首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Boron neutron capture therapy (BNCT) is a binary treatment involving selective accumulation of boron carriers in a tumor followed by irradiation with a thermal or epithermal neutron beam. The neutron capture reaction with a boron-10 nucleus yields high linear energy transfer (LET) particles, alpha and 7Li, with a range of 5 to 9 µm. These particles can only travel very short distances and release their damaging energy directly into the cells containing the boron compound. We aimed to evaluate proliferation, apoptosis and extracellular matrix (ECM) modifications of B16F10 melanoma and normal human melanocytes after BNCT. The amounts of soluble collagen and Hsp47, indicating collagen synthesis in the ECM, as well as the cellular markers of apoptosis, were investigated. BNCT decreased proliferation, altered the ECM by decreasing collagen synthesis and induced apoptosis by regulating Bcl-2/Bax in melanoma. Additionally, BNCT also increased the levels of TNF receptor and the cleaved caspases 3, 7, 8 and 9 in melanoma. These results suggest that multiple pathways related to cell death and cell cycle arrest are involved in the treatment of melanoma by BNCT.  相似文献   

2.
Measurement of boron concentration in biological tissues is a fundamental aspect of boron neutron capture therapy, because the outcome of the therapy depends on the distribution of boron at a cellular level, besides on its overall concentration. This work describes a measurement technique based on the spectroscopy of the charged particles emitted in the reaction 10B(n,α)7Li induced by thermal neutrons, allowing for a quantitative determination of the boron concentration in the different components that may be simultaneously present in a tissue sample, such as healthy cells, tumor cells and necrotic cells. Thin sections of tissue containing 10B are cut at low temperatures and irradiated under vacuum in a thermal neutron field. The charged particles arising from the sample during the irradiation are collected by a thin silicon detector, and their spectrum is used to determine boron concentration through relatively easy calculations. The advantages and disadvantages of this technique are here described, and validation of the method using tissue standards with known boron concentrations is presented.  相似文献   

3.
closo-Dodecaborate lipid liposomes were developed as new vehicles for boron delivery system (BDS) of neutron capture therapy. The current approach is unique because the liposome shell itself possesses cytocidal potential in combination with neutron irradiation. The liposomes composed of closo-dodecaborate lipids DSBL and DPBL displayed high cytotoxicity with thermal neutron irradiation. The closo-dodecaborate lipid liposomes were taken up into the cytoplasm by endocytosis without degradation of the liposomes. Boron concentration of 22.7 ppm in tumor was achieved by injection with DSBL-25% PEG liposomes at 20 mg B/kg. Promising BNCT effects were observed in the mice injected with DSBL-25% PEG liposomes: the tumor growth was significantly suppressed after thermal neutron irradiation (1.8 × 1012 neutrons/cm2).  相似文献   

4.
The Monte-Carlo technique was used to perform quantitative microdosimetric model calculations of cell survival after boron neutron capture irradiations in vitro. The high energy 7Li and alpha-particles resulting from the neutron capture reaction 10B (n,α)7Li are of short range and are highly damaging to cells. The biophysical model of the Monte-Carlo calculations is based on the track structure of these α-particles and 7Li-ions and the x-ray sensitivity of the irradiated cells. The biological effect of these particles can be determined if the lethal effect of local doses deposited in very small fractional volumes of the cell nucleus is known. This lethal effect can be deduced from experimental data of cell survival after x-ray irradiation assuming a Poisson distribution for lethal events. The input data used in a PC-based computer program are the radial dose distribution inside the track of the released particles, cell survival after x-ray irradiation, geometry of the tumor cells, subcellular 10B concentration, and thermal neutron fluence. The basic concept of this Monte-Carlo computer model is demonstrated. Validations of computer calculations are presented by comparing them with experimental data on cell survival.  相似文献   

5.
Boron neutron capture therapy (BNCT) is currently undergoing clinical trials in the USA, Japan and The Netherlands with patients afflicted with deadly brain cancer (glioblastoma multiforme) or melanoma. This therapy relies on a binary process in which the capture of a slow neutron by a 10B nucleus leads to an energetic nuclear fission reaction, with the formation of 7Li3+ and 4He2+ and accompanied by about 2.4 MeV of energy. The fleeting 7Li3+ and 4He2+ travel a distance of only about the diameter of one cell, and they are deadly to any cell in which they have been produced. Research in progress is concerned with the development of advanced boron agents and neutron sources, other than nuclear reactors, for the treatment of a variety of cancer types using novel 10B delivery methods. Non-malignant diseases such as rheumatoid arthritis offer additional opportunities for BNCT. The entire BNCT area awaits commercialization.  相似文献   

