共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Cell junctions are essential to maintain polarity and tissue integrity. Epithelial cell junctions are composed of distinct sub-compartments that together ensure the strong adhesion between neighboring cells. In Caenorhabditis elegans epithelia, the apical junction (CeAJ) forms a single electron-dense structure, but at the molecular level it is composed of two sub-compartments that function redundantly and localize independently as two distinct but adjacent circumferential rings on the lateral plasma membrane. While investigating the role of the multi PDZ-domain containing protein MAGI-1 during C. elegans epidermal morphogenesis, we found that MAGI-1 localizes apical to both the Cadherin/Catenin (CCC) and AJM-1/DLG-1 (DAC) containing sub-domains. Removal of MAGI-1 function causes a loss of junctional compartmentalization along the lateral membrane and reduces the overall robustness of cell-cell adhesion mediated by either type of cell junctions. Our results suggest that MAGI-1 functions as an “organizer” that ensures the correct segregation of different cell adhesion complexes into distinct domains along the lateral plasma membrane. Thus, the formation of stable junctions requires the proper distribution of the CCC and DAC adhesion protein complexes along the lateral plasma membrane. 相似文献
3.
Eltyeb AbdelwahidStephane Rolland Xinchen TengBarbara Conradt J. Marie HardwickKristin White 《Biochimica et Biophysica Acta (BBA)/Molecular Cell Research》2011,1813(4):597-607
Although mitochondria are essential organelles for long-term survival of eukaryotic cells, recent discoveries in biochemistry and genetics have advanced our understanding of the requirements for mitochondria in cell death. Much of what we understand about cell death is based on the identification of conserved cell death genes in Drosophila melanogaster and Caenorhabditis elegans. However, the role of mitochondria in cell death in these models has been much less clear. Considering the active role that mitochondria play in apoptosis in mammalian cells, the mitochondrial contribution to cell death in non-mammalian systems has been an area of active investigation. In this article, we review the current research on this topic in three non-mammalian models, C. elegans, Drosophila, and Saccharomyces cerevisiae. In addition, we discuss how non-mammalian models have provided important insight into the mechanisms of human disease as they relate to the mitochondrial pathway of cell death. The unique perspective derived from each of these model systems provides a more complete understanding of mitochondria in programmed cell death. This article is part of a Special Issue entitled Mitochondria: the deadly organelle. 相似文献
4.
Hugues Nury Nicolas Bocquet Chantal Le Poupon Ahmed Haouz Marc Delarue 《Journal of molecular biology》2010,395(5):1114-9683
The crystal structure of the extracellular domain (ECD) of the pentameric ligand-gated ion-channel from Gloeobacter violaceus (GLIC) was solved at neutral pH at 2.3 Å resolution in two crystal forms, showing a surprising hexameric quaternary structure with a 6-fold axis replacing the expected 5-fold axis. While each subunit retains the usual β-sandwich immunoglobulin-like fold, small deviations from the whole GLIC structure indicate zones of differential flexibility. The changes in interface between two adjacent subunits in the pentamer and the hexamer can be described in a downward translation by one inter-strand distance and a global rotation of the second subunit, using the first one for superposition. While global characteristics of the interface, such as the buried accessible surface area, do not change very much, most of the atom-atom interactions are rearranged. It thus appears that the transmembrane domain is necessary for the proper oligomeric assembly of GLIC and that there is an intrinsic plasticity or polymorphism in possible subunit-subunit interfaces at the ECD level, the latter behaving as a monomer in solution. Possible functional implications of these novel structural data are discussed in the context of the allosteric transition of this family of proteins. In addition, we propose a novel way to quantify elastic energy stored in the interface between subunits, which indicates a tenser interface for the open form than for the closed form (rest state). The hexameric or pentameric forms of the ECD have a similar negative curvature in their subunit-subunit interface, while acetylcholine binding proteins have a smaller and positive curvature that increases from the apo to the holo form. 相似文献
5.
