首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
Growth of wheat seedlings in the presence of the phytotoxin tagetitoxin produces pigment-deficient leaves of normal size and morphology whose cells contain only rudimentary plastids. We could not detect the accumulation of either the plastid-encoded large subunit or the nuclear-encoded small subunit of the chloroplast stromal enzyme ribulose 1,5-bisphosphate carboxylase (RuBPCase) in western blots of protein extracted from leaves of such seedlings. Sucrose gradient centrifugation profiles showed that plastid ribosomes were essentially absent in toxin-treated leaf tissue while cytoplasmic ribosomes were relatively unaffected. Northern blot analysis of RNA in toxin-treated leaves showed a deficiency of plastid ribosomal RNA (16S and 23S) as well as reduced levels of plastid mRNAs for the large subunit of RuBPCase and for the 32 kilodalton thylakoid QB polypeptide. Northern analysis also showed that the nuclear-encoded rbcS mRNA for the small subunit of RuBPCase is present in only trace amounts in toxin-treated leaves.  相似文献   

6.
7.
8.
9.
10.
11.
12.
13.
14.
The nuclear gene rps1 coding for the spinach plastid ribosomal protein CS1 exhibits both a constitutive and leaf-specific expression pattern. In contrast to other chloroplast-related genes like rbcS and cab, the leaf induction of rps1 expression is light-independent. These unique features of rps1 expression provide good models to study the mechanisms regulating plastid development and differentiation in higher plants. We report on the identification of a spinach leaf nuclear factor, designated S1F, interacting with the rps1 promoter. The S1F binding site is conserved in the promoter region of many plastid-related genes, including rbcS, cab, and rpl21. A binding activity similar to S1F was detected in nuclear extract from dark-grown de-differentiated soybean suspension cells. Through site-specific mutagenesis and transient expression in soybean cell protoplasts, we show that the S1F binding site is a negative element down-regulating the promoter activity of rps1. A ligated tetramer of S1F site was able to repress activity of the cauliflower mosaic virus 35 S promoter extending the negative function of the S1F binding site on promoter activity.  相似文献   

15.
We have characterized a nuclear mutant of barley, viridis-115, lacking photosystem II (PSII) activity and compared it to wild-type seedlings during light-induced chloroplast development. Chloroplasts isolated from wild-type and viridis-115 seedlings illuminated for 1 h synthesized similar polypeptides and had similar protein composition. After 16 h of illumination, however, mutant plastids exhibited reduced ability to radiolabel D1, CP47, and several low Mr membrane polypeptides, and by 72 h, synthesis of these proteins was undetectable. Immunoblot analysis showed that plastids of dark-grown wild-type barley lacked several PSII proteins (D1, D2, CP47, and CP43) and that 16 h of illumination resulted in the accumulation of these polypeptides. In contrast, these polypeptides did not accumulate in illuminated viridis-115 seedlings, although mutant plastids accumulated two PSII proteins that participate in oxygen evolution, oxygen-evolving enhancers 1 and 3. Northern analysis showed that the levels of psbA and psbB mRNA in mutant plastids were equal to or greater than levels in wild-type plastids throughout the developmental period examined here. These results indicate that the nuclear mutation present in viridis-115 affects the translation and stability of the chloroplast-encoded D1 and CP47 polypeptides and that its influence is expressed after the onset of light-induced chloroplast development.  相似文献   

16.
In maize (Zea mays L.), chloroplast development progresses from the basal meristem to the mature leaf tip, and light is required for maturation to photosynthetic competence. During chloroplast greening, it was found that chloroplast DNA (cpDNA) is extensively degraded, falling to undetectable levels in many individual chloroplasts for three maize cultivars, as well as Zea mexicana (the ancestor of cultivated maize) and the perennial species Zea diploperennis. In dark-grown maize seedlings, the proplastid-to-etioplast transition is characterized by plastid enlargement, cpDNA replication, and the retention of high levels of cpDNA. When dark-grown seedlings are transferred to white light, the DNA content per plastid increases slightly during the first 4 h of illumination and then declines rapidly to a minimum at 24 h during the etioplast-to-chloroplast transition. Plastid autofluorescence (from chlorophyll) continues to increase as cpDNA declines, whereas plastid size remains constant. It is concluded that the increase in cpDNA that accompanies plastid enlargement is a consequence of cell and leaf growth, rather than illumination, whereas light stimulates photosynthetic capacity and cpDNA instability. When cpDNA from total tissue was monitored by blot hybridization and real-time quantitative PCR, no decline following transfer from dark to light was observed. The lack of agreement between DNA per plastid and cpDNA per cell may be attributed to nupts (nuclear sequences of plastid origin).  相似文献   

