首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
M F Schmidt 《The EMBO journal》1984,3(10):2295-2300
[3H]Myristic and [3H]palmitic acid were compared as tracers for the fatty acylation of cellular lipids and viral glycoproteins in chicken embryo cells infected with fowl plague and Semliki Forest virus (SFV). Both of these substrates are incorporated into glycerolipids to a similar extent, whereas sphingolipids show much higher levels of palmitate than myristate after a 20 h labeling period. Both fatty acid species were found to be subject to metabolic conversions into longer chain fatty acids yielding 11.7% C16:0 from [3H]myristic and 11.8% C18:0 from [3H]palmitic acid. The reverse, a metabolic shortening of the exogenous acyl-chains yielding, for instance, significant levels of myristic acid from palmitic acid was not observed. Out of the various [3H]fatty acids present after in vivo labeling with [3H]myristic acid (C14:0) the elongated acyl-species arising from metabolic conversion (e.g., C16:0; C18:0) are preferred over myristic acid in the acylation of SFV E1 and E2 and of the influenza viral hemagglutinin (HA2). During acylation of exogenous E1 from SFV in vitro incorporation of palmitic acid from palmitoyl CoA exceeds that of myristic acid from myristoyl CoA by a factor of 37. This indicates that specificity for the incorporation of fatty acids into viral membrane proteins occurs at the level of the polypeptide acyltransferase(s).  相似文献   

2.
The immediate acyl chain donor for fatty acid esterification of proteolipid protein (PLP) was identified in an in vitro system. Rat brain total membranes, after removal of crude nuclear and mitochondrial fractions, were incubated with radioactive acyl donors, extracted with chloroform/methanol, and analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. In the presence of [3H]palmitic acid, CoA, ATP, and Mg2+, acylation of endogenous PLP occurred at a linear rate for at least 2 h. The radioactivity was associated with the protein via an ester linkage, mainly as palmitic acid. Omission of ATP, CoA, Mg2+, or all three reduced fatty acid incorporation into PLP to 44, 27, 8, and 4%, respectively, of the values in the complete system. Incubation of the membrane fraction with [3H]palmitoyl-CoA in the absence of CoA and ATP led to highly labeled PLP. These data demonstrate that activation of free fatty acid is required for acylation. Phospholipids and glycolipids were not able to acylate the PLP directly. Finally, when isolated myelin was incubated with [3H]palmitoyl-CoA in the absence of cofactors, only PLP was labeled, thus confirming the identity of palmitoyl-CoA as the direct acyl chain donor and suggesting that the acylating activity and the PLP pool available for acylation are both in the myelin.  相似文献   

3.
Proteolipid protein (PLP), the major protein of central nervous system myelin, contains approximately 2 mol of covalently bound fatty acids. In this study, the in vivo turnover rate of the acyl chains bound to PLP was determined in 40-day-old rats after a single intracranial injection of [3H]palmitic acid. The apparent half-life of total fatty acids bound to PLP was approximately 7 days. After correction for acyl chain interconversion, the half-life of palmitate bound to PLP was only 3 days. This turnover rate is much more rapid than that of the protein moiety calculated under the same experimental conditions (t1/2 = 1 month). Additional evidence for the dynamic metabolism of acyl groups was provided by experiments in brain tissue slices which showed that acylation of PLP occurs in adult animals as well as during active myelination. Acylation of endogenous PLP in purified myelin and its subfractions was also studied during rat brain development using either [3H]palmitoyl-CoA or [3H]palmitic acid plus ATP and CoA. Labeling of endogenous PLP with [3H]palmitoyl-CoA was observed as early as 10 days postnatal and continued at the same rate throughout development. When [3H]palmitic acid was used as precursor in the presence of both ATP and CoA, esterification of myelin PLP occurred rapidly in adult animals, indicating that both nonacylated PLP and acyl-CoA ligase are present in myelin. Finally, pulse-chase experiments in a cell-free system showed that PLP-bound fatty acids turn over with a half-life shorter than 10 min. These observations are consistent with the concept that acylation of myelin PLP is a dynamic process involved mainly in myelin maintenance and function.  相似文献   

