首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BACKGROUND: The effect of prolonged strenuous exercise (PSE) on left ventricular (LV) systolic function has not been well studied in younger female triathletes. This study examined LV systolic function prior to, during and immediately following PSE (i.e., 40 km bicycle time trial followed by a 10 km run) in 13 younger (29 PlusMinus; 6 years) female triathletes. METHODS: Two-dimensional echocardiographic images were obtained prior to, at 30-minute intervals during and immediately following PSE. Heart rate, systolic blood pressure, end-diastolic and end-systolic cavity areas were measured at each time point. Echocardiographic and hemodynamic measures were also combined to obtain LV end-systolic wall stress and myocardial contractility (i.e., systolic blood pressure - end-systolic cavity area relation). RESULTS: Subjects exercised at an intensity equivalent to 90 PlusMinus; 3% of maximal heart rate. Heart rate, systolic blood pressure, systolic blood pressure - end-systolic cavity area relation and fractional area change increased while end-diastolic and end-systolic cavity areas decreased during exertion. CONCLUSIONS: PSE is associated with enhanced LV systolic function secondary to an increase in myocardial contractility in younger female triathletes.  相似文献   

2.
Cardiac performance was studied in the isolated perfused hearts of rats heat acclimated at 34 degrees C (AC) and their age-matched controls (C). The pressure-volume curves during isovolumetric conditions showed a shift to the right in AC compared with C hearts. At similar left ventricular (LV) volumes end-diastolic and peak systolic pressures of AC hearts were lower, but no difference was observed in the maximal pressure developed at the highest LV volumes measured. In both C and AC hearts the developed force decreased as pacing rate increased. AC and C heart responses were the same up to 250 pulses/min. At higher frequencies the amplitude of the developed force of AC hearts was smaller than that of the controls. In accordance the tension produced by very early premature beat reduced in AC compared with C hearts. Since no hypertrophy was observed in AC hearts, it is concluded that heat acclimation results in a change in the intrinsic properties of the AC hearts exhibited by increased compliance, reduced chamber stiffness, and a decrease in the tension developed for each volume load. It is also suggested that at a high beating rate AC hearts fail to restitute its contractility as quickly as C hearts.  相似文献   

3.
Both enhanced sympathetic drive and altered autonomic control are involved in the pathogenesis of heart failure. The goal of the present study was to determine the extent to which chronically enhanced sympathetic drive, in the absence of heart failure, alters reflex autonomic control in conscious, transgenic (TG) rabbits with overexpressed cardiac Gsalpha. Nine TG rabbits and seven wild-type (WT) littermates were instrumented with a left ventricular (LV) pressure micromanometer and arterial catheters and studied in the conscious state. Compared with WT rabbits, LV function was enhanced in TG rabbits, as reflected by increased levels of LV dP/dt (5,600 +/- 413 vs. 3,933 +/- 161 mmHg/s). Baseline heart rate was also higher (P < 0.05) in conscious TG (247 +/- 10 beats/min) than in WT (207 +/- 10 beats/min) rabbits and was higher in TG after muscarinic blockade (281 +/- 9 vs. 259 +/- 8 beats/min) or combined beta-adrenergic receptor and muscarinic blockade (251 +/- 6 vs. 225 +/- 9 beats/min). Bradycardia was blunted (P < 0.05), whether induced by intravenous phenylephrine (arterial baroreflex), by cigarette smoke inhalation (nasopharyngeal reflex), or by veratrine administration (Bezold-Jarisch reflex). With veratrine administration, the bradycardia was enhanced in TG for any given decrease in arterial pressure. Thus the chronically enhanced sympathetic drive in TG rabbits with overexpressed cardiac Gsalpha resulted in enhanced LV function and heart rate and impaired reflex autonomic control. The impaired reflex control was generalized, not only affecting the high-pressure arterial baroreflex but also the low-pressure Bezold-Jarisch reflex and the nasopharyngeal reflex.  相似文献   

