that observed for inhibition of Na-Ca exchange by K+. The results are interpreted in terms of a three-site model for the rod Na-Ca-K exchanger. The rate of forward Na-Ca exchange decreased by 1.75-fold for a 60 mV depolarization of the plasma membrane but only at lower Na+ concentrations. The rate of Ca-Ca exchange was not affected by changes in membrane potential.  相似文献   

11.
Solubilization and reconstitution of the cardiac sarcolemmal Na+/Ca2+ exchanger by use of the anionic detergent cholate and its application for reconstitution of the exchanger following solubilization with zwitterionic or nonionic detergents is described. Solubilization and reconstitution with cholate provided a 32.6-fold enrichment of Na+/Ca2+ exchange activity over sarcolemmal vesicles (5.2 to 170 nmol/mg/s) with 202% recovery of total activity. In combination with asolectin, the cholate dilution technique (H. Miyamoto and E. Racker, J. Biol. Chem. 255, 2656, 1980) offers a rapid and simple means for reconstitution and provides good recovery of total and specific Na+/Ca2+ exchange activity. However, the use of anionic detergents for solubilization precludes the use of certain chromatographic procedures for protein purification. Conversely, nonionic and zwitterionic detergents permit effective use of available chromatographic techniques, but can be troublesome during reconstitution. We have combined the advantages of solubilization with nonionic and zwitterionic detergents with the advantages of reconstitution by cholate dilution. Reconstitution of the exchanger, after solubilization with 3-[(3-cholamidopropyl)-dimethyl-ammonio]-1-propanesulfonate (Chaps) or n-octyl-beta-D-glucoside, was accomplished by the addition of a cholate/asolectin medium followed by dilution. Na+/Ca2+ exchange activity was enriched 30.7-fold with 196% recovery with Chaps and 34.1-fold with 204% recovery with n-octyl-beta-D-glucoside. The presence of Chaps was found to shift the optimal asolectin concentration for reconstitution from 15 mg/ml (cholate alone) to 25 mg/ml. In addition, pelleting of proteoliposomes subsequent to reconstitution resulted in greatest recovery of total activity when volumes were kept below 1.0 ml.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Regulation of free cytosolic Ca2+ concentration in the rod outer segments (ROS) isolated from bovine retinas was examined with the fluorescent Ca(2+)-indicating dye fluo-3. In situ calibration of cytosolic fluo-3 was done in the presence of the Ca2+ ionophore A23187 and yielded a dissociation constant of 500 nM for the Ca(2+)-fluo-3 complex. Ca2+ influx in Ca(2+)-depleted ROS was completely abolished when internal Na+ was removed suggesting that Ca2+ influx exclusively occurred via Na-Ca-K exchange. The most striking observation was that Na-Ca-K exchange could mediate a rapid increase in cytosolic free Ca2+ over the most of the usable indicating range of fluo-3 (from 10 nM to 2 microM), even when exposed to free external Ca2+ concentrations as low as 10 nM. From a comparison between changes in free Ca2+ and changes in total Ca2+, we conclude that physiologically occurring changes in cytosolic free Ca2+ are mediated by exchange fluxes less than 1% of the maximal Na-Ca-K exchange flux. The Na-Ca-K exchanger could mediate both K(+)-dependent and K(+)-independent Ca2+ influx; Li+ caused a complete inhibition of K(+)-independent Ca2+ influx, but had no effect on K(+)-dependent Ca2+ influx. We examined the complex interactions of alkali cations with Ca2+ influx and discuss the results in terms of a three-site model for the Na-Ca-K exchanger (Schnetkamp, P. P. M. and Szerencsei, R. T. (1991) J. Biol. Chem. 266, 189-197). Ca2+ competed with one Mg2+ ion or two Na+ ions for binding to a common site. High K+ concentration greatly diminished the ability of Na+ and Mg2+ to compete with Ca2+ for this common site on the exchanger protein. As a result, high internal K+ induced a conformation of the exchange protein that kinetically favoured Ca2+ extrusion.  相似文献   

