首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
Glypicans represent a family of six cell surface heparan sulfate proteoglycans in vertebrates. Although no specific in vivo functions have thus far been described for these proteoglycans, spontaneous mutations in the human and induced deletions in the mouse glypican-3 (Gpc3) gene result in severe malformations and both pre- and postnatal overgrowth, known clinically as the Simpson-Golabi-Behmel syndrome (SGBS). Mice carrying mutant alleles of Gpc3 created by either targeted gene disruption or gene trapping display a wide range of phenotypes associated with SGBS including renal cystic dysplasia, ventral wall defects, and skeletal abnormalities that are consistent with the pattern of Gpc3 expression in the mouse embryo. Previous studies in Drosophila have implicated glypicans in the signaling of decapentaplegic, a BMP homolog. Our experiments with mice show a significant relationship between vertebrate BMP signaling and glypican function; GPC3-deficient animals were mated with mice haploinsufficient for bone morphogenetic protein-4 (Bmp4) and their offspring displayed a high penetrance of postaxial polydactyly and rib malformations not observed in either parent strain. This previously unknown link between glypican-3 and BMP4 function provides evidence of a role for glypicans in vertebrate limb patterning and skeletal development and suggests a mechanism for the skeletal defects seen in SGBS.  相似文献   

11.
Pbx1 and a subset of homeodomain proteins collaboratively bind DNA as higher-order molecular complexes with unknown consequences for mammalian development. Pbx1 contributions were investigated through characterization of Pbx1-deficient mice. Pbx1 mutants died at embryonic day 15/16 with severe hypoplasia or aplasia of multiple organs and widespread patterning defects of the axial and appendicular skeleton. An obligatory role for Pbx1 in limb axis patterning was apparent from malformations of proximal skeletal elements, but distal structures were unaffected. In addition to multiple rib and vertebral malformations, neural crest cell-derived skeletal structures of the second branchial arch were morphologically transformed into elements reminiscent of first arch-derived cartilages. Although the skeletal malformations did not phenocopy single or compound Hox gene defects, they were restricted to domains specified by Hox proteins bearing Pbx dimerization motifs and unaccompanied by alterations in Hox gene expression. In affected domains of limbs and ribs, chondrocyte proliferation was markedly diminished and there was a notable increase of hypertrophic chondrocytes, accompanied by premature ossification of bone. The pattern of expression of genes known to regulate chondrocyte differentiation was not perturbed in Pbx1-deficient cartilage at early days of embryonic skeletogenesis, however precocious expression of Col1a1, a marker of bone formation, was found. These studies demonstrate a role for Pbx1 in multiple developmental programs and reveal a novel function in co-ordinating the extent and/or timing of proliferation with terminal differentiation. This impacts on the rate of endochondral ossification and bone formation and suggests a mechanistic basis for most of the observed skeletal malformations.  相似文献   

12.
Mice that lack all beta1-class integrins in neurons and glia die prematurely after birth with severe brain malformations. Cortical hemispheres and cerebellar folia fuse, and cortical laminae are perturbed. These defects result from disorganization of the cortical marginal zone, where beta1-class integrins regulate glial endfeet anchorage, meningeal basement membrane remodeling, and formation of the Cajal-Retzius cell layer. Surprisingly, beta1-class integrins are not essential for neuron-glia interactions and neuronal migration during corticogenesis. The phenotype of the beta1-deficient mice resembles pathological changes observed in human cortical dysplasias, suggesting that defective integrin-mediated signal transduction contributes to the development of some of these diseases.  相似文献   

13.
Mice carrying heterozygous mutations in the Sox10 gene display aganglionosis of the colon and represent a model for human Hirschsprung disease. Here, we show that the closely related Sox8 functions as a modifier gene for Sox10-dependent enteric nervous system defects as it increases both penetrance and severity of the defect in Sox10 heterozygous mice despite having no detectable influence on enteric nervous system development on its own. Sox8 exhibits an expression pattern very similar to Sox10 with occurrence in vagal and enteric neural crest cells and later confinement to enteric glia. Loss of Sox8 alleles in Sox10 heterozygous mice impaired colonization of the gut by enteric neural crest cells already at early times. Whereas proliferation, apoptosis, and neuronal differentiation were normal for enteric neural crest cells in the gut of mutant mice, apoptosis was dramatically increased in vagal neural crest cells outside the gut. The defects in enteric nervous system development of mice with Sox10 and Sox8 mutations are therefore likely caused by a reduction of the pool of undifferentiated vagal neural crest cells. Our study suggests that Sox8 and Sox10 are jointly required for the maintenance of these vagal neural crest stem cells.  相似文献   

14.
15.
16.
17.
18.
Heterozygous mutations in the human SOX9 gene cause campomelic dysplasia (CD), a skeletal malformation syndrome with various other organ defects. Severely affected CD patients usually die in the neonatal period due to respiratory distress. We analyzed the dynamic expression pattern of Sox9 in the developing mouse lung throughout morphogenesis. To determine a role of Sox9 in lung development and function, Sox9 was specifically inactivated in respiratory epithelial cells of the mouse lung using a doxycycline-inducible Cre/loxP system. Immunohistochemical and RNA analysis demonstrated extensive inactivation of Sox9 in the embryonic stage of lung development as early as embryonic day (E) 12.5. Lung morphogenesis and lung function after birth were not altered. Compensatory upregulation of Sox2, Sox4, Sox8, Sox10, Sox11, and Sox17 was not detected. Although Sox9 is expressed at high levels throughout lung morphogenesis, inactivation of Sox9 from the respiratory epithelial cells does not alter lung structure, postnatal survival, or repair following oxygen injury.  相似文献   

19.
20.
We have previously shown that Sox18 is expressed in developing vascular endothelium and hair follicles during mouse embryogenesis and that point mutations in Sox18 are the underlying cause of cardiovascular and hair follicle defects in ragged (Ra) mice. Here we describe the analysis of Sox18(-/-) mice produced by gene targeting. Despite the profound defects seen in Ra mice, Sox18(-/-) mice have no obvious cardiovascular defects and only a mild coat defect with a reduced proportion of zigzag hairs. A reduction in the amount of pheomelanin pigmentation in hair shafts was also observed; later-forming hair follicles showed a reduced subapical pheomelanin band, giving Sox18(-/-) mice a slightly darker appearance than Sox18(+/+) and Sox18(+/-) siblings. Sox18(-/-) mice are viable and fertile and show no difference in the ability to thrive relative to littermates. Because of the mild effect of the mutation on the phenotype of Sox18(-/-) mice, we conclude that the semidominant nature of the Ra mutations is due to a trans-dominant negative effect mediated by the mutant SOX18 proteins rather than haploinsufficiency as has been observed for other SOX genes. Due to the similarity of SOX18 to other subgroup F SOX proteins, SOX7 and -17, and the overlap in expression of these genes, functional redundancy amongst these SOX proteins could also account for the mild phenotype of Sox18(-/-) mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号