首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A green enzyme from Clostridium aminovalericum with valeryl-CoA dehydrogenase activity was purified to homogeneity (169 +/- 3 kDa) and crystallized. By SDS/PAGE, one type of subunit (42 kDa) was detected indicating a homotetrameric structure. The unusual ultraviolet/visible spectrum of the green enzyme (maxima at 394 nm, 438 nm and 715 nm) was converted to a normal flavoprotein spectrum either by reduction with dithionite and reoxidation under air, or by removal of the prosthetic group at pH 2 and reconstitution with FAD (not FMN). Besides FAD (4 mol/169 kDa), the enzyme contained 4 mol of a CoA ester which was similar but not identical to 5-hydroxy-2-pentenoyl-CoA. The reconstituted holoenzyme as well as the native green enzyme, but not the apoenzyme, catalysed the reversible dehydration of 5-hydroxyvaleryl-CoA to 4-pentenoyl-CoA in the absence of an external electron acceptor. In its presence (preferentially ferricenium ion), the green or yellow enzyme catalysed the formation of (E)-5-hydroxy-2-pentenoyl-CoA and 2,4-pentadienoyl-CoA either from 4-pentenoyl-CoA or from 5-hydroxyvaleryl-CoA. The reversible hydration of 2,4-pentadienoyl-CoA to (E)-5-hydroxy-2-pentenoyl-CoA was mediated by both enzymes as well as by the apoenzyme in the absence of FAD. Hydration of 4-pentenoate in 2H2O yielded optically active 5-hydroxy[2,4-2H2]valerate by the combined action of 5-hydroxyvalerate CoA-transferase, the green dehydratase and catalytical amounts of acetyl-CoA. The data show that the reversible hydration of the isolated double bond of 4-pentenoyl-CoA to 5-hydroxyvaleryl-CoA. which apparently violates the Markovnikov rule, is preceded by oxidation to 2,4-pentadienoyl-CoA. The latter compound, a vinyl analogue of 2-enoyl-CoA, is then easily hydrated to (E)-5-hydroxy-2-pentenoyl-CoA and finally reduced to 5-hydroxyvaleryl-CoA.  相似文献   

2.
1) (R)-2-Hydroxyglutaryl-1-CoA was synthesised starting from (R)-5-oxotetrahydrofuran-2-carboxylic acid (gamma-lactone of (R)-2-hydroxyglutarate) which was converted to the acylchloride and condensed with N-capryloylcysteamine. The lactone ring of the resulting thiolester was opened by acid hydrolysis and the CoA derivative was obtained by transesterification. 2) Pure glutaconate CoA-transferase from Acidaminococcus fermentans catalysed the formation of the 1- and the 5-isomer of (R)-2-hydroxyglutaryl-CoA from acetyl-CoA and (R)-2-hydroxyglutarate. The isomers were separated by HPLC and characterised by their reaction with acetate under the catalysis of the CoA-transferase. V/Km for the 1-isomer was 80 times higher than that for the 5-isomer. 3) Studies with cell-free extracts from A. fermentans showed that only (R)-2-hydroxyglutaryl-1-CoA but not its 5-isomer was dehydrated to glutaconyl-1-CoA. The data indicate that (R)-2-hydroxyglutaryl-5-CoA is an erroneous product of glutaconate CoA-transferase which only occurs in vitro.  相似文献   

3.
The inducible acetyl-CoA:acetoacetate CoA-transferase of Escherichia coli catalyzes the transfer of CoA from acetyl-CoA to acetoacetate by a mechanism involving a covalent enzyme-CoA compound as a reaction intermediate. Acetyl-CoA + enzyme ? enzyme-CoA + Acetate Enzyme-CoA + acetoacetate ? acetoacetyl-CoA + enzyme These conclusions are based on the following data: 1) In the absence of acetoacetate, the maximal velocity of exchange of [14C]acetate into acetyl-CoA was comparable with maximal velocity of the complete reaction. 2) Incubation of the enzyme with NaBH4 after preincubation with an acyl-CoA substrate inactivated the enzyme by reduction of a glutamate residue in the β subunit of the CoA-transferase to α-amino-δ-hydroxyvaleric acid. Given the susceptibility of thioesters to borohydride reduction, the enzyme-CoA bond is a γ-glutamyl thiolester 3) Following incubation of the enzyme with a fluorescent derivative of acetyl-CoA, 1,N6-ethenoacetyl-CoA, etheno-CoA was bound to the CoA-transferase. Free etheno-CoA did not bind to the enzyme.  相似文献   