4.
Abstract— The acylation of lysophosphatidylserine, prepared by snake venom digestion of phosphatidylserine, by rat brain microsomes is described. Acylation was monitored by spectrophotometric assay and by measuring the incorporation of radioactively labelled acyl CoA thioesters. Acylation was time dependent, showed an approximately linear response to enzyme concentration and had a pH optimum of 9.0. Maximum acylation was attained at a concentration of about 100 μM for lysophosphatidylserine and about 40μM for acyl CoA thioesters. Positional distribution studies with [14C]oleoyl CoA and [14C]arachidonoyl CoA showed incorporation was predominantly at position -2, but with significant labelling at position–1, particularly with oleoyl CoA, possibly as a result of isomerization of the 1–acyl isomer of lysophosphatidylserine. Both saturated and unsaturated thioesters could serve as acyl group donors. Myristoyl CoA was considerably superior to palmitoyl CoA and stearoyl CoA, which were poor acyl group donors. Some selectivity was shown among the long chain unsaturated thioesters, linoleoyl, linolenoyl and arachidonoyl CoA being the most effective acylating agents. Although docosahexaenoic acid is a major unsaturated fatty acid in brain phosphatidylserine, its CoA ester was a relatively poor acyl group donor. Relative acylation rates remained essentially constant over a wide range of lysophosphatidylserine concentrations. It is concluded that acyl transfer mechanisms are active in brain for the regulation of the fatty acid profile of phosphatidylserine.  相似文献   

5.
RNA polymerase from Escherichia coli was inhibited by long chain fatty acyl CoAs, such as myristoyl CoA (Ki = 17.2 microM), palmitoyl CoA (Ki = 8.9 microM), oleoyl CoA (Ki = 5.5 microM), and stearoyl CoA (Ki = 0.94 microM). The inhibition by these CoA thioesters was non-competitive against nucleoside triphosphates. Short chain fatty acyl CoAs, such as acetyl CoA, propionyl CoA, acetoacetyl CoA, butyryl CoA, and decanoyl CoA, failed to inhibit RNA polymerase. CoA, Na-myristate, Na-palmitate, Na-oleate, Na-stearate, palmitoyl carnitine, and carnitine did not inhibit the enzyme. The inhibition of RNA polymerase by long chain fatty acyl CoAs was competitive against template DNA.  相似文献   

6.
A novel radiochemical assay for long-chain fatty acid:CoASH ligase activity (AMP) (EC 6.2.1.3) has been developed based on the conversion of [3H]CoASH to long-chain fatty acyl CoA. Fatty acyl [3H]CoA was quantitatively retained on Millipore filters upon filtration of the acidified reaction mixture under conditions where the [3H]CoASH was not retained. The assay was developed using microsomes derived from isolated fat cells as the source of fatty acid:CoASH ligase activity. The assay performed at 25 degrees C for 10 min was linear with added microsomal protein up to 7 mug. The assay was linear with time up to 24 min when 1 mug of protein was employed. Fatty acid:CoASH ligase activity was strongly dependent on ATP and magnesium, was stimulated by Triton WR-1339, and was two- to fivefold dependent on added fatty acid. The filter assay is easier than existing assays based on incorporation of labeled fatty acid and is equally sensitive.  相似文献   