4.
Transverse aortic constriction (TAC) is an effective technique for inducing left ventricular (LV) hypertrophy in mice. With the use of transthoracic echocardiography and Doppler measurements, we studied the effects of an acute increase in pressure overload on LV contractile performance and peak systolic wall stress index (WSI) at early time points after TAC and the time course of the development of LV hypertrophy in mice. The LV mass index was similar between TAC and sham-operated mice at postoperative day 1 but progressively increased in TAC mice by day 10. There was no further increase in the LV mass index between postoperative days 10 and 20. On day 1, whereas peak systolic WSI increased significantly, the LV ejection fraction (LVEF) and percent fractional shortening (%FS) decreased in TAC mice compared with sham-operated mice. By day 10, peak systolic WSI, LVEF, and %FS had recovered to baseline levels and were not significantly different between postoperative days 10 and 20. Thus LV systolic performance in mice declines immediately after TAC, associated with increased peak systolic WSI, but recovers to baseline levels with the development of compensatory LV hypertrophy over 10-20 days.  相似文献   

5.
Pressure overload cardiac hypertrophy may be a compensatory mechanism to normalize systolic wall stress and preserve left ventricular (LV) function. To test this concept, we developed a novel in vivo method to measure myocardial stress (sigma)-strain (epsilon) relations in normal and hypertrophied mice. LV volume was measured using two pairs of miniature omnidirectional piezoelectric crystals implanted orthogonally in the endocardium and one crystal placed on the anterior free wall to measure instantaneous wall thickness. Highly linear sigma-epsilon relations were obtained in control (n = 7) and hypertrophied mice produced by 7 days of transverse aortic constriction (TAC; n = 13). Administration of dobutamine in control mice significantly increased the load-independent measure of LV contractility, systolic myocardial stiffness. In TAC mice, systolic myocardial stiffness was significantly greater than in control mice (3,156 +/- 1,433 vs. 1,435 +/- 467 g/cm(2), P < 0.01), indicating enhanced myocardial contractility with pressure overload. However, despite the increased systolic performance, both active (time constant of LV pressure decay) and passive (diastolic myocardial stiffness constant) diastolic properties were markedly abnormal in TAC mice compared with control mice. These data suggest that the development of cardiac hypertrophy is associated with a heightened contractile state, perhaps as an early compensatory response to pressure overload.  相似文献   

6.
7.
Surgical ventricular restoration (SVR) was designed to treat patients with aneurysms or large akinetic walls and dilated ventricles. Yet, crucial aspects essential to the efficacy of this procedure like optimal shape and size of the left ventricle (LV) are still debatable. The objective of this study is to quantify the efficacy of SVR based on LV regional shape in terms of curvedness, wall stress, and ventricular systolic function. A total of 40 patients underwent magnetic resonance imaging (MRI) before and after SVR. Both short-axis and long-axis MRI were used to reconstruct end-diastolic and end-systolic three-dimensional LV geometry. The regional shape in terms of surface curvedness, wall thickness, and wall stress indexes were determined for the entire LV. The infarct, border, and remote zones were defined in terms of end-diastolic wall thickness. The LV global systolic function in terms of global ejection fraction, the ratio between stroke work (SW) and end-diastolic volume (SW/EDV), the maximal rate of change of pressure-normalized stress (dσ*/dt(max)), and the regional function in terms of surface area change were examined. The LV end-diastolic and end-systolic volumes were significantly reduced, and global systolic function was improved in ejection fraction, SW/EDV, and dσ*/dt(max). In addition, the end-diastolic and end-systolic stresses in all zones were reduced. Although there was a slight increase in regional curvedness and surface area change in each zone, the change was not significant. Also, while SVR reduced LV wall stress with increased global LV systolic function, regional LV shape and function did not significantly improve.  相似文献   

8.
Our previous work indicates that myocardial ischemia could be the mechanism responsible for the left ventricular (LV) dysfunction that frequently develops after massive sympathetic nervous system (SNS) activation. In this study, coronary blood flow (CBF) and myocardial ATP, creatine phosphate, and lactate concentrations were measured after massively activating the SNS of anesthetized rabbits with an intracisternal injection of veratrine. CBF was measured at time 0 (baseline), and at 2, 10, and 20 min after SNS activation in one group, and at 0, 45, 90, and 150 min in a second group. Myocardial ATP, creatine phosphate, and lactate were measured at 0, 2, 10, 20, 90, and 150 min in separate groups of rabbits. SNS activation caused LV dysfunction in approximately 60% of the rabbits. SNS-related increases in CBF kept pace with the increases in myocardial energy demand as determined from the systolic pressure-heart rate product. The subendocardial-to-subepicardial blood flow ratio did not change significantly. Myocardial creatine phosphate concentration was depressed 2 min after SNS activation and remained depressed for at least 20 min. ATP fell continuously and was significantly lower than baseline by 20 min. Tissue lactate concentration was elevated at this time. By 90 min, the concentrations of all three metabolites had recovered. These results indicate that myocardial high-energy phosphate compounds fall after massive SNS activation, but ischemia does not appear to be the underlying mechanism.  相似文献   