4.
1. Purified 3-hydroxy-3-methylglutaryl-CoA synthase from baker's yeast (free from acetoacetyl-CoA thiolase activity) catalysed an exchange of acetyl moiety between 3'-dephospho-CoA and CoA. The exchange rate was comparable with the overall velocity of synthesis of 3-hydroxy-3-methylglutaryl-CoA. 2. Acetyl-CoA reacted with the synthase, giving a rapid ;burst' release of CoA proportional in amount to the quantity of enzyme present. The ;burst' of CoA was released from acetyl-CoA, propionyl-CoA and succinyl-CoA (3-carboxypropionyl-CoA) but not from acetoacetyl-CoA, hexanoyl-CoA, dl-3-hydroxy-3-methylglutaryl-CoA, or other derivatives of glutaryl-CoA. 3. Incubation of 3-hydroxy-3-methylglutaryl-CoA synthase with [1-(14)C]acetyl-CoA yielded protein-bound acetyl groups. The K(eq.) for the acetylation was 1.2 at pH7.0 and 4 degrees C. Acetyl-labelled synthase was isolated free from [1-(14)C]acetyl-CoA by rapid gel filtration at pH6.1. The [1-(14)C]acetyl group was removed from the protein by treatment with hydroxylamine, CoA or acetoacetyl-CoA but not by acid. When CoA or acetoacetyl-CoA was present the radioactive product was [1-(14)C]acetyl-CoA or 3-hydroxy-3-methyl-[(14)C]glutaryl-CoA respectively. 4. The isolated [1-(14)C]acetyl-enzyme was slowly hydrolysed at pH6.1 and 4 degrees C with a first-order rate constant of 0.005min(-1). This rate could be stimulated either by raising the pH to 7.0 or by the addition of desulpho-CoA. 5. These properties are interpreted in terms of a mechanism in which 3-hydroxy-3-methyl-glutaryl-CoA synthase is acetylated by acetyl-CoA to give a stable acetyl-enzyme, which then condenses with acetoacetyl-CoA yielding a covalent derivative between 3-hydroxy-3-methylglutaryl-CoA and the enzyme which is then rapidly hydrolysed to free enzyme and product.  相似文献   

5.
Citrulline synthesis, mostly regulated at the carbamoyl-phosphate synthase I (EC 6.3.4.16) step by the intramitochondrial concentration of ATP and/or N-acetylglutamate is tested with four organic acids: propionate, alpha-ketobutyrate, dipropyl-acetate and 4-pentenoate. In the presence of 10 mM succinate, as the oxidizable substrate, citrullinogenesis was only inhibited by propionate and 4-pentenoate. With 10 mM L-glutamate, a significant inhibition was observed with the four acids. After the addition of ATP and N-acetylglutamate to uncoupled mitochondria, no inhibition could be demonstrated with dipropylacetate and 4-pentenoate. However, a slight inhibition remained with propionate and alpha-ketobutyrate. When mitochondria were incubated with 10 mM L-glutamate, ATP decreased with propionate, dipropylacetate and 4-pentenoate. Under the same conditions, N-acetylglutamate synthesis was strongly inhibited by each organic acid. The decrease of N-acetylglutamate synthesis was related to the constant diminution of intramitochondrial acetyl-coenzyme A (CoA) and to the increase of propionyl-CoA with propionate and alpha-ketobutyrate. Acetyl-CoA and propionyl-CoA are respectively substrate and competitive inhibitor of the N-acetylglutamate synthase (EC 2.3.1.1). Each acid displayed its optimum inhibition at concentrations between 1 and 2 mM. At these acid concentrations, mitochondria had the lowest acetyl-CoA content and the highest propionyl-CoA content.  相似文献   