6.
In this article we report the physicochemical characterization of cationic liposomes loaded with orthocarborane and two of its sugar-containing derivatives. Carboranes are efficient boron delivery agents in boron neutron capture therapy, an anti-cancer treatment based on neutron absorption by 10B nuclei. Cationic liposomes were prepared using the positively charged DOTAP and the zwitterionic DOPE, as a helper lipid. These liposomes are currently used in gene therapy for their ability in targeting the cell nucleus; therefore they can be considered appropriate vectors for boron neutron capture therapy, in the quest of reducing the high boron amount that is necessary for successful cancer treatment. Boron uptake was determined by an original in situ method, based on neutron absorption. The structural properties of the loaded liposomes were studied in detail by the combined use of small angle x-ray scattering and small angle neutron scattering. These techniques established the global shape and size of liposomes and their bilayer composition. The results were discussed in term of molecular properties of the hosted drugs. Differences found in the insertion modality were correlated with the preparation procedure or with the specific shape and lipophilic-hydrophilic balance of each carborane.  相似文献   

7.
Boron neutron capture therapy (BNCT) is based on selective accumulation of 10B carriers in tumor followed by neutron irradiation. We previously proved the therapeutic success of BNCT mediated by the boron compounds boronophenylalanine and sodium decahydrodecaborate (GB-10) in the hamster cheek pouch oral cancer model. Based on the clinical relevance of the boron carrier sodium borocaptate (BSH) and the knowledge that the most effective way to optimize BNCT is to improve tumor boron targeting, the specific aim of this study was to perform biodistribution studies of BSH in the hamster cheek pouch oral cancer model and evaluate the feasibility of BNCT mediated by BSH at nuclear reactor RA-3. The general aim of these studies is to contribute to the knowledge of BNCT radiobiology and optimize BNCT for head and neck cancer. Sodium borocaptate (50 mg 10B/kg) was administered to tumor-bearing hamsters. Groups of 3–5 animals were killed humanely at nine time-points, 3–12 h post-administration. Samples of blood, tumor, precancerous pouch tissue, normal pouch tissue and other clinically relevant normal tissues were processed for boron measurement by optic emission spectroscopy. Tumor boron concentration peaked to therapeutically useful boron concentration values of 24–35 ppm. The boron concentration ratio tumor/normal pouch tissue ranged from 1.1 to 1.8. Pharmacokinetic curves showed that the optimum interval between BSH administration and neutron irradiation was 7–11 h. It is concluded that BNCT mediated by BSH at nuclear reactor RA-3 would be feasible.  相似文献   

8.

Aim

In this study, we investigated γH2AX foci as markers of DSBs in normal brain and brain tumor tissue in mouse after BNCT.

Background

Boron neutron capture therapy (BNCT) is a particle radiation therapy in combination of thermal neutron irradiation and boron compound that specifically accumulates in the tumor. 10B captures neutrons and produces an alpha (4He) particle and a recoiled lithium nucleus (7Li). These particles have the characteristics of extremely high linear energy transfer (LET) radiation and therefore have marked biological effects. High LET radiation causes severe DNA damage, DNA DSBs. As the high LET radiation induces complex DNA double strand breaks (DSBs), large proportions of DSBs are considered to remain unrepaired in comparison with exposure to sparsely ionizing radiation.

Materials and methods

We analyzed the number of γH2AX foci by immunohistochemistry 30 min or 24 h after neutron irradiation.

Results

In both normal brain and brain tumor, γH2AX foci induced by 10B(n,α)7Li reaction remained 24 h after neutron beam irradiation. In contrast, γH2AX foci produced by γ-ray irradiation at contaminated dose in BNCT disappeared 24 h after irradiation in these tissues.

Conclusion

DSBs produced by 10B(n,α)7Li reaction are supposed to be too complex to repair for cells in normal brain and brain tumor tissue within 24 h. These DSBs would be more difficult to repair than those by γ-ray. Excellent anti-tumor effect of BNCT may result from these unrepaired DSBs induced by 10B(n,α)7Li reaction.  相似文献   