SNARE domain proteins are key molecules mediating intracellular fusion events. SNAP25 family proteins are unique target-SNAREs possessing two SNARE domains. Here we report the genetic, molecular, and cell biological characterization of C. elegans SNAP-29. We found that snap-29 is an essential gene required throughout the life-cycle. Depletion of snap-29 by RNAi in adults results in sterility associated with endomitotic oocytes and pre-meiotic maturation of the oocytes. Many of the embryos that are produced are multinucleated, indicating a defect in embryonic cytokinesis. A profound defect in secretion by oocytes and early embryos in animals lacking SNAP-29 appears to be the underlying defect connecting these phenotypes. Further analysis revealed defects in basolateral and apical secretion by intestinal epithelial cells in animals lacking SNAP-29, indicating a broad requirement for this protein in the secretory pathway. A SNAP-29-GFP fusion protein was enriched on recycling endosomes, and loss of SNAP-29 disrupted recycling endosome morphology. Taken together these results suggest a requirement for SNAP-29 in the fusion of post-Golgi vesicles with the recycling endosome for cargo to reach the cell surface. 相似文献
6.
Ai Mimoto Madoka Fujii Makoto Usami Maki Shimamura Naoko Hirabayashi Takako Kaneko Noboru Sasagawa Shoichi Ishiura 《Biochemical and biophysical research communications》2007,364(4):227
Changes in both behavior and gene expression occur in Caenorhabditis elegans following exposure to sex hormones such as estrogen and progesterone, and to bisphenol A (BPA), an estrogenic endocrine-disrupting compound. However, only one steroid hormone receptor has been identified. Of the 284 known nuclear hormone receptors (NHRs) in C. elegans, we selected nhr-14, nhr-69, and nhr-121 for analysis as potential estrogenic hormone receptors, because they share sequence similarity with the human estrogen receptor. First, the genes were cloned and expressed in Escherichia coli, and then the affinity of each protein for estrogen was determined using a surface plasmon resonance (SPR) biosensor. All three NHRs bound estrogen in a dose-dependent fashion. To evaluate the specificity of the binding, we performed a solution competition assay using an SPR biosensor. According to our results, only NHR-14 was able to interact with estrogen. Therefore, we next examined whether nhr-14 regulates estrogen signaling in vivo. To investigate whether these interactions actually control the response of C. elegans to hormones, we investigated the expression of vitellogenin, an estrogen responsive gene, in an nhr-14 mutant. Semi-quantitative RT-PCR showed that vitellogenin expression was significantly reduced in the mutant. This suggests that NHR-14 is a C. elegans estrogenic hormone receptor and that it controls gene expression in response to estrogen. 相似文献
7.
E. Cagni D. Remondini P. Mesirca G. C. Castellani F. Bersani 《Journal of biological physics》2007,33(3):183-194
In this paper, we calculate the effect of an exogenous perturbation (an electromagnetic field [EMF] oscillating in the range
of microwave frequencies in the range of 1 GHz) on the flux of two ion species through a cylindrical ion channel, implementing
a continuous model, the Poisson–Smoluchowski system of equations, to study the dynamics of charged particle density inside
the channel. The method was validated through comparison with Brownian dynamics simulations, supposed to be more accurate
but computationally more demanding, obtaining a very good agreement. No EMF effects were observed for low field intensities
below the level for thermal effects, as the highly viscous regime and the simplicity of the channel do not exhibit resonance
phenomena. For high intensities of the external field (>105 V/m), we observed slightly different behavior of ion concentration oscillations and ion currents as a function of EMF orientation
with respect to the channel axis. 相似文献
8.