6.
In this study, a propionate CoA-transferase (H16_A2718; EC 2.8.3.1) from Ralstonia eutropha H16 (Pct Re ) was characterized in detail. Glu342 was identified as catalytically active amino acid residue via site-directed mutagenesis. Activity of Pct Re was irreversibly lost after the treatment with NaBH4 in the presence of acetyl-CoA as it is shown for all CoA-transferases from class I, thereby confirming the formation of the covalent enzyme-CoA intermediate by Pct Re . In addition to already known CoA acceptors for Pct Re such as 3-hydroxypropionate, 3-hydroxybutyrate, acrylate, succinate, lactate, butyrate, crotonate and 4-hydroxybutyrate, it was found that glycolate, chloropropionate, acetoacetate, valerate, trans-2,3-pentenoate, isovalerate, hexanoate, octanoate and trans-2,3-octenoate formed also corresponding CoA-thioesters after incubation with acetyl-CoA and Pct Re . Isobutyrate was found to be preferentially used as CoA acceptor amongst other carboxylates tested in this study. In contrast, no products were detected with acetyl-CoA and formiate, bromopropionate, glycine, pyruvate, 2-hydroxybutyrate, malonate, fumarate, itaconate, β-alanine, γ-aminobutyrate, levulate, glutarate or adipate as potential CoA acceptor. Amongst CoA donors, butyryl-CoA, crotonyl-CoA, 3-hydroxybutyryl-CoA, isobutyryl-CoA, succinyl-CoA and valeryl-CoA apart from already known propionyl-CoA and acetyl-CoA could also donate CoA to acetate. The highest rate of the reaction was observed with 3-hydroxybutyryl-CoA (2.5 μmol mg?1 min?1). K m values for propionyl-CoA, acetyl-CoA, acetate and 3-hydroxybutyrate were 0.3, 0.6, 4.5 and 4.3 mM, respectively. The rather broad substrate range might be a good starting point for enzyme engineering approaches and for the application of Pct Re in biotechnological polyester production.  相似文献   

7.
The properties and regulation of pantothenate kinase from rat heart   总被引:2,自引:0,他引:2  
Pantothenate kinase (ATP:D-pantothenate 4'-phosphotransferase, EC 2.7.1.33), the first enzyme in the pathway of CoA synthesis, was partially purified from rat heart. A study of the properties of the kinase showed that it possesses a broad pH optimum between 6 and 9, is activated or inhibited nonspecifically by various anions, and has MgATP as the nucleotide substrate. The Km for MgATP is 0.6 mM and that for pantothenate is 18 microM. CoA and acyl esters of CoA are inhibitors of the kinase with the inhibition by acetyl-CoA being only slightly greater than that by free CoA. The inhibition by free CoA is uncompetitive with respect to pantothenate concentration, with a Ki for inhibition of 0.2 microM. L-Carnitine was found to be a nonessential activator of the kinase. This compound had no effect by itself but specifically reversed the inhibition of the kinase by CoA. The Ka for deinhibition by L-carnitine is 0.27 mM. Free carnitine content was measured in perfused hearts and is found to vary in correlation with perfusion conditions that are known to alter rates of intracellular phosphorylation of pantothenate. These properties of pantothenate kinase provide a potential mechanism for the control of CoA synthesis. The enzyme is regulated by feedback inhibition by CoA and its acyl esters and this inhibition is modified by changes in the concentration of free carnitine.  相似文献   

8.
Anaerobic microbial toluene catabolism is initiated by addition of fumarate to the methyl group of toluene, yielding (R)-benzylsuccinate as first intermediate, which is further metabolized via beta-oxidation to benzoyl-coenzyme A (CoA) and succinyl-CoA. A specific succinyl-CoA:(R)-benzylsuccinate CoA-transferase activating (R)-benzylsuccinate to the CoA-thioester was purified and characterized from Thauera aromatica. The enzyme is fully reversible and forms exclusively the 2-(R)-benzylsuccinyl-CoA isomer. Only some close chemical analogs of the substrates are accepted by the enzyme: succinate was partially replaced by maleate or methylsuccinate, and (R)-benzylsuccinate was replaced by methylsuccinate, benzylmalonate, or phenylsuccinate. In contrast to all other known CoA-transferases, the enzyme consists of two subunits of similar amino acid sequences and similar sizes (44 and 45 kDa) in an alpha(2)beta(2) conformation. Identity of the subunits with the products of the previously identified toluene-induced bbsEF genes was confirmed by determination of the exact masses via electrospray-mass spectrometry. The deduced amino acid sequences resemble those of only two other characterized CoA-transferases, oxalyl-CoA:formate CoA-transferase and (E)-cinnamoyl-CoA:(R)-phenyllactate CoA-transferase, which represent a new family of CoA-transferases. As suggested by kinetic analysis, the reaction mechanism of enzymes of this family apparently involves formation of a ternary complex between the enzyme and the two substrates.  相似文献   