9.
Preclinical studies for boron neutron capture therapy (BNCT) using epithermal neutrons are ongoing at several laboratories. The absorbed dose in tumor cells is a function of the thermal neutron flux at depth, the microscopic boron concentration, and the size of the cell. Dosimetry is therefore complicated by the admixture of thermal, epithermal, and fast neutrons, plus gamma rays, and the array of secondary high-linear-energy-transfer particles produced within the patient from neutron interactions. Microdosimetry can be a viable technique for determining absorbed dose and radiation quality. A 2.5-cm-diameter tissue-equivalent gas proportional counter has been built with 50 parts per million (ppm) 10B incorporated into the walls and counting gas to simulate the boron uptake anticipated in tumors. Measurements of lineal energy (y) spectra for BNCT in simulated volumes of 1-10 microns diameter show a dose enhancement factor of 4.3 for 30 ppm boron, and a "y" of 250 keV/microns for the boron capture process. Chamber design plus details of experimental and calculated linear energy spectra will be presented.  相似文献   

10.
The aim of the NEPTUNE (Nuclear process-driven Enhancement of Proton Therapy UNravEled) project is to investigate in detail both the physical and radiobiological phenomena that could justify an increase of the proton-induced cytogenetic effects in cells irradiated in presence of an agent containing natural boron.In this work, a double-stage silicon telescope coupled to different boron converters was irradiated at the CATANA proton therapy facility (INFN-LNS) for studying the proton boron fusion and the neutron boron capture reactions by discriminating secondary particles from primary protons.Different boron targets were developed by depositing boric acid, enriched with a higher than 99% content of 10B or 11B, on a 50 µm thick PolyMethilMetacrylate (PMMA) substrate. The 10B target allows to evaluate the contribution of lithium and alpha particles produced by the boron neutron capture reaction triggered by secondary thermal neutrons, while the 11B target is exploited for studying the effect of the p + 11B → 3α nuclear reaction directly triggered by primary protons.Experimental results clearly show the presence of alpha particles from both the reactions. The silicon telescope is capable of discriminating, by means of the so-called “scatter plots”, the contribution of alpha particles originated by thermal neutrons on 10B with respect to the ones produced by protons impinging on 11B. Although a reliable quantitative study of the alpha production rate has not been achieved yet, this work demonstrates that low energy and, therefore, high-LET particles from both the reactions can be measured.  相似文献   

11.
A number of groups in the United States have received funding that will permit evaluation of the clinical efficacy of the neutron capture therapy (NCT) procedure. Various reactors are being modified to allow the construction of an epithermal neutron beam. At the Brookhaven Medical Research Reactor (BMRR), the patient irradiation facility is being modified to produce an optimized epithermal neutron beam. An 80-cm-thick Al-D2O mixture (184 g/cm2, 25% D2O by volume) is being installed in the shutter assembly. One-dimensional calculations indicate that this configuration should provide an epithermal neutron flux density of ~1 × 109 n/cm2/sec at 3 MW and a concomitant fast neutron dose rate of ~2 × 10?11 rad per epithermal neutron (assuming a homogeneous Al-D2O mixture). The actual geometry will be an inhomogeneous array of D2O and Al layers producing parameters somewhat less favorable than those listed above; experimental verification is in progress. Significant gains have recently been made in selectively targeting B to melanoma with various melanaffinic compounds, including p-boronophenylalanine, and with boronated porphyrins that may be applicable to a variety of tumors. Neutron capture radiographs have been obtained with the above compounds, and efforts have been made to quantitate boron uptake in growing and quiescent or necrotic regions of tumor via double-labeling techniques obtained with tritiated thymidine. A correlation between therapeutic efficacy and the ability to deliver boron to viable areas of tumor has been observed.  相似文献   

12.
High accumulation and selective delivery of boron into tumor tissues are the most important requirements to achieve efficient neutron capture therapy of cancers. We focused on liposomal boron delivery system to achieve a large amount of boron delivery to tumor. We succeeded in the synthesis of the double-tailed boron cluster lipids 4a–c and 5a–c, which has a B12H11S-moiety as a hydrophilic function, by S-alkylation of B12H11SH with bromoacetyl and chloroacetocarbamate derivatives of diacylglycerols. Size distribution of liposomes prepared from the boron cluster lipid 4b, dimyristoylphosphatidylcholine, polyethyleneglycol-conjugated distearoylphosphatidylethanolamine, and cholesterol was determined as 100 nm in diameter by an electrophoretic light scattering spectrophotometer. Calcein-encapsulation experiments revealed that these boronated liposomes are stable at 37 °C in fetal bovine serum solution for 24 h.  相似文献   