Brown LA Jones AK Buckingham SD Mee CJ Sattelle DB 《International journal for parasitology》2006,36(6):617-624
Following the complete sequencing of the genome of the free-living nematode, Caenorhabditis elegans, in 1998, rapid advances have been made in assigning functions to many genes. Forward and reverse genetics have been used to identify novel components of synaptic transmission as well as determine the key components of antiparasitic drug targets. The nicotinic acetylcholine receptors (nAChRs) are prototypical ligand-gated ion channels. The functions of these transmembrane proteins and the roles of the different members of their extensive subunit families are increasingly well characterised. The simple nervous system of C. elegans possesses one of the largest nicotinic acetylcholine receptor gene families known for any organism and a combination of genetic, microarray, physiological and reporter gene expression studies have added greatly to our understanding of the components of nematode muscle and neuronal nAChR subtypes. Chemistry-to-gene screens have identified five subunits that are components of nAChRs sensitive to the antiparasitic drug, levamisole. A novel, validated target acting downstream of the levamisole-sensitive nAChR has also been identified in such screens. Physiology and molecular biology studies on nAChRs of parasitic nematodes have also identified levamisole-sensitive and insensitive subtypes and further subdivisions are under investigation. 相似文献
9.
We describe here two new transposable elements, CemaT4 and CemaT5, that were identified within the sequenced genome of Caenorhabditis elegans using homology based searches. Five variants of CemaT4 were found, all non-autonomous and sharing 26 bp inverted terminal repeats (ITRs) and segments (152–367 bp) of sequence with
similarity to the CemaT1 transposon of C. elegans. Sixteen copies of a short, 30 bp repetitive sequence, comprised entirely of an inverted repeat of the first 15 bp of CemaT4’s ITR, were also found, each flanked by TA dinucleotide duplications, which are hallmarks of target site duplications of
mariner-Tc transposon transpositions. The CemaT5 transposable element had no similarity to maT elements, except for sharing identical ITR sequences with CemaT3. We provide evidence that CemaT5 and CemaT3 are capable of excising from the C. elegans genome, despite neither transposon being capable of encoding a functional transposase enzyme. Presumably, these two transposons
are cross-mobilised by an autonomous transposon that recognises their shared ITRs. The excisions of these and other non-autonomous
elements may provide opportunities for abortive gap repair to create internal deletions and/or insert novel sequence within
these transposons. The influence of non-autonomous element mobility and structural diversity on genome variation is discussed. 相似文献
10.
Holden-Dye L O'Connor V Hopper NA Walker RJ Harder A Bull K Guest M 《Invertebrate neuroscience : IN》2007,7(4):199-208
Large-conductance calcium and voltage-activated potassium channels, termed SLO-1 (or BK), are pivotal players in the regulation
of cell excitability across the animal phyla. Furthermore, emerging evidence indicates that these channels are key mediators
of a number of neuroactive drugs, including the most recent new anthelmintic, the cyclo-octadepsipeptide emodepside. Detailed
reviews of the structure, function and pharmacology of BK channels have recently been provided (Salkoff et al. in Nat Rev
Neurosci 7:921–931, 2006; Ghatta et al. in Pharmacol Ther 110:103–116, 2006) and therefore these aspects will only briefly be covered here. The purpose of this review is to discuss how SLO-1 channels
might function as regulators of neural transmission and network activity. In particular, we focus on the role of SLO-1 in
the regulation of Caenorhabditis elegans behaviour and highlight the role of this channel as an effector for pleiotropic actions of neuroactive drugs, including emodepside.
On the premise that C. elegans is a ‘model nematode’ with respect to many aspects of neural function, the intention is that this might inform a broader
understanding of the role of these channels in the nematodes and their potential as novel anthelmintic targets. 相似文献
11.