9.
Succinyl-CoA:3-hydroxy-3-methylglutarate coenzyme A transferase, previously identified in rat-liver mitochondria (Deana et al. (1981), Biochim. Biophys. Acta 662, 119-124), was purified to near homogeneity and further characterized. After the last purification steps consisting of Ultrogel AcA-44 filtration and agarose-hexane-coenzyme A chromatography, the enzyme was apparently tetrameric with a mass of 48-52 kDa determined by gel filtration on Sephadex G-75, ultracentrifugation through a sucrose gradient and SDS-gel electrophoresis. By means of a HPLC technique developed for measuring the CoA esters we could determine the enzyme activity in both forward and reverse directions and show that the kinetic constants, i.e., Km of reactants and Vmax, are not too different for the two reactions. Double-reciprocal plots of the enzyme velocities versus the concentration of one substrate at different fixed concentrations of the other substrate gave families of straight lines converging below the substrate-abscissa for both forward and backward reactions, indicating a kinetic mechanism of rapid equilibrium random Bi-Bi type. The competitive inhibition of the product succinate with respect to both reactants, 3-hydroxy-3-methylglutarate and succinyl-CoA, as well as the Haldane relationships are consistent with this conclusion. An inhibitory effect on CoA transferase activity by acetate, acetoacetate, acetyl-CoA, acetoacetyl-CoA, coenzyme A, carnitine, ZnCl2 and high concentrations of the monovalent anions ClO4-, F-, I- and Cl- was also found.  相似文献   

10.
Clostridium aminobutyricum ferments 4-aminobutyrate (γ-aminobutyrate, GABA) to ammonia, acetate and butyrate via 4-hydroxybutyrate that is activated to the CoA-thioester catalyzed by 4-hydroxybutyrate CoA-transferase. Then, 4-hydroxybutyryl-CoA is dehydrated to crotonyl-CoA, which disproportionates to butyryl-CoA and acetyl-CoA. Cocrystallization of the CoA-transferase with the alternate substrate butyryl-CoA yielded crystals with non-covalently bound CoA and two water molecules at the active site. Most likely, butyryl-CoA reacted with the active site Glu238 to CoA and the mixed anhydride, which slowly hydrolyzed during crystallization. The structure of the CoA is similar but less stretched than that of the CoA-moiety of the covalent enzyme-CoA-thioester in 4-hydroxybutyrate CoA-transferase from Shewanella oneidensis. In contrast to the structures of the apo-enzyme and enzyme-CoA-thioester, the structure described here has a closed conformation, probably caused by a flip of the active site loop (residues 215–219). During turnover, the closed conformation may protect the anhydride intermediate from hydrolysis and CoA from dissociation from the enzyme. Hence, one catalytic cycle changes conformation of the enzyme four times: free enzyme—open conformation, CoA+ anhydride 1—closed, enzyme-CoA-thioester—open, CoA + anhydride-2—closed, free enzyme—open.  相似文献   