13.
The presence of a Na+/Ca2+ exchanger in bovine adrenal chromaffin cells was demonstrated by measuring the efflux of 45Ca2+ which had been preloaded into cells by a brief depolarization. The efflux of 45Ca2+ was dependent on extracellular Na+ (Na+o); 45Ca2+ efflux was significantly decreased by replacing Na+o with N-methylglucamine (NMG), or Li+. Replacement of Na+o by NMG increased the resting intracellular Ca2+ concentration ([Ca2+]i) of freshly isolated chromaffin cells. This could be reversed by adding Na+, suggesting that Na+/Ca2+ exchanger activity was involved in maintaining [Ca2+]i at its resting level. The initial rate of Na(+)-dependent [Ca2+]i recovery after Ca2+ loading by depolarization was dependent on the level of [Ca2+]i. There was an apparent linear relationship between the activity of the Na+/Ca2+ exchanger and [Ca2+]i both in the presence and absence of Na+o. When cells were treated with other stimuli, including 10 microM DMPP or 40 mM caffeine, the ability of the stimulated cells to decrease [Ca2+]i was significantly reduced upon replacing Na+o with NMG. Our data show that the Na+/Ca2+ exchanger is one of the major pathways for regulating [Ca2+]i in chromaffin cells in both resting and stimulated states.  相似文献   

14.
We have characterised the spectroscopic properties of the metallochromic dye dichlorophosphonazo III and describe its use for the determination of changes of Mg2+ concentration in the micromolar range. Using a previously described reconstitution procedure, we incorporated the cGMP-gated channel from bovine rod photoreceptors into magnesium-containing liposomes and used the dye to monitor cGMP-activated Mg2(+)-efflux. The Km and cooperativity of the cGMP-dependence were identical regardless of whether Mg2+ or Ca2+ was the transported ion, however, the vmax for Ca2+ was more than 2-fold higher than that for Mg2+. We thereby determined a channel selectivity (Ca2+:Mg2+) of 1.0:0.44 in the presence of symmetrical (30 mM) K+. We also describe conditions where Mg2+ or Ca2+ effluxes can be selectively monitored in the presence of each other. This allowed the demonstration that magnesium ions can flow through the cGMP-gated channel even in the presence of an identically directed calcium gradient. Together these results indicate that magnesium ions may enter the photoreceptor rod outer segment cytosol through the cGMP-gated channel under dark conditions, thereby alluding to the existence of an as yet unknown Mg2(+)-extrusion mechanism, distinct from the Na+/Ca2(+)-exchanger, in these cells.  相似文献   

15.
The properties of the Na-Ca exchanger in the plasma membrane of rod outer segments isolated from bovine retinas (ROS) were studied. Unidirectional Ca2+, Na+, and K+ fluxes were measured with radioisotopes and atomic absorption spectroscopy. We measured K+ fluxes associated with the Ca-Ca self-exchange mode of the Na-Ca exchanger to corroborate our previous conclusion that the ROS Na-Ca exchanger differs from Na-Ca exchangers in other tissues by its ability to transport K+ (Schnetkamp, P. P. M., Basu, D. K. & Szerencsei, R. T. (1989) Am. J. Physiol. 257, C153-C157). The Na-Ca-K exchanger was the only functional cation transporter in the plasma membrane of bovine ROS with an upper limit of a flux of 10(5) cations/ROS/s or a current of 0.01 pA contributed by other cation channels, pumps, or carriers; cation fluxes via the Na-Ca-K exchanger amounted to 5 x 10(6) cations/ROS/s or a current of 1 pA. Ca2+ efflux via the forward mode of the Na-Ca-K exchanger did not operate with a fixed single stoichiometry. 1) The Na/Ca coupling ratio was increased from three to four when ionophores were added that could provide electrical compensation for the inward Na-Ca exchange current. 2) The K/Ca coupling ratio could vary by at least 2-fold as a function of the external Na+ and K+ concentration. The results are interpreted in terms of a model that can account for the variable Ca/K coupling ratio: we conclude that the Ca2+ site of the exchanger can translocate independent of translocation of the K+ site, whereas translocation of the K+ site requires occupation of the Ca2+ site, but not its translocation. The results are discussed with respect to the physiological role of Na-Ca-K exchange in rod photoreceptors.  相似文献   