7.
Incubation of rat brain myelin with [3H]palmitic acid in the presence of ATP, CoA and MgCl2 or [14C]-palmitoyl-CoA in a cell-free system resulted in the selective labelling of 'PLP' [proteolipid protein; Folch & Lees (1951) J. Biol. Chem. 191, 807-817] and 'DM-20' [Agrawal, Burton, Fishman, Mitchell & Prensky (1972) J. Neurochem. 19, 2083-2089] which, after polyacrylamide-gel electrophoresis in SDS, were revealed by fluorography. These results provide evidence of the association of fatty acid-CoA ligase and acyltransferase in isolated myelin. Palmitic acid is covalently bound to PLP and DM-20, because 70 and 92% of the radioactivity was removed from proteolipid proteins after treatment with hydroxylamine and methanolic NaOH respectively. Incubation of myelin with [3H]palmitic acid in the absence of ATP, CoA, MgCl2, or all three, decreased incorporation of fatty acid into PLP to 3, 55, 18 and 2% respectively. The cell-free system exhibits specificity with respect to the chain length of the fatty acids, since myristic acid is incorporated into PLP at a lower rate when compared with palmitic and oleic acids. The acylation of PLP is an enzymic reaction, since (1) maximum incorporation of [3H]palmitic acid into PLP occurred at physiological temperatures and decreased with an increase in the temperature; (2) acylation of PLP with [3H]palmitic acid and [14C]palmitoyl-CoA was severely inhibited by SDS (0.05%); and (3) the incorporation of fatty acid and palmitoyl-CoA into PLP was substantially decreased by the process of freezing-thawing and freeze-drying of myelin. We have provided evidence that all of the enzymes required for acylation of PLP and DM-20 are present in isolated rat brain myelin. Acylation of PLP in a cell-free system with fatty acids and palmitoyl-CoA suggests that a presynthesized pool of non-acylated PLP and DM-20 is available for acylation.  相似文献   

8.
Rabbit alveolar macrophage microsomes were found to acylate 1-[3H]alkyl-glycero-3-phosphocholine (GPC) (lyso platelet-activating factor) in the absence of any cofactors, indicating the presence of transacylation activity. The transacylation activity was comparable to the activity of acyl-CoA:1-alkyl-GPC acyltransferase. The fatty acyl moieties introduced into 1-[3H]alkyl-GPC from membrane lipids by microsomes were mainly 20:4 (n-6). A very similar acylation profile was observed for the acylation of 1-[3H]alkyl-GPC in intact macrophages, suggesting that the CoA-independent transacylation system plays a very important part in the acylation of 1-[3H]alkyl-GPC in cells. We also confirmed that 14C-labeled 20:4(n-6), 20:5(n-3), 22:4(n-6), and 22:6(n-3) were transferred well from diacyl-GPC to 1-alkyl-GPC in a CoA-independent manner. The transfer rates for 16:0, 18:0, and 18:1 from diacyl-GPC to 1-alkyl-GPC were very low in the presence and absence of CoA. On the other hand, the transfer of 20:4 from diacyl-GPE or diacyl-GPI to 1-alkyl-GPC or 1-acyl-GPC was markedly increased by the addition of CoA. The above results indicate that the transacylation system exhibits distinct donor and acceptor selectivities and CoA dependency. These transacylation reactions could be very important in the regulation of the levels and the availability of lysophospholipids, including lyso platelet-activating factor, and C20 and C22 polyunsaturated fatty acids in living cells.  相似文献   

9.
Intersubunit transfer of fatty acyl groups during fatty acid reduction   总被引:2,自引:0,他引:2  
Fatty acid reduction in Photobacterium phosphoreum is catalyzed in a coupled reaction by two enzymes: acyl-protein synthetase, which activates fatty acids (+ATP), and a reductase, which reduces activated fatty acids (+NADPH) to aldehyde. Although the synthetase and reductase can be acylated with fatty acid (+ATP) and acyl-CoA, respectively, evidence for acyl transfer between these proteins has not yet been obtained. Experimental conditions have now been developed to increase significantly (5-30-fold) the level of protein acylation so that 0.4-0.8 mol of fatty acyl groups are incorporated per mole of the synthetase or reductase subunit. The acylated reductase polypeptide migrated faster on sodium dodecyl sulfate-polyacrylamide gel electrophoresis than the unlabeled polypeptide, with a direct 1 to 1 correspondence between the moles of acyl group incorporated and the moles of polypeptide migrating at this new position. The presence of 2-mercaptoethanol or NADPH, but not NADP, substantially decreased labeling of the reductase enzyme, and kinetic studies demonstrated that the rate of covalent incorporation of the acyl group was 3-5 times slower than its subsequent reduction with NADPH to aldehyde. When mixtures of the synthetase and reductase polypeptides were incubated with [3H] tetradecanoic acid (+ATP) or [3H]tetradecanoyl-CoA, both polypeptides were acylated to high levels, with the labeling again being decreased by 2-mercaptoethanol or NADPH. These results have demonstrated that acylation of the reductase represents an intermediate and rate-limiting step in fatty acid reduction. Moreover, the activated acyl groups are transferred in a reversible reaction between the synthetase and reductase proteins in the enzyme mechanism.  相似文献   