Jacopo F. Novelli Kshitiz Chaudhary Julie Canovas Jack S. Benner Catherine L. Madinger Paul Kelly Jonathan Hodgkin Clotilde K.S. Carlow 《Developmental biology》2009,335(2):340-355
Galactofuranose (Galf), the furanoic form of d-galactose produced by UDP-galactopyranose mutases (UGMs), is present in surface glycans of some prokaryotes and lower eukaryotes. Absence of the Galf biosynthetic pathway in vertebrates and its importance in several pathogens make UGMs attractive drug targets. Since the existence of Galf in nematodes has not been established, we investigated the role of the Caenorhabditis elegans UGM homolog glf-1 in worm development. glf-1 mutants display significant late embryonic and larval lethality, and other phenotypes indicative of defective surface coat synthesis, the glycan-rich outermost layer of the nematode cuticle. The glf homolog from the protozoan Leishmania major partially complements C. elegans glf-1. glf-1 mutants rescued by L. major glf, which behave as glf-1 hypomorphs, display resistance to infection by Microbacterium nematophilum, a pathogen of rhabditid nematodes thought to bind to surface coat glycans. To confirm the presence of Galf in C. elegans, we analyzed C. elegans nucleotide sugar pools using online electrospray ionization–mass spectrometry (ESI-MS). UDP-Galf was detected in wild-type animals while absent in glf-1 deletion mutants. Our data indicate that Galf likely has a pivotal role in maintenance of surface integrity in nematodes, supporting investigation of UGM as a drug target in parasitic species. 相似文献
12.
K. Vijay Raghavan 《Development genes and evolution》1981,190(5):297-300
Summary Electrophoresis of myosin extracts from larvae and adult tissues ofDrosophila melanogaster under non-dissociating conditions indicate that two of the bands seen are myosins. They stain for Ca2+ ATPase activity and when cut and re-run under dissociating conditions are found to contain a myosin heavy chain that co-migrates with rabbit skeletal muscle myosin heavy chain. One of the forms of myosin seen is found primarily in extracts from the leg. The other is common to the adult fibrillar flight muscles and the larval body wall muscles.The electrophoretic evidence for two myosin types is strengthened by the histochemical demonstration of two myofibrillar ATPases on the basis of their lability to acid or alkali preincubation. The myofibrillar ATPase in the leg and the Tergal Depressor of the Trochanter (TDT) are shown to be relatively acid labile and alkali stable. The larval body wall muscles and the adult fibrillar flight muscles have an ATPase which is acid stable and alkali labile. This distribution of the two myofibrillar ATPase coincides with that predicted by electrophoresis of extracts from whole tissue and also locates the two myosins to specific muscle types. 相似文献
13.
蛋白质稳态是生物细胞应对压力的核心。线粒体作为一种重要的细胞器,依赖复杂的蛋白质网络行使正常功能,因此蛋白质稳态对其十分重要。当生物体受到外界压力,产生了蛋白质稳态的改变,为了维持机体功能的正常运转,细胞会激活一种称为线粒体未折叠蛋白反应的转录应答机制,从而维持线粒体蛋白质稳态,恢复线粒体功能,以应对压力,保持机体健康。本文主要介绍了线粒体的特征,线粒体未折叠蛋白反应的概念,线虫中线粒体未折叠蛋白反应的信号转导机制,以及线粒体未折叠蛋白反应对线虫衰老的影响。 相似文献
14.
Organogenesis is a complex process requiring multiple cell types to associate with one another through correct cell contacts and in the correct location to achieve proper organ morphology and function. To better understand the mechanisms underlying gonad formation, we performed a mutagenesis screen in Drosophila and identified twenty-four genes required for gonadogenesis. These genes affect all different aspects of gonad formation and provide a framework for understanding the molecular mechanisms that control these processes. We find that gonad formation is regulated by multiple, independent pathways; some of these regulate the key cell adhesion molecule DE-cadherin, while others act through distinct mechanisms. In addition, we discover that the Slit/Roundabout pathway, best known for its role in regulating axonal guidance, is essential for proper gonad formation. Our findings shed light on the complexities of gonadogenesis and the genetic regulation required for proper organ formation. 相似文献
15.