9.
To investigate the role of hypertrophy of the right ventricle upon right heart performance and the significance of the peak systolic pressure/end-systolic volume (P/V) ratio in terms of right ventricular systolic performance, simultaneous measurements of radionuclide ventriculograms and central hemodynamics were done in 32 patients with chronic obstructive pulmonary disease. In 26 of the patients (80%) technically adequate two-dimensional echocardiograms could be performed. In the subset of patients with increased (greater than or equal to 6 mm) right ventricular end-diastolic wall thickness no relationship between pulmonary artery pressure and right ventricular ejection fraction (RVEF) existed in comparison with the remaining patients. P/V indices and cardiac output were not decreased. Considering the patients, whose P/V ratio did not increase from rest to exercise, RVEF decreased highly significantly more than in the remaining patients. The ratio of wall thickness and end-diastolic radius as determinant of peak systolic stress was significantly decreased in these patients compared with the remaining patients. In the patients with right ventricular hypertrophy despite significantly higher values of pulmonary artery pressures and resistances, the afterload in terms of systolic wall stress is markedly reduced. We conclude that in the hypertrophic state, right ventricular performance is not impaired despite decreased RVEF values. In the patients whose P/V ratio does not increase from rest to exercise, an inappropriate high peak systolic wall stress may exist both due to inadequate wall thickness and increased diameter of the right ventricle. The role of P/V in terms of prognosis and development of decompensated right heart failure remains undetermined.  相似文献   

10.
Effects of streptozotocin-induced diabetes (8 weeks) on the performance of perfused hearts from spontaneously hypertensive (SH) rats were compared with effects on normotensive Wistar-Kyoto (WK) and Sprague-Dawley (SD) rat hearts. Diabetes markedly decreased systolic arterial pressure (SAP) of SH rats in vivo but did not affect SAP of either of the normotensive strains. Diabetes also reduced heart size of SH and normotensive rats and reversed absolute left ventricular hypertrophy (wall-to-lumen ratios and left-to-right ventricular weight ratios) of SH rats. Heart perfusion at the end of the 8-week period revealed that diabetes (i) reduced hydraulic work at high pressure loads and efficiency of contraction (work/mu LO2 consumed) of SH rat hearts but not of WK or SD hearts, and (ii) depressed left ventricular pulse pressure development (LVPP) and contractility (LV + dP/dt) of SH hearts more extensively than it reduced these variables in either of the normotensive control groups. Effects of diabetes which were similar in hypertensive and normotensive hearts were reductions in stroke work at high volume loads and depressions in LV-dP/dt. Attendant hypothyroidism probably contributed to the reductions in SAP, heart size, LVPP, LV+ and -dP/dt, and stroke work but not to the decreased efficiency or reversal of hypertrophy of SH rat hearts. Malnutrition of SH rats, like hypothyroidism, also decreased heart size without reversing hypertrophy but had no effect on SAP and only reduced LV-dP/dt. The results show that diabetes reversed hypertrophy and selectively reduced contraction efficiency, contractility, and LVPP of SH hearts, but otherwise the effects of diabetes in hypertensive and normotensive rat strains were similar to each other.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Cutaneous burn trauma causes cardiac contraction and relaxation defects, but the mechanism is unclear. Previous studies suggest that burn-related changes in myocyte handling of calcium may play an important role in postburn cardiac dysfunction. With the use of a high dissociation constant (K(d)) calcium indicator 1,2-bis(2-amino-5,6-difluorophenoxy)-ethane-N,N,N',N'-tetraacetic acid (TF-BAPTA) and (19)F NMR spectroscopy, this study examined the correlation between the changes in cytosolic free calcium concentration ([Ca(2+)](i)) and cardiac function after burn trauma. Sprague-Dawley rats were given scald burn (over 40% of the total body surface area) or sham burn. Twenty-four hours later, the hearts were excised and perfused by the Langendorff method with a modified phosphate-free Krebs-Henseleit bicarbonate buffer. Left ventricular (LV) developed pressure (LVDP), calculated from peak systolic LV pressure and LV end-diastolic pressure, was assessed through a catheter attached to an intraventricular balloon. At the same time, (31)P and (19)F NMR spectroscopy was performed before and after TF-BAPTA loading. LVDP measured in hearts from burned rats was <40% than that measured in hearts from sham burn rats (65 +/- 6 vs. 110 +/- 12 mmHg, P < 0.01); [Ca(2+)](i) was increased fourfold in hearts from the burned group compared with that measured in the sham burn group (0.807 +/- 0.192 vs. 3.891 +/- 0.929 microM). Loading TF-BAPTA in hearts transiently decreased LVDP by 15%. Phosphocreatine-to-P(i) ratio decreased, but ATP and intracellular pH remained unchanged by either TF-BAPTA loading or burn trauma. In conclusion, burn trauma impaired cardiac contractility, and this functional defect was paralleled by a significant rise in [Ca(2+)](i) in the heart.  相似文献   