10.
The activities of three acylation systems for 1-alkenylglycerophosphoethanolamine (1-alkenyl-GPE), 1-acyl-GPE and 1-acylglycerophosphocholine (1-acyl-GPC) were compared in rat brain microsomes and the acyl selectivity of each system was clarified. The rate of CoA-independent transacylation of 1-[3H]alkenyl-GPE (approx. 4.5 nmol/10 min per mg protein) was about twice as high as in the case of 1-[3H]acyl-GPE and 1-[14C]acyl-GPC. On the other hand, the rates of CoA-dependent transacylation and CoA + ATP-dependent acylation (acylation of free fatty acids by acyl-CoA synthetase and acyl-CoA acyltransferase) of lysophospholipids were in the order 1-acyl-GPC greater than 1-acyl-GPE much greater than 1-alkenyl-GPE. HPLC analysis of newly synthesized molecular species revealed that the CoA-independent transacylation system exclusively esterified docosahexaenoate and arachidonate, regardless of the lysophospholipid class. The CoA-dependent transacylation and CoA + ATP-dependent acylation systems were almost the same with respect to the selectivities for unsaturated fatty acids when the same acceptor lysophospholipid was used, but some distinctive acyl selectivities were observed with different acceptor lysophospholipids. 1-Alkenyl-GPE selectively acquired only oleate in these two systems. 1-Acyl-GPE and 1-acyl-GPC showed selectivities for both arachidonate and oleate. In addition, an appreciable amount of palmitate was transferred to 1-acyl-GPC, not to 1-acyl-GPE, in CoA- or CoA + ATP-dependent manner. The acylation of exogenously added acyl-CoA revealed that the acyl selectivities of the CoA-dependent transacylation and CoA + ATP-dependent acylation systems may be mainly governed through the selective action of acyl-CoA acyltransferase. The preferential utilization of oleoyl-CoA by all acceptors and the different utilization of arachidonoyl-CoA between alkenyl and acyllysophospholipids indicated that there might be two distinct acyl-CoA:lysophospholipid acyltransferases that discriminate between oleoyl-CoA and arachidonoyl-CoA, respectively. Our present results clearly show that all three microsomal acylation systems can be active in the reacylation of three major brain glycerophospholipids and that the higher contribution of the CoA-independent system in the reacylation of ethanolamine glycerophospholipids, especially alkenylacyl-GPE, may tend to enrich docosahexaenoate in these phospholipids, as compared with in the case of diacyl-GPC.  相似文献   