13.
The boron-containing melanin precursor analogue p-boronophenylalanine (BPA) has previously been shown to selectively deliver boron to pigmented murine melanomas when administered in a single intragastric dose. If boron neutron capture therapy is to become a clinically useful method of radiation therapy for human malignant melanoma, the boron carrier must be capable of delivering useful amounts of boron to remote tumor sites (metastases) and to poorly pigmented melanomas. We have now determined the ability of BPA to accumulate in several nonpigmented melanoma models including human melanoma xenografts in nude mice. The absolute amount of boron in the nonpigmented melanomas was about 50% of that observed in the pigmented counterparts but was still selectively concentrated in the tumor relative to normal tissues in amounts sufficient for effective neutron capture therapy. Single intragastric doses of BPA resulted in selective localization of boron in the amelanotic Greene melanoma carried in the anterior chamber of the rabbit eye and in a pigmented murine melanoma growing in the lungs. The ratio of the boron concentration in these tumors to the boron concentration in the immediately adjacent normal tissue was in the range of 3:1 to 4:1. These distribution studies support the proposal that boron neutron capture therapy may be useful as a regional therapy for malignant melanoma.  相似文献   

14.
Boron neutron capture therapy (BNCT) is a binary radiotherapy based on thermal-neutron irradiation of cells enriched with (10)B, which produces α particles and (7)Li ions of short range and high biological effectiveness. The selective uptake of boron by tumor cells is a crucial issue for BNCT, and studies of boron uptake and washout associated with cell survival studies can be of great help in developing clinical applications. In this work, boron uptake and washout were characterized both in vitro for the DHDK12TRb (DHD) rat colon carcinoma cell line and in vivo using rats bearing liver metastases from DHD cells. Despite a remarkable uptake, a large boron release was observed after removal of the boron-enriched medium from in vitro cell cultures. However, analysis of boron washout after rat liver perfusion in vivo did not show a significant boron release, suggesting that organ perfusion does not limit the therapeutic effectiveness of the treatment. The survival of boron-loaded cells exposed to thermal neutrons was also assessed; the results indicated that the removal of extracellular boron does not limit treatment effectiveness if adequate amounts of boron are delivered and if the cells are kept at low temperature. Cell survival was also investigated theoretically using a mechanistic model/Monte Carlo code originally developed for radiation-induced chromosome aberrations and extended here to cell death; good agreement between simulation outcomes and experimental data was obtained.  相似文献   

15.
The efficiency of boron neutron capture therapy (BNCT) for malignant gliomas depends on the selective and absolute accumulation of (10)B atoms in tumor tissues. Only two boron compounds, BPA and BSH, currently can be used clinically. However, the detailed distributions of these compounds have not been determined. Here we used secondary ion mass spectrometry (SIMS) to determine the histological distribution of (10)B atoms derived from the boron compounds BSH and BPA. C6 tumor-bearing rats were given 500 mg/kg of BPA or 100 mg/kg of BSH intraperitoneally; 2.5 h later, their brains were sectioned and subjected to SIMS. In the main tumor mass, BPA accumulated heterogeneously, while BSH accumulated homogeneously. In the peritumoral area, both BPA and BSH accumulated measurably. Interestingly, in this area, BSH accumulated distinctively in a diffuse manner even 800 microm distant from the interface between the main tumor and normal brain. In the contralateral brain, BPA accumulated measurably, while BSH did not. In conclusion, both BPA and BSH each have advantages and disadvantages. These compounds are considered to be essential as boron delivery agents independently for clinical BNCT. There is some rationale for the simultaneous use of both compounds in clinical BNCT for malignant gliomas.  相似文献   

16.
The objective of the present study was to construct epidermal growth factor receptor (EGFR) targeting cetuximab-immunoliposomes (ILs) for targeted delivery of boron compounds to EGFR(+) glioma cells for neutron capture therapy. The ILs were synthesized by using a novel cholesterol-based membrane anchor, maleimido-PEG-cholesterol (Mal-PEG-Chol), to incorporate cetuximab into liposomes by either surface conjugation or a post-insertion method. For post-insertion, the transfer efficiency of MAb conjugates from micelles to liposome was examined at varying temperatures, mPEG2000-DSPE ratios, and micelle-to-liposome lipid ratios. Following this, the cetuximab-ILs were evaluated for targeted delivery of the encapsulated boron anion, dodecahydro-closo-dodecaborate (2-) (B12H122-), to human EGFR gene transfected F98EGFR glioma cells as potential delivery agents for boron neutron capture therapy (BNCT). In addition, cellular uptake of cetuximab-ILs, encapsulating a fluorescence dye, was analyzed by confocal fluorescence microscopy and flow cytometry, and boron content was quantified by ICP-MS. Much greater ( approximately 8-fold) cellular uptake of boron was obtained using cetuximab-ILs in EGFR(+) F98EGFR compared with nontargeted human IgG-ILs. On the basis of these observations, we have concluded that cholesterol can serve as an effective anchor for MAb in liposomes, and cetuximab-ILs are potentially useful delivery vehicles for BNCT of gliomas.  相似文献   