12.
Increased diastolic chamber stiffness (upward arrow DCS) during ischemia may result from increased diastolic calcium, rigor, or reduced velocity of relaxation. We tested these potential mechanisms during severe ischemia in isolated red blood cell-perfused isovolumic rabbit hearts. Ischemia (coronary flow reduced 83%) reduced left ventricular (LV) contractility by 70%, which then remained stable. DCS progressively increased. When LV end-diastolic pressure had increased 5 mmHg, myofilament calcium responsiveness was altered with 50 mmol/l NH(4)Cl or 10 mmol/l butanedione monoxime. These affected contractility (i.e., a calcium-mediated force) but not upward arrow DCS. Second, quick length changes reversed upward arrow DCS, supporting a rigor mechanism. Third, ischemia increased the time constant of isovolumic pressure decline from 47 +/- 3 to 58 +/- 3 ms (P < 0.02) but concomitantly abbreviated the contraction-relaxation cycle, i.e., pressure dissipation occurred earlier without diastolic tetanization. Finally, to assess any link between rate of relaxation and upward arrow DCS, hearts were exposed to 10 mmol/l calcium. Calcium doubled contractility and accelerated relaxation velocity, but without affecting upward arrow DCS. Thus upward arrow DCS developed during ischemia despite severely reduced contractility via a rigor (and not calcium mediated) mechanism. Calcium resequestration capacity was preserved, and reduced relaxation velocity was not linked to upward arrow DCS.  相似文献   

13.
Sphericalization of the left ventricular (LV) chamber shape in patients with mitral regurgitation (MR) contributes to increased LV wall stress and energy consumption. On the basis of previous observations, we hypothesized the existence of regional differences in the force-frequency relation (FFR) within the LV that may contribute to its shape. Accordingly, in the present study, we assessed regional variation in the FFR in patients undergoing surgery for chronic, nonischemic MR with class II-III heart failure symptoms and related our findings to the in vivo LV shape. FFRs (steady-state isometric twitches, 0.2-3.4 Hz, 37 degrees C) were evaluated in MR myocardium from the LV subepicardial free wall (MR-FW) and papillary muscle (MR-PM) and from the subepicardial free wall in coronary artery bypass graft patients with normal LV contraction patterns [nonfailing (NF)]. Ascending slope, optimal stimulation frequency, and maximal twitch tension of the FFR were depressed in MR-FW and MR-PM compared with NF (P < 0.05). FFR depression was greater in MR-PM than in MR-FW. Between 107 and 134 beats/min, twitch tension became weaker in MR-PM, whereas it increased in MR-FW. Elevation of intracellular cAMP with forskolin eliminated FFR depression in MR-FW but not in MR-PM. MR-PM also had a 35% lower myosin heavy chain content and slowed twitch kinetics. In MR patients, the echocardiographic end-diastolic LV shape (end-diastolic eccentricity index = long axis/short axis) correlated with the ratio of ascending FFR slopes such that the end-diastolic eccentricity index increased 10% per 15% increase in slope ratio (r = 0.88, P = 0.01). These regional differences in the frequency dependence of contractility between the free wall and papillary myocardium may contribute to changes in LV shape in MR as well as during exercise.  相似文献   