The question of the degree of evolutionary conservation of the pair-rule patterning mechanism known from Drosophila is still contentious. We have employed chromophore-assisted laser inactivation (CALI) to inactivate the function of the pair-rule gene even skipped (eve) in the short germ embryo of the flour beetle Tribolium. We show that it is possible to generate pair-rule type phenocopies with defects in alternating segments. Interestingly, we find the defects in odd numbered segments and not in even numbered ones as in Drosophila. However, this apparent discrepancy can be explained if one takes into account that the primary action of eve is at the level of parasegments and that different cuticular markers are used for defining the segment borders in the two species. In this light, we find that eve appears to be required for the formation of the anterior borders of the same odd numbered parasegments in both species. We conclude that the primary function of eve as a pair rule gene is conserved between the two species. 相似文献
16.
Puryer MA Hawkins CJ 《Apoptosis : an international journal on programmed cell death》2006,11(4):509-517
This study characterised the impact of active metazoan apoptotic proteases (caspases) on Saccharomyces cerevisiae viability. Expression of active caspase-3 or caspase-8 in yeast ruptured plasma and nuclear membranes and dramatically impaired
clonogenic survival, but did not damage DNA. Deletion of the proposed yeast apoptosis regulators YCA1 or Aif1p did not affect
the ability of human, insect or nematode caspases to kill yeast. These data indicate that expression of active metazoan caspases
causes irreversible damage to yeast membranes and organelles, in a manner independent of YCA1 and Aif1p. 相似文献
17.
Bryan D. Safratowich Chee Lor Laura Bianchi Lucia Carvelli 《The Journal of biological chemistry》2013,288(30):21630-21637
Amphetamine is a highly addictive psychostimulant, which is thought to generate its effects by promoting release of dopamine through reverse activation of dopamine transporters. However, some amphetamine-mediated behaviors persist in dopamine transporter knock-out animals, suggesting the existence of alternative amphetamine targets. Here we demonstrate the identification of a novel amphetamine target by showing that in Caenorhabditis elegans, a large fraction of the behavioral effects of amphetamine is mediated through activation of the amine-gated chloride channel, LGC-55. These findings bring to light alternative pathways engaged by amphetamine, and urge rethinking of the molecular mechanisms underlying the effects of this highly-addictive psychostimulant. 相似文献
18.
Singson A 《Developmental biology》2001,230(2):101-109
The nematode Caenorhabditis elegans is an attractive model system for the study of fertilization. C. elegans exists as a self-fertilizing hermaphrodite or as a male. This unusual situation provides an excellent opportunity to identify and maintain sterile mutants that affect sperm and no other cells. Analysis of these mutants can identify genes that encode proteins required for gamete recognition, adhesion, signaling, fusion, and/or activation at fertilization. These genes can also provide a starting point for the identification of additional molecules required for fertility. This review describes progress in the genetic and molecular dissection of fertilization in C. elegans and related studies on sperm competition. 相似文献
19.
通过野外调查、标本查阅及文献考证,订正了华南吊灯花属(Ceropegia Linn.)植物,将狭瓣吊灯花(C. angustilimba Merr.)从吊灯花(C. trichantha Hemsl.)的异名中予以恢复,提供了二者的形态描述,确认华南地区记录的柳叶吊灯花(C. salicifolia H. Huber)实为剑叶吊灯花(C. dolichophylla Schltr.)的错误鉴定,并提供了后者的形态描述。 相似文献
20.
Jessica Chery Erica Larschan 《Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms》2014,1839(3):234-240
Dosage compensation is the essential process that equalizes the dosage of X-linked genes between the sexes in heterogametic species. Because all of the genes along the length of a single chromosome are co-regulated, dosage compensation serves as a model system for understanding how domains of coordinate gene regulation are established. Dosage compensation has been best studied in mammals, flies and worms. Although dosage compensation systems are seemingly diverse across species, there are key shared principles of nucleation and spreading that are critical for accurate targeting of the dosage compensation complex to the X-chromosome(s). We will highlight the mechanisms by which long non-coding RNAs function together with DNA sequence elements to tether dosage compensation complexes to the X-chromosome. This article is part of a Special Issue entitled: Chromatin and epigenetic regulation of animal development. 相似文献