17.
Boron-10 concentrations of 20 or 40 micrograms/g were attained in mouse B16 melanomas following one or two intragastric doses of p-boronophenylalanine (750 mg/kg body weight per dose), respectively. Tumor-to-normal-tissue (blood, muscle) boron concentration ratios were 4:1-6:1. The efficacy of boron neutron capture irradiation was monitored using the Wilcoxon two-sample test in conjunction with a system of ranking outcomes of different therapies that compared living mice and mice sacrificed because of excessive tumor growth concomitantly. Median survivals were extended progressively as radiation doses were increased up to 38.7 gray-equivalent (gray X relative biological effectiveness), with one of five and one of six tumors cured in each of the two highest dose groups, respectively. When comparable tumor inhibitory doses of 250-kVp X rays were used to treat these tumors, instead of the transient erythema and edema that resulted from boron neutron capture therapy, there resulted irreversible muscle necrosis in the irradiated zone and atrophy of the foot distal to the irradiated zone. The improvement in treatment outcome with boron neutron capture therapy is attributable to unprecedented tumor-to-normal-tissue radiation dose ratios of approximately 2.8 to 3.6.  相似文献   

18.
Invasive nonfunctional pituitary adenomas (NFPAs) are difficult to completely resect and often develop tumor recurrence after initial surgery. Currently, no medications are clinically effective in the control of NFPA. Although radiation therapy and radiosurgery are useful to prevent tumor regrowth, they are frequently withheld because of severe complications. Boron neutron capture therapy (BNCT) is a binary radiotherapy that selectively and maximally damages tumor cells without harming the surrounding normal tissue. Folate receptor (FR)-targeted boron-10 containing carbon nanoparticles is a novel boron delivery agent that can be selectively taken up by FR-expressing cells via FR-mediated endocytosis. In this study, FR-targeted boron-10 containing carbon nanoparticles were selectively taken up by NFPAs cells expressing FR but not other types of non-FR expressing pituitary adenomas. After incubation with boron-10 containing carbon nanoparticles and following irradiation with thermal neutrons, the cell viability of NFPAs was significantly decreased, while apoptotic cells were simultaneously increased. However, cells administered the same dose of FR-targeted boron-10 containing carbon nanoparticles without neutron irradiation or received the same neutron irradiation alone did not show significant decrease in cell viability or increase in apoptotic cells. The expression of Bcl-2 was down-regulated and the expression of Bax was up-regulated in NFPAs after treatment with FR-mediated BNCT. In conclusion, FR-targeted boron-10 containing carbon nanoparticles may be an ideal delivery system of boron to NFPAs cells for BNCT. Furthermore, our study also provides a novel insight into therapeutic strategies for invasive NFPA refractory to conventional therapy, while exploring these new applications of BNCT for tumors, especially benign tumors.  相似文献   

19.
There are only a few reports on the relative biological effectiveness (RBE) of thermal neutrons and 10B(n,α)7Li reactions either in vitro or in vivo. The data in this paper summarize almost all previously published in vitro data. Because only a few reactors are available for biomedical purposes, it is difficult to make a comparison of data from experiments using the same kind of radiation, and also to make a comparison of data from experiments using the different kinds of radiations. However, it is indispensable for boron neutron capture therapy to make a radiobiological analysis. More intensive study, including repair process and oxygen effect, is necessary for establishing the fundamental basis of the clinical application of boron neutron capture therapy.  相似文献   

20.
We confirmed the feasibility of using our proposed system to extract two different kinds of functional images from a positron emission tomography (PET) module by using an insertable collimator during boron neutron capture therapy (BNCT). Coincidence events from a tumor region that included boron particles were identified by a PET scanner before BNCT; subsequently, the prompt gamma ray events from the same tumor region were collected after exposure to an external neutron beam through an insertable collimator on the PET detector. Five tumor regions that contained boron particles and were located in the water phantom and in the BNCT system with the PET module were simulated with Monte Carlo simulation code. The acquired images were quantitatively analyzed. Based on the receiver operating characteristic (ROC) curves in the five boron regions, A, B, C, D, and E, the PET and single-photon images were 10.2%, 11.7%, 8.2% (center region), 12.6%, and 10.5%, respectively. We were able to acquire simultaneously PET and single prompt photon images for tumor regions monitoring by using an insertable collimator without any additional isotopes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号