14.
The effects of an acute increase in preload, afterload, and inotropic state on several indices of left ventricular contractility were studied in 20 anesthetized intact dogs. The behaviour of the exponential rate of fiber shortening (ERFS), a newly described index, which is based on the instantaneous fiber length--time relationship through ejection, was compared with other classical ejection and isovolumic indices of left ventricular contractility. Acute volume overload by dextran 40 infusion produced a significant increase in preload as reflected by a 103% (p less than 0.01) increase in left ventricular end-diastolic pressure and a 121% (p less than 0.001) increase in end-diastolic circumferential wall stress. There was also a smaller but significant increase (p less than 0.05) of heart rate (30%) and of peak systolic circumferential wall stress (24%). None of the left ventricular contractility indices showed any significant change. Acute pressure overload, produced mechanically by an aortic balloon, increased the afterload significantly as reflected by a 33% (p less than 0.05) rise of end-systolic circumferential wall stress and a 43% (p less than 0.001) increase in systemic resistance. Stroke volume decreased significantly by 23% (p less than 0.05). All ejection indices, including ERFS, were significantly diminished by 30-37%; all isovolumic indices showed no significant changes. Positive inotropic intervention was induced by dopamine infusion, which caused a significant 28% (p less than 0.05) increase in cardiac output. End-diastolic and end-systolic circumferential wall stress were significantly diminished. All indices of left ventricular contractility increased significantly and ERFS showed the quantitatively greatest change.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The sodium-calcium exchanger (NCX) is discussed as one of the key proteins involved in heart failure. However, the causal role and the extent to which NCX contributes to contractile dysfunction during heart failure are poorly understood. NCX overexpression was induced by infection with an adenovirus coding for NCX, which coexpressed green fluorescence protein (GFP) (AdNCX) by ex vivo gene transfer to nonfailing and failing rabbit cardiomyocytes. Myocardial gene transfer in rabbits in vivo was achieved by adenoviral delivery via aortic cross-clamping. Peak cell shortening of cardiomyocytes was determined photo-optically. Hemodynamic parameters in vivo were determined by echocardiography (fractional shortening) and tip catheter [maximal first derivative of left ventricular (LV) pressure (dP/dt(max)); maximal negative derivative of LV pressure (-dP/dt(max))]. Peak cell shortening was depressed after NCX gene delivery in isolated nonfailing and in failing cardiomyocytes. In nonfailing rabbits in vivo, basal systolic contractility (fractional shortening and dP/dt(max)) and maximum rate of LV relaxation (-dP/dt(max)) in vivo were largely unaffected after NCX overexpression. However, during heart failure, long-term NCX overexpression over 2 wk significantly improved fractional shortening and dP/dt(max) compared with AdGFP-infected rabbits, both without inotropic stimulation and after beta-adrenergic stimulation with isoproterenol. -dP/dt(max) was also improved after NCX overexpression in the failing rabbits group. These results indicate that short-term effects of NCX overexpression impair contractility of isolated failing and nonfailing rabbit cardiomyocytes. NCX overexpression over 2 wk in vivo does not seem to affect myocardial contractility in nonfailing rabbits. Interestingly, in vivo overexpression of NCX decreased the progression of systolic and diastolic contractile dysfunction and improved beta-adrenoceptor-mediated contractile reserve in heart failure in rabbits in vivo.  相似文献   