11.
3-Oxoacid CoA-transferase, which catalyses the first committed step in the oxidation of ketone bodies, is uniquely regulated in developing rat brain. Changes in 3-oxoacid CoA-transferase activity in rat brain during the postnatal period are due to changes in the relative rate of synthesis of the enzyme. To study the regulation of this enzyme, we identified, with a specific polyclonal rabbit anti-(rat 3-oxoacid CoA-transferase), two positive cDNA clones (approx. 800 bp) in a lambda gtll expression library, constructed from poly(A)+ RNA from brains of 12-day-old rats. One of these clones (lambda CoA3) was subcloned into M13mp18 and subjected to further characterization. Labelled single-stranded probes prepared by primer extension of the M13mp18 recombinant hybridized to a 3.6 kb mRNA. Rat brain mRNA enriched by polysome immunoadsorption for a single protein of size 60 kDa which corresponds to the precursor form of 3-oxoacid CoA-transferase was also found to be similarly enriched for the hybridizable 3.6 kb mRNA complementary to lambda CoA3. Affinity-selected antibody to the lambda CoA3 fusion protein inhibited 3-oxoacid CoA-transferase activity present in rat brain mitochondrial extracts. The 3.6 kb mRNA for 3-oxoacid CoA-transferase was present in relative abundance in rat kidney and heart, to a lesser extent in suckling brain and mammary gland and negligible in the liver. The specific mRNA was also found to be 3-fold more abundant in the brain from 12-day-old rats as compared with 18-day-old foetuses and adult rats, corresponding to the enzyme activity and relative rate of synthesis profile during development. These data suggest that 3-oxoacid CoA-transferase enzyme activity is regulated at a pretranslational level.  相似文献   

12.
Previous in vitro studies revealed that the 10-deacetylbaccatin III 10beta-O-acetyltransferase (DBAT) from Taxus can catalyze the transfer of acetyl, propionyl or n-butyryl from CoA to the C10-hydroxyl of 10-deacetylbaccatin III. Accordingly, Escherichia coli JM109 were transformed to recombinantly express dbat, and this enzyme function was coupled to that of acetyl-CoA synthase (acs, EC 6.2.1.1) expressed from and regulated by genes encoded on the bacterial chromosome. Incubation of the bacteria with 10-deacetylbaccatin III and increasing concentrations of acetic acid revealed an in vivo conversion ( approximately 10%) of substrate to natural product baccatin III (C10-acetylated), which was remarkably similar to the relative conversion without acid supplementation. Incubation of the modified E. coli with 5 mM propionic acid, revealed a fivefold increase in the conversion ( approximately 13%) of 10-deacetylbaccatin III to 10-deacetyl-10-propionylbaccatin III, compared to approximately 2% conversion in the absence of exogenous propionate. To produce the butyrylbaccatin III analog in vivo, bacteria were engineered to co-express the dbat and atoAD (EC 2.8.3.8) genes; the latter encodes an acetoacetate: acetyl-CoA CoA-transferase that activates butyrate to butyryl CoA. The bacteria were incubated with 10-deacetylbaccatin III and 25-100 mM butyrate, and a maximum of approximately 2.6% conversion to 10-butyrylbaccatin III was observed compared to approximately 0.6% conversion when no exogenous butyrate was supplied.  相似文献   

13.
Acetyl-coenzyme A (acetyl-CoA) synthetase (ADP forming) represents a novel enzyme in archaea of acetate formation and energy conservation (acetyl-CoA + ADP + P(i) --> acetate + ATP + CoA). Two isoforms of the enzyme have been purified from the hyperthermophile Pyrococcus furiosus. Isoform I is a heterotetramer (alpha(2)beta(2)) with an apparent molecular mass of 145 kDa, composed of two subunits, alpha and beta, with apparent molecular masses of 47 and 25 kDa, respectively. By using N-terminal amino acid sequences of both subunits, the encoding genes, designated acdAI and acdBI, were identified in the genome of P. furiosus. The genes were separately overexpressed in Escherichia coli, and the recombinant subunits were reconstituted in vitro to the active heterotetrameric enzyme. The purified recombinant enzyme showed molecular and catalytical properties very similar to those shown by acetyl-CoA synthetase (ADP forming) purified from P. furiosus.  相似文献   