17.
18.
19.
Chloroplast ribosome-binding sites were identified on the plastidrbcL andpsbA mRNAs using toeprint analysis. TherbcL translation initiation domain is highly conserved and contains a prokaryotic Shine-Dalgarno (SD) sequence (GGAGG) located 4 to 12 nucleotides upstream of the initiator AUG. Toeprint analysis ofrbcL mRNA associated with plastid polysomes revealed strong toeprint signals 15 nucleotides downstream from the AUG indicating ribosome binding at the translation initiation site.Escherichia coli 30S ribosomes generated similar toeprint signals when mixed withrbcL mRNA in the presence of initiator tRNA. These results indicate that plastid SD sequences are functional in chloroplast translation initiation. ThepsbA initiator region lacks a SD sequence within 12 nucleotides of the initiator AUG. However, toeprint analysis of soluble and membrane polysome-associatedpsbA mRNA revealed ribosomes bound to the initiator region.E. coli 30S ribosomes did not associate with thepsbA translation initiation region.E. coli and chloroplast ribosomes bind to an upstream region which contains a conserved SD-like sequence. Therefore, translation initiation onpsbA mRNA may involve the transient binding of chloroplast ribosomes to this upstream SD-like sequence followed by scanning to localize the initiator AUG. Illumination 8-day-old dark-grown barley seedlings caused an increase in polysome-associatedpsbA mRNA and the abundance of initiation complexes bound topsbA mRNA. These results demonstrate that light modulates D1 translation initiation in plastids of older dark-grown barley seedlings.  相似文献   

20.
J. H. Lukens  R. D. Durbin 《Planta》1985,165(3):311-321
Ultrastructural and biochemical approaches were used to investigate the mode of action of tagetitoxin, a nonhost-specific phytotoxin produced by Pseudomonas syringae pv. tagetis (Hellmers) Young, Dye and Wilkie, which causes chlorosis in developing — but not mature — leaves. Tagetitoxin has no effect on the growth rate or morphology of developing leaves of wheat (Triticum aestivum L.) seedlings. Its cytological effects are limited to plastid aberrations; in both light-and dark-grown leaves treated with toxin, internal plastid membranes fail to develop normally and plastid ribosomes are absent, whereas mitochondrial and cytoplasmic ribosomes are unaffected. The activity of a plastid stromal enzyme, ribulose-1,5-bisphosphate carboxylase (RuBPCase, EC 4.1.1.39), which is co-coded by nuclear and chloroplast genes, is markedly lower in extracts of both light-and dark-grown toxin-treated leaves, whereas the activity of another stromal enzyme, NADP-glyceraldehyde-3-phosphate dehydrogenase (NADP-G-3P-DH, EC 1.2.1.13), which is coded only by the nuclear genome, is significantly lower in extracts of light-grown, but not of dark-grown, treated leaves. The mitochondrial enzymes fumarase (EC 4.2.1.2) and cytochrome-c oxidase (EC 1.9.3.1) are unaffected by toxin in dark-grown leaves, but fumarase activity is reduced in light-grown ones. Four peroxisomal enzyme activities are lowered by toxin treatment in both light- and dark-grown leaves. Light- and dark-grown, toxintreated leaves contain about 50% and 75%, respectively, of the total protein of untreated leaves. There are threefold and twofold increases in free amino acids in light-grown and dark-grown treated leaves, respectively. In general, the effects of tagetitoxin are more extensive and exaggerated in light-grown than in dark-grown leaves. We conclude that tagetitoxin interferes primarily with a light-independent aspect of chloroplast-specific metabolism which is important in plastid biogenesis.Abbreviations NADP-G-3-DH NADP-glyceraldehyde-3-phosphate dehydrogenase - PLB prolamellar body - RuBP-Case ribulose-1,5-bisphosphate carboxylase - SADH shikimic acid dehydrogenase  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号