16.
This study investigates the presence and properties of Na+-activated K+ (K(Na)) channels in epithelial renal cells. Using real-time PCR on mouse microdissected nephron segments, we show that Slo2.2 mRNA, which encodes for the K(Na) channels of excitable cells, is expressed in the medullary and cortical thick ascending limbs of Henle's loop, but not in the other parts of the nephron. Patch-clamp analysis revealed the presence of a high conductance K+ channel in the basolateral membrane of both the medullary and cortical thick ascending limbs. This channel was highly K+ selective (P(K)/P(Na) approximately 20), its conductance ranged from 140 to 180 pS with subconductance levels, and its current/voltage relationship displayed intermediate, Na+-dependent, inward rectification. Internal Na+ and Cl- activated the channel with 50% effective concentrations (EC50) and Hill coefficients (nH) of 30 +/- 1 mM and 3.9 +/- 0.5 for internal Na+, and 35 +/- 10 mM and 1.3 +/- 0.25 for internal Cl-. Channel activity was unaltered by internal ATP (2 mM) and by internal pH, but clearly decreased when internal free Ca2+ concentration increased. This is the first demonstration of the presence in the epithelial cell membrane of a functional, Na+-activated, large-conductance K+ channel that closely resembles native K(Na) channels of excitable cells. This Slo2.2 type, Na+- and Cl--activated K+ channel is primarily located in the thick ascending limb, a major renal site of transcellular NaCl reabsorption.  相似文献   

17.
The ATPase activities were studied in rat erythrocytes permeabilized with saponin. The concentrations of calcium and magnesium ions were varied within the range of 0.1-60 microM and 50-370 microM, respectively, by using EGTA-citrate buffer. The maximal activity of Ca2(+)-ATPase of permeabilized erythrocytes was by one order of magnitude higher, whereas the Ca2(+)-binding affinity was 1.5-2 times higher than that in erythrocyte ghosts washed an isotonic solution containing EGTA. Addition of the hemolysate restored the kinetic parameters of ghost Ca2(+)-ATPase practically completely, whereas in the presence of exogenous calmodulin only part of Ca2(+)-ATPase activity was recovered. Neither calmodulin nor R24571, a highly potent specific inhibitor of calmodulin-dependent reactions, influenced the Ca2(+)-ATPase activity of permeabilized erythrocytes. At Ca2+ concentrations below 0.7 microM, ouabain (0.5-1 mM) activated whereas at higher Ca2+ concentrations it inhibited the Ca2(+)-ATPase activity. Taking this observation into account the Na+/K(+)-ATPase was determined as the difference of between the ATPase activities in the presence of Na+ and K+ and in the presence of K+ alone. At physiological concentration of Mg2+ (370 microM), the addition of 0.3-1 microM Ca2+ increased Na+/K(+)-ATPase activity by 1.5-3-fold. Higher concentrations of this cation inhibited the enzyme. At low Mg2+ concentration (e.g., 50 microM) only Na+/K(+)-ATPase inhibition by Ca2+ was seen. It was found that at [NaCl] less than 20 mM furosemide was increased ouabain-inhibited component of ATPase in Ca2(+)-free media. This activating effect of furosemide was enhanced with a diminution of [Na+] upto 2 mM and did not reach the saturation level unless the 2 mM of drug was used. The activating effect of furosemide on Na+/K(+)-ATPase activity confirmed by experiments in which the ouabain-inhibited component was measured by the 86Rb+ influx into intact erythrocytes.  相似文献   