14.
Coenzyme A (CoA)-transferase (acetoacetyl-CoA:acetate/butyrate:CoA-transferase [butyrate-acetoacetate CoA-transferase] [EC 2.8.3.9]) of Clostridium acetobutylicum ATCC 824 is an important enzyme in the metabolic shift between the acid-producing and solvent-forming states of this organism. The purification and properties of the enzyme have recently been described (D. P. Weisenborn, F. B. Rudolph, and E. T. Papoutsakis, Appl. Environ. Microbiol. 55:323-329, 1989). The genes encoding the two subunits of this enzyme have been cloned by using synthetic oligodeoxynucleotide probes designed from amino-terminal sequencing data from each subunit of the CoA-transferase. A bacteriophage lambda EMBL3 library of C. acetobutylicum DNA was prepared and screened by using these probes. Subsequent subcloning experiments established the position of the structural genes for CoA-transferase. Complementation of Escherichia coli ato mutants with the recombinant plasmid pCoAT4 (pUC19 carrying a 1.8-kilobase insert of C. acetobutylicum DNA encoding CoA-transferase activity) enabled the transformants to grow on butyrate as a sole carbon source. Despite the ability of CoA-transferase to complement the ato defect in E. coli mutants, Southern blot and Western blot (immunoblot) analyses showed that neither the C. acetobutylicum genes encoding CoA-transferase nor the enzyme itself shared any apparent homology with its E. coli counterpart. Polypeptides of Mr of the purified CoA-transferase subunits were observed by Western blot and maxicell analysis of whole-cell extracts of E. coli harboring pCoAT4. The proximity and orientation of the genes suggest that the genes encoding the two subunits of CoA-transferase may form an operon similar to that found in E. coli.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
1. The effect of independent variation of both acetyl-CoA and acetoacetyl-CoA on the initial velocity at pH8.0 and pH8.9 gives results compatible with a sequential mechanism involving a modified enzyme tentatively identified as an acetyl-enzyme, resulting from the reaction with acetyl-CoA in the first step of a Ping Pong (Cleland, 1963a) reaction. 2. Acetoacetyl-CoA gives marked substrate inhibition that is competitive with acetyl-CoA. This suggests formation of a dead-end complex with the unacetylated enzyme and is in accord with the inhibition pattern given by 3-oxohexanoyl-CoA, an inactive analogue of acetoacetyl-CoA. 3. The inhibition pattern given by products of the reaction is compatible with the above mechanism. CoA gives mixed inhibition with respect to both substrates, whereas dl-3-hydroxy-3-methylglutaryl-CoA competes with acetyl-CoA but gives uncompetitive inhibition with respect to acetoacetyl-CoA. 4. 3-Hydroxy-3-methylglutaryl-CoA analogues lacking the 3-hydroxyl group are found to compete, like 3-hydroxy-3-methylglutaryl-CoA, with acetyl-CoA but have K(i) values ninefold higher, indicating the importance of the 3-hydroxyl group in the interaction. 5. A comparison of inhibition by CoA and desulpho-CoA at pH8.0 and pH8.9 shows that at the higher pH value a kinetically significant reversal of the formation of acetyl-enzyme can occur. 6. Acetyl-CoA homologues do not act as substrates and compete only with acetyl-CoA. A study of the variation of K(i) with acyl-chain length suggests the presence near the active centre of a hydrophobic region. 7. These results are discussed in terms of a kinetic mechanism in which there is only one CoA-binding site the specificity of which is altered by acetylation of the enzyme. 8. The rate of 3-hydroxy-3-methylglutaryl-CoA synthesis in yeast is calculated from the kinetic constants determined for purified 3-hydroxy-3-methylglutaryl-CoA synthase and from estimates of the physiological substrate concentrations. The rate of synthesis of 12nmol of 3-hydroxy-3-methylglutaryl-CoA/min per g wet wt. of yeast is still greater than the rate of utilization in spite of the extremely low (calculated) acetoacetyl-CoA concentration (1.8nm).  相似文献   