11.
To study the involvement of acyl carrier protein (ACP) in the metabolism of exogenous fatty acids in Vibrio harveyi, cultures were incubated in minimal medium with [9,10-3H]myristic acid, and labeled proteins were analyzed by gel electrophoresis. Labeled acyl-ACP was positively identified by immunoprecipitation with anti-V. harveyi ACP serum and comigration with acyl-ACP standards and [3H]beta-alanine-labeled bands on both sodium dodecyl sulfate- and urea-polyacrylamide gels. Surprisingly, most of the acyl-ACP label corresponded to fatty acid chain lengths of less than 14 carbons: C14, C12, C10, and C8 represented 33, 40, 14, and 8% of total [3H]14:0-derived acyl-ACPs, respectively, in a dark mutant (M17) of V. harveyi which lacks myristoyl-ACP esterase activity; however, labeled 14:0-ACP was absent in the wild-type strain. 14:0- and 12:0-ACP were also the predominant species labeled in complex medium. In contrast, short-chain acyl-ACPs (< or = C6) were the major labeled derivatives when V. harveyi was incubated with [3H]acetate, indicating that acyl-ACP labeling with [3H]14:0 in vivo is not due to the total degradation of [3H]14:0 to [3H]acetyl coenzyme A followed by resynthesis. Cerulenin increased the mass of medium- to long-chain acyl-ACPs (> or = C8) labeled with [3H]beta-alanine fivefold, while total incorporation of [3H]14:0 was not affected, although a shift to shorter chain lengths was noted. Additional bands which comigrated with acyl-ACP on sodium dodecyl sulfate gels were identified as lipopolysaccharide by acid hydrolysis and thin-layer chromatography. The levels of incorporation of [3H] 14:0 into acyl-ACP and lipopolysaccharide were 2 and 15%, respectively, of that into phospholipid by 10 min. Our results indicate that in contrast to the situation in Escherichia coli, exogenous fatty acids can be activated to acyl-ACP intermediates after partial degradation in V. harveyi and can effectively label products (i.e., lipid A) that require ACP as an acyl donor.  相似文献   

12.
The modification of viral glycoproteins through the covalent attachment of fatty acids was studied in baby hamster kidney (BHK) cells infected with Semliki Forest virus (SFV). Comparative pulse-chase experiments with [3H]palmitic acid and [35S]methionine revealed that a precursor polypeptide, designated p62, of the structural SFV glycoprotein and E1 serve as the primary acceptors of acyl chains. Acylation of p62 occurs immediately prior to its proteolytical cleavage to E2 and E3 emphasizing the post-translational and specific nature of this hydrophobic modification. To trace the acyl donor(s) for protein acylation the covalent attachment of fatty acids to p62 was studied after extremely short labeling periods with [3H]palmitic acid and correlated to the metabolism of the exogenous tritiated fatty acid. The shortest possible labeling time, a 10 s pulse with [3H]palmitic acid, was sufficient to acylate SFV p62. Analysis of the labeled lipids extracted from the same cells revealed that palmitoyl-CoA and phosphatidic acid showed the highest specific radioactivity among the tritiated lipid species. Out of these lipid species palmitoyl-CoA was identified as the functional acyl donor lipid in a cell-free system for the acylation of polypeptides.  相似文献   

13.
The deacylation and reacylation process of phospholipids is the major pathway of turnover and repair in erythrocyte membranes. In this paper, we have investigated the role of carnitine palmitoyltransferase in erythrocyte membrane phospholipid fatty acid turnover. The role of acyl-L-carnitine as a reservoir of activated acyl groups, the buffer function of carnitine, and the importance of the acyl-CoA/free CoA ratio in the reacylation process of erythrocyte membrane phospholipids have also been addressed. In intact erythrocytes, the incorporation of [1-14C]palmitic acid into acyl-L-carnitine, phosphatidylcholine, and phosphatidylethanolamine was linear with time for at least 3 h. The greatest proportion of the radioactivity was found in acyl-L-carnitine. Competition experiments using [1-14C]palmitic and [9,10-3H]oleic acid demonstrated that [9,10-3H]oleic acid was incorporated preferentially into the phospholipids and less into acyl-L-carnitine. When an erythrocyte suspension was incubated with [1-14C]palmitoyl-L-carnitine, radiolabeled palmitate was recovered in the phospholipid fraction, and the carnitine palmitoyltransferase inhibitor, 2-tetradecylglycidic acid, completely abolished the incorporation. ATP depletion decreased incorporation of [1-14C]palmitic and/or [9,10-3H]oleic acid into acyl-L-carnitine, but the incorporation into phosphatidylcholine and phosphatidylethanolamine was unaffected. In contrast, ATP depletion enhanced the incorporation into phosphatidylcholine and phosphatidylethanolamine of the radiolabeled fatty acid from [1-14C]palmitoyl-L-carnitine. These data are suggestive of the existence of an acyl-L-carnitine pool, in equilibrium with the acyl-CoA pool, which serves as a reservoir of activated acyl groups. The carnitine palmitoyltransferase inhibition by 2-tetradecylglycidic acid or palmitoyl-D-carnitine caused a significant reduction of radiolabeled fatty acid incorporation into membrane phospholipids, only when intact erythrocytes were incubated with [9,10-3H]oleic acid. These latter data may be explained by the differences in rates and substrates specificities between acyl-CoA synthetase and the reacylating enzymes for palmitate and oleate, which support the importance of carnitine palmitoyltransferase in modulating the optimal acyl-CoA/free CoA ratio for the physiological expression of the membrane phospholipids fatty acid turnover.  相似文献   