18.
The properties of Na-Ca-K exchange current through the plasma membrane of intact rod outer segments (ROS) isolated from bovine retinas were studied with the optical probe neutral red. Small cellular organelles such as bovine ROS do not offer an adequate collecting area to measure Na-Ca-K exchange currents with electrophysiological techniques. This study demonstrates that Na-Ca-K exchange current in bovine ROS can be measured with the dye neutral red and dual-wavelength spectrophotometry. The binding of neutral red is sensitive to transport of cations across the plasma membrane of ROS by the effect of the translocated cations on the surface potential of the intracellular disk membranes (1985. J. Membr. Biol. 88: 249-262). Electrogenic Na+ fluxes through the ROS plasma membrane were measured with a resolution of 10(5) Na+ ions/ROS per s, equivalent to a current of approximately 0.01 pA; maximal electrogenic Na-Ca-K exchange flux in bovine ROS was equivalent to a maximal exchange current of 1-2 pA. Electrogenic Na+ fluxes were identified as Na-Ca-K exchange current based on a comparison between electrogenic Na+ flux and Na(+)-stimulated Ca2+ release with respect to flux rate, Na+ dependence, and ion selectivity. Neutral red monitored the net entry of a single positive charge carried by Na+ for each Ca2+ ion released (i.e., monitored the Na-Ca-K exchange current). Na-Ca-K exchange in the plasma membrane of bovine ROS had the following properties: (a) Inward Na-Ca-K exchange current required internal Ca2+ (half-maximal stimulation at a free Ca2+ concentration of 0.9 microM), whereas outward Na-Ca-K exchange current required both external Ca2+ (half-maximal stimulation at a free Ca2+ concentration of 1.1 microM) and external K+. (b) Inward Na-Ca-K exchange current depended in a sigmoidal manner on the external Na+ concentration, identical to Na(+)-stimulated Ca2+ release measured with Ca(2+)-indicating dyes. (c) The neutral red method was modified to measure Ca(2+)-activated K+ fluxes (half-maximal stimulation at 2.7 microM free Ca2+) via the Na-Ca-K exchanger in support of the notion that the rod Na-Ca exchanger is in effect a Na-Ca-K exchanger. (d) Competitive interactions between Ca2+ and Na+ ions on the exchanger protein are described.  相似文献   

19.
Polyphosphoinositide-specific phosphodiesterase (phospholipase C) activity against phosphatidylinositol 4,5-bisphosphate has been examined in disrupted bovine retinal rod outer segments. The enzyme was strictly modulated by free calcium ion concentration and maximally activated at 10(-5) M Ca2+ (91 +/- 4 nmoles phosphatidylinositol 4,5-bisphosphate hydrolyzed/min/mg of protein). Guanine nucleotides did not affect in vitro phospholipase C activity either in the presence or absence of light, carbachol or epinephrine. The pH optimum at 10(-5) M Ca2+ in the presence of sodium deoxycholate was 6.5. The enzyme of bovine rod outer segments was concluded to be indirectly regulated by the phototransduction events.  相似文献   

20.
Intracellular Mg2+ concentration ([Mg2+]i) was measured in rat ventricular myocytes with the fluorescent indicator furaptra (25 degrees C). After the myocytes were loaded with Mg2+, the initial rate of decrease in [Mg2+]i (initial Delta[Mg2+]i/Deltat) was estimated upon introduction of extracellular Na+, as an index of the rate of Na+-dependent Mg2+ efflux. The initial Delta[Mg2+]i/Deltat values with 140 mM [Na+]o were essentially unchanged by the addition of extracellular Ca2+ up to 1 mM (107.3+/-8.7% of the control value measured at 0 mM [Ca2+]o in the presence of 0.1 mM EGTA, n=5). Intracellular loading of a Ca2+ chelator, either BAPTA or dimethyl BAPTA, by incubation with its acetoxymethyl ester form (5 microM for 3.5 h) did not significantly change the initial Delta[Mg2+]i/Deltat: 115.2+/-7.5% (seven BAPTA-loaded cells) and 109.5+/-10.9% (four dimethyl BAPTA loaded cells) of the control values measured in the absence of an intracellular chelator. Extracellular and/or intracellular concentrations of K+ and Cl- were modified under constant [Na+]o (70 mM), [Ca2+]o (0 mM with 0.1 mM EGTA), and membrane potential (-13 mV with the amphotericin-B-perforated patch-clamp technique). None of the following conditions significantly changed the initial Delta[Mg2+]i/Deltat: 1), changes in [K+]o between 0 mM and 75 mM (65.6+/-5.0% (n=11) and 79.0+/-6.0% (n=8), respectively, of the control values measured at 140 mM [Na+]o without any modification of extracellular and intracellular K+ and Cl-); 2), intracellular perfusion with K+-free (Cs+-substituted) solution from the patch pipette in combination with removal of extracellular K+ (77.7+/-8.2%, n=8); and 3), extracellular and intracellular perfusion with K+-free and Cl--free solutions (71.6+/-5.1%, n=5). These results suggest that Mg2+ is transported in exchange with Na+, but not with Ca2+, K+, or Cl-, in cardiac myocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号