16.
Phenyllactate dehydratase from Clostridium sporogenes grown anaerobically on L-phenylalanine catalyses the reversible syn-dehydration of (R)-phenyllactate to (E)-cinnamate. Purification yielded a heterotrimeric enzyme complex (130 +/- 15 kDa) composed of FldA (46 kDa), FldB (43 kDa) and FldC (40 kDa). By re-chromatography on Q-Sepharose, the major part of FldA could be separated and identified as oxygen insensitive cinnamoyl-CoA:phenyllactate CoA-transferase, whereas the transferase depleted trimeric complex retained oxygen sensitive phenyllactate dehydratase activity and contained about one [4Fe-4S] cluster. The dehydratase activity required 10 microM FAD, 0.4 mM ATP, 2.5 mM MgCl2, 0.1 mM NADH, 5 microM cinnamoyl-CoA and small amounts of cell-free extract (10 microg protein per mL) similar to that known for 2-hydroxyglutaryl-CoA dehydratase from Acidaminococcus fermentans. The N-terminus of the homogenous FldA (39 amino acids) is homologous to that of CaiB (39% sequence identity) involved in carnitine metabolism in Escherichia coli. Both enzymes are members of an emerging group of CoA-transferases which exhibit high substrate specificity but apparently do not form enzyme CoA-ester intermediates. It is concluded that dehydration of (R)-phenyllactate to (E)-cinnamate proceeds in two steps, a CoA-transfer from cinnamoyl-CoA to phenyllactate, catalysed by FldA, followed by the dehydration of phenyllactyl-CoA, catalysed by FldB and FldC, whereby the noncovalently bound prosthetic group cinnamoyl-CoA is regenerated. This demonstrates the necessity of a 2-hydroxyacyl-CoA intermediate in the dehydration of 2-hydroxyacids. The transient CoA-ester formation during the dehydration of phenyllactate resembles that during citrate cleavage catalysed by bacterial citrate lyase, which contain a derivative of acetyl-CoA covalently bound to an acyl-carrier-protein (ACP).  相似文献   

17.
The anaerobic bacterium Sporotomaculum hydroxybenzoicum ferments 3-hydroxybenzoate to acetate, butyrate, and CO2. 3-Hydroxybenzoate was activated to 3-hydroxybenzoyl-CoA in a CoA-transferase reaction with acetyl-CoA or butyryl-CoA as CoA donors. 3-Hydroxybenzoyl-CoA was reductively dehydroxylated, forming benzoyl-CoA. This reaction was measured in cell-free extracts with cob(I)alamin as low-potential electron donor. No evidence was obtained that cob(I)alamin is the physiological electron donor; however, inhibitor studies indicated involvement of a strong nucleophile in the reaction. Benzoate was degraded by dense cell suspensions without a lag phase until an in situ deltaG' value <-25 kJ mol(-1) was reached. Benzoyl-CoA reductase was not detected. Enzyme activities for all reaction steps from glutaryl-CoA to butyryl-CoA, and ATP formation via acetate kinase were detected in cell-free extracts. Glutaconyl-CoA decarboxylase is likely to act as a primary sodium ion pump.  相似文献   

18.
Phosphate acetyltransferase (PTA) and acetate kinase (AK) of the hyperthermophilic eubacterium Thermotoga maritima have been purified 1,500- and 250-fold, respectively, to apparent homogeneity. PTA had an apparent molecular mass of 170 kDa and was composed of one subunit with a molecular mass of 34 kDa, suggesting a homotetramer (alpha4) structure. The N-terminal amino acid sequence showed significant identity to that of phosphate butyryltransferases from Clostridium acetobutylicum rather than to those of known phosphate acetyltransferases. The kinetic constants of the reversible enzyme reaction (acetyl-CoA + Pi -->/<-- acetyl phosphate + CoA) were determined at the pH optimum of pH 6.5. The apparent Km values for acetyl-CoA, Pi, acetyl phosphate, and coenzyme A (CoA) were 23, 110, 24, and 30 microM, respectively; the apparent Vmax values (at 55 degrees C) were 260 U/mg (acetyl phosphate formation) and 570 U/mg (acetyl-CoA formation). In addition to acetyl-CoA (100%), the enzyme accepted propionyl-CoA (60%) and butyryl-CoA (30%). The enzyme had a temperature optimum at 90 degrees C and was not inactivated by heat upon incubation at 80 degrees C for more than 2 h. AK had an apparent molecular mass of 90 kDa and consisted of one 44-kDa subunit, indicating a homodimer (alpha2) structure. The N-terminal amino acid sequence showed significant similarity to those of all known acetate kinases from eubacteria as well that of the archaeon Methanosarcina thermophila. The kinetic constants of the reversible enzyme reaction (acetyl phosphate + ADP -->/<-- acetate + ATP) were determined at the pH optimum of pH 7.0. The apparent Km values for acetyl phosphate, ADP, acetate, and ATP were 0.44, 3, 40, and 0.7 mM, respectively; the apparent Vmax values (at 50 degrees C) were 2,600 U/mg (acetate formation) and 1,800 U/mg (acetyl phosphate formation). AK phosphorylated propionate (54%) in addition to acetate (100%) and used GTP (100%), ITP (163%), UTP (56%), and CTP (21%) as phosphoryl donors in addition to ATP (100%). Divalent cations were required for activity, with Mn2+ and Mg2+ being most effective. The enzyme had a temperature optimum at 90 degrees C and was stabilized against heat inactivation by salts. In the presence of (NH4)2SO4 (1 M), which was most effective, the enzyme did not lose activity upon incubation at 100 degrees C for 3 h. The temperature optimum at 90 degrees C and the high thermostability of both PTA and AK are in accordance with their physiological function under hyperthermophilic conditions.  相似文献   