14.
The role of acyl‐CoA‐dependent Δ6‐desaturation in the heterologous synthesis of omega‐3 long‐chain polyunsaturated fatty acids was systematically evaluated in transgenic yeast and Arabidopsis thaliana. The acyl‐CoA Δ6‐desaturase from the picoalga Ostreococcus tauri and orthologous activities from mouse (Mus musculus) and salmon (Salmo salar) were shown to generate substantial levels of Δ6‐desaturated acyl‐CoAs, in contrast to the phospholipid‐dependent Δ6‐desaturases from higher plants that failed to modify this metabolic pool. Transgenic plants expressing the acyl‐CoA Δ6‐desaturases from either O. tauri or salmon, in conjunction with the two additional activities required for the synthesis of C20 polyunsaturated fatty acids, contained higher levels of eicosapentaenoic acid compared with plants expressing the borage phospholipid‐dependent Δ6‐desaturase. The use of acyl‐CoA‐dependent Δ6‐desaturases almost completely abolished the accumulation of unwanted biosynthetic intermediates such as γ‐linolenic acid in total seed lipids. Expression of acyl‐CoA Δ6‐desaturases resulted in increased distribution of long‐chain polyunsaturated fatty acids in the polar lipids of transgenic plants, reflecting the larger substrate pool available for acylation by enzymes of the Kennedy pathway. Expression of the O. tauriΔ6‐desaturase in transgenic Camelina sativa plants also resulted in the accumulation of high levels of Δ6‐desaturated fatty acids. This study provides evidence for the efficacy of using acyl‐CoA‐dependent Δ6‐desaturases in the efficient metabolic engineering of transgenic plants with high value traits such as the synthesis of omega‐3 LC‐PUFAs.  相似文献   

15.
In this paper we report that palmitoyl-L-carnitine can be a metabolic intermediate of the fatty acid incorporation pathway into erythrocyte membrane phosphatidylcholine, and phosphatidylethanolamine. Phospholipid acylation was evaluated by measuring the incorporation of radioactive [1-14C]-palmitoyl-L-carnitine in membrane erythrocyte ghost phospholipids in the presence or absence of CoA. CoA highly stimulated the incorporation of [1-14C]-palmitic acid into both the phospholipids examined, although the incorporation was also evident in the absence of added CoA. Incorporation of [1-14C]-palmitic acid into phosphatidylcholine was greater than into phosphatidylethanolamine. 2-Bromo-palmitoyl-CoA, an irreversible inhibitor of the erythrocyte carnitine palmitoyltransferase, inhibited the acylation process.  相似文献   

16.
Several Brassica napus lines transformed with genes responsible for the synthesis of medium- or long-chain fatty acids were examined to determine limiting factor(s) for the subsequent accumulation of these fatty acids in seed lipids. Examination of a decanoic acid (10:0) accumulating line revealed a disproportionately high concentration of 10:0 CoA during seed development compared to long-chain acyl CoAs isolated from the same tissues, suggesting that poor incorporation of 10:0 CoA into seed lipids limits 10:0 fatty acid accumulation. This relationship was also seen for dodecanoyl (12:0) CoA and fatty acid in a high 12:0 line, but not for octadecanoic (18:0) CoA and fatty acid in a high 18:0 line. Comparison of 10:0 CoA and fatty acid proportions from seeds at different developmental stages for transgenic B. napus and Cuphea hookeriana, the source plant for the medium-chain thioesterase and 3-ketoacyl-ACP synthase transgenes, revealed that C. hookeriana incorporates 10:0 CoA into seed lipids more efficiently than transgenic B. napus. Furthermore, beta-oxidation and glyoxylate cycle activities were not increased above wild type levels during seed development in the 8:0/10:0 line, suggesting that lipid catabolism was not being induced in response to the elevated 10:0 CoA concentrations. Taken together, these data suggest that transgenic plants that are engineered to synthesize medium-chain fatty acids may lack the necessary mechanisms, such as specific acyltransferases, to incorporate these fatty acids efficiently into seed lipids.  相似文献   

17.
We examined chronological changes of myelin proteins of the brainstem and spinal cord of the twitcher mouse (15, 20, and 30 days old), a murine model of human globoid cell leukodystrophy caused by a genetic deficiency of galactosylceramidase I activity. The yield of myelin was normal until postnatal day 20, whereas galactosylsphingosine (psychosine) accumulated with age in myelin. The protein profiles of myelin and the activity of 2',3'-cyclic nucleotide 3'-phosphodiesterase in the myelin remained normal throughout the experimental period. Fatty acylation of proteolipid protein (PLP) was examined in a cell-free system by incubation of myelin with [3H]palmitic acid, CoA, and ATP, and was normal at postnatal day 15, but decreased after postnatal day 20. Decreased fatty acylation of PLP was also observed in the twitcher mouse at postnatal day 20 when the isolated myelin was incubated with [14C]palmitoyl-CoA in the absence of ATP and CoA, or the slices of brainstem and spinal cord were incubated with [3H]palmitic acid. The activity of fatty acid:CoA ligase was reduced in myelin. These data suggest that decreased acylation of PLP in twitcher mouse myelin is probably due to reduced activities for both activation and transfer of fatty acid into PLP and that metabolic disturbance is present in myelin because acylation of PLP has been shown to occur in myelin membrane. Although psychosine (200 microM) inhibited only 17% of the acylation in vitro, it may be responsible for the reduced acylation of PLP in vivo.  相似文献   

18.
The properties of fatty acyl coenzyme A: estradiol-17 beta acyl transferase in microsomes derived from pooled human mammary cancer tissue have been examined. A pH optimum of 5.5 was found and addition of long-chained fatty acyl CoAs increased estradiol-17 beta (E2) 17-monoacyl ester synthesis; the apparent Km for E2 being 8 microM when oleoyl CoA, linolenoyl CoA or palmitoyl CoA were employed. Testosterone, dehydroepiandrosterone, and 5-androsterone-3 beta, 17 beta-diol acted as competitive inhibitors with Ki values of 36, 36 and 46 microM, respectively. The composition of E2 fatty acyl esters (E2-L) formed by incubation of [3H]E2 with human mammary cancer tissue and human mammary cancer cell lines has been determined by HPLC. Although the composition of E2-L in estrogen receptor negative cell lines (MDA-MB-231 and MDA-MB-330) was generally similar to that found for MCF-7 cells (estrogen receptor positive) and pooled human mammary cancer tissue, the former cell lines contained a 3-fold higher relative concentration of E2-17 beta stearate. MCF-7 cells were exposed to 30 nM [3H]E2 and the composition of the isolated [3H]E2-L fraction studied at various time intervals. At 0.5 h, the intracellular concentration of E2-L was 1.8 +/- 0.4 (SEM) pmol/mg DNA which increased to values of 3.6 +/- 0.6 and 4.3 +/- 0.5 at 4 h and 16 h, respectively. In the subsequent 3 h following transfer to medium lacking [3H]E2, the concentration of E2-L declined to 3.7 +/- 0.3 pmol/mg DNA. The subfraction of E2-L composed of E2-17 beta arachidonate, linolenate and docosahexaenoate, was seen to decline in relative abundance after 0.5 h and to reach significantly lower relative levels at 16 h, and again in the 3 h period following estrogen withdrawal. The data suggests that these components, derived from essential fatty acids, are more metabolically active. This may then provide a new lead to link these novel estrogen derivatives with the established relationship between unsaturated fatty acids and an increased mammary cancer incidence.  相似文献   