19.
Coenzyme A (CoA)-transferase (acetoacetyl-CoA:acetate/butyrate:CoA-transferase [butyrate-acetoacetate CoA-transferase] [EC 2.8.3.9]) of Clostridium acetobutylicum ATCC 824 is an important enzyme in the metabolic shift between the acid-producing and solvent-forming states of this organism. The purification and properties of the enzyme have recently been described (D. P. Weisenborn, F. B. Rudolph, and E. T. Papoutsakis, Appl. Environ. Microbiol. 55:323-329, 1989). The genes encoding the two subunits of this enzyme have been cloned by using synthetic oligodeoxynucleotide probes designed from amino-terminal sequencing data from each subunit of the CoA-transferase. A bacteriophage lambda EMBL3 library of C. acetobutylicum DNA was prepared and screened by using these probes. Subsequent subcloning experiments established the position of the structural genes for CoA-transferase. Complementation of Escherichia coli ato mutants with the recombinant plasmid pCoAT4 (pUC19 carrying a 1.8-kilobase insert of C. acetobutylicum DNA encoding CoA-transferase activity) enabled the transformants to grow on butyrate as a sole carbon source. Despite the ability of CoA-transferase to complement the ato defect in E. coli mutants, Southern blot and Western blot (immunoblot) analyses showed that neither the C. acetobutylicum genes encoding CoA-transferase nor the enzyme itself shared any apparent homology with its E. coli counterpart. Polypeptides of Mr of the purified CoA-transferase subunits were observed by Western blot and maxicell analysis of whole-cell extracts of E. coli harboring pCoAT4. The proximity and orientation of the genes suggest that the genes encoding the two subunits of CoA-transferase may form an operon similar to that found in E. coli.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Isolated from pig liver as a crude, inhomogeneous enzyme fraction, pig liver esterase (PLE) was found to metabolize a wide range of substrates; often in a highly stereoselective manner. This crude esterase preparation, however, contains several iso-enzymes at proportions varying from batch to batch. Racemic methyl-(4E)-5-chloro-2-isopropyl-4-pentenoate is cleaved enantioselectively by crude PLE, but not by recombinantly expressed gamma-isoform of PLE. Concluding that another PLE iso-enzyme must carry the relevant activity, we cloned and sequenced cDNAs of several PLE isoforms and functionally expressed them in Pichia pastoris. One novel isoform termed alternative pig liver esterase (APLE) was found to hydrolyze methyl-(2R,4E)-5-chloro-2-isopropyl-4-pentenoate in a highly stereoselective manner (E>200). When heterologously expressed and directed for secretion in P. pastoris, APLE was found to be localized in the periplasm. The presence or absence of a putative C-terminal ER retention signal did neither influence functional expression nor cellular localization. The recombinant enzyme, purified by ion exchange chromatography, had a specific activity of 36U (mg protein)(-1) towards racemic methyl-(4E)-5-chloro-2-isopropyl-4-pentenoate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号