19.
The mechanism involved in the enzymic acylation of 1-[3H]alkylglycero-3-phosphoethanolamine (1-[3H]alkyl-GPE) in brain microsomes was investigated in comparison with the acylation of 1-[3H]alkylglycero-3-phosphocholine (1-[3H]alkyl-GPC). Both the alkyllsophospholipids were acylated without exogenously added cofactors to similar extents. The [14C]arachidonoyl moiety of exogenously added 1-stearoyl-2-[14C]arachidonoyl-GPC was transferred to the alkyllysophospholipids and the transfer was not inhibited by exogenously added free arachidonate. These results indicated that the transferase activity was due to a transacylase that catalyzes the transfer of fatty acids between intact phospholipids. The addition of CoA increased the acylation of 1-[3H]alkyl-GPC two or three times with a high acceptor concentration, and the highest rate of acylation of 1-[3H]alkyl-GPC was observed in the presence of CoA, ATP, and Mg2+. On the other hand, the addition of such cofactors only slightly increased the acylation of 1-[3H]alkyl-GPE. HPLC analysis revealed that docosahexaenoate and arachidonate were transferred to the second position of both [3H]alkyllysophospholipids without cofactors and that other fatty acids were transferred to much lower extents. With the addition of cofactors, the acylation of 1-[3H]alkyl-GPC by both docosahexaenoate and arachidonate increased 1.5-2 times, and high amounts of palmitate, oleate, and linoleate were newly transferred. High amounts of oleate were also transferred to 1-[3H]alkyl-GPE in the presence of cofactors but the acylation by both docosahexaenoate and arachidonate scarcely increased on the addition of these cofactors.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
The activity of the phosphatidylcholine transfer protein from bovine liver toward phosphatidylcholine isomers carrying a long and a short fatty acyl chain on either the sn-1- or sn-2-position was determined by way of the monolayer-vesicle assay. In this assay equimolar mixtures of the isomers were spread at the air/water interface and their transfer measured to the vesicles in the subphase initiated by addition of the transfer protein. The following isomers were tested: 1-decanoyl-2-[3H]oleoyl-sn-glycero-3-phosphocholine (C10:0/[3H]C18:1-PC) and 1-oleoyl-2-decanoyl-sn-glycero-3-phospho[14C]choline (C18:1/C10:0-[14C]PC); 1-lauroyl-2-[3H]oleoyl-sn-glycero-3-phosphocholine (C12:0/[3H]C18:1-PC) and 1-oleoyl-2-[14C]lauroyl-sn-glycero-3-phosphocholine (C18:1/[14C]C12:0-PC); 1-myristoyl-2-[3H]oleoyl-sn-glycero-3-phosphocholine (C14:0/[3H]C18:1-PC) and 1-oleoyl,2-myristoyl-sn-glycero-3-phospho[14C]choline (C18:1/C14:0-[14C]PC). It was found that the protein transferred C10:0/[3H]C18:1-PC twice as fast as C18:1/C10:0-[14C]PC. Similar differences in rate were observed for C12:0/[3H]C18:1-Pc and C18:1/[14C]C12:0-PC but not for the isomers carrying myristic acid. We propose that the transfer protein can discriminate between PC isomers due to the presence of distinct binding sites for the sn-1- and sn-2-acyl chain (Berkhout et al. (1984) Biochemistry, 23, 1505-1513).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号