16.
Cardiovascular physiological studies in anesthetized animals may be confounded by the hemodynamic actions of the anesthetic agents themselves. To identify an anesthetic regimen that does not significantly influence cardiovascular physiology, the hemodynamic responses of 28 dogs were studied. Animals were equally divided among groups with 1) no anesthesia (i.e., trained conscious preparation), 2) pentobarbital sodium, 3) fentanyl citrate, and 4) a combination of morphine sulfate and alpha-chloralose. Anesthesia was maintained for 3 h. Data were acquired with the use of ultrasound imaging of the heart in conjunction with invasive pressure measurements. Left ventricular ejection phase indexes and end-systolic force-velocity relations were used to evaluate the effects of each anesthetic agent on overall systolic performance and myocardial contractility. Compared with the conscious animals, pentobarbital profoundly depressed systolic performance (P less than 0.05 vs. control) because of a reduction in myocardial contractility (P less than 0.01) and an increase in left ventricular afterload (end-systolic wall stress, P less than 0.05). Fentanyl increased myocardial contractility (P less than 0.05) but also tended to increase afterload with the net result that overall systolic performance remained unchanged. Morphine-chloralose did not affect overall ventricular systolic performance or its individual determinants. Pentobarbital and fentanyl also caused progressive time-dependent deteriorations in all parameters of systolic function during prolonged anesthesia. In contrast, cardiac function was stable for greater than or equal to 3 h after induction of morphine-chloralose anesthesia. The hemodynamic profile of dogs anesthetized with morphine-chloralose most closely resembled that of the conscious animals. Morphine-chloralose is recommended when prolonged anesthesia is required for studies of cardiovascular physiology.  相似文献   

17.
The creatine kinase (CK) system is involved in the rapid transport of high-energy phosphates from the mitochondria to the sites of maximal energy requirements such as myofibrils and sarcolemmal ion pumps. Hearts of mice with a combined knockout of cytosolic M-CK and mitochondrial CK (M/Mito-CK(-/-)) show unchanged basal left ventricular (LV) performance but reduced myocardial high-energy phosphate concentrations. Moreover, skeletal muscle from M/Mito-CK(-/-) mice demonstrates altered Ca2+ homeostasis. Our hypothesis was that in CK-deficient hearts, a cardiac phenotype can be unmasked during acute stress conditions and that susceptibility to ischemia-reperfusion injury is increased because of altered Ca2+ homeostasis. We simultaneously studied LV performance and myocardial Ca2+ metabolism in isolated, perfused hearts of M/Mito-CK(-/-) (n = 6) and wild-type (WT, n = 8) mice during baseline, 20 min of no-flow ischemia, and recovery. Whereas LV performance was not different during baseline conditions, LV contracture during ischemia developed significantly earlier (408 +/- 72 vs. 678 +/- 54 s) and to a greater extent (50 +/- 2 vs. 36 +/- 3 mmHg) in M/Mito-CK(-/-) mice. During reperfusion, recovery of diastolic function was impaired (LV end-diastolic pressure: 22 +/- 3 vs. 10 +/- 2 mmHg), whereas recovery of systolic performance was delayed, in M/Mito-CK(-/-) mice. In parallel, Ca2+ transients were similar during baseline conditions; however, M/Mito-CK(-/-) mice showed a greater increase in diastolic Ca2+ concentration ([Ca2+]) during ischemia (237 +/- 54% vs. 167 +/- 25% of basal [Ca2+]) compared with WT mice. In conclusion, CK-deficient hearts show an increased susceptibility of LV performance and Ca2+ homeostasis to ischemic injury, associated with a blunted postischemic recovery. This demonstrates a key function of an intact CK system for maintenance of Ca2+ homeostasis and LV mechanics under metabolic stress conditions.  相似文献   

18.
Nonuniformity of myocardial systolic and diastolic performance in the normal left ventricle has been recognized by a number of investigators. Lack of homogeneity in diastolic properties might be caused by or related to differences in the distensibility of different regions of the left ventricular (LV) wall. Thus, we compared the end-diastolic transmural pressure-strain relations in both the anterior and posterior LV walls in seven anesthetized dogs during two interventions (pulmonary artery constriction and aortic constriction). Transmural pressure was defined as the difference between LV intracavitary pressure and local pericardial pressure. LV pressure was measured using a micromanometer; pericardial pressures over the LV anterior and posterior walls were measured with balloon transducers. Circumferentially oriented pairs of sonomicrometer crystals were implanted in the midwall of the anterior and posterior walls of the LV to measure segment lengths. Strains were calculated as (L-L0)/L0, where L was the instantaneous segment length and L0 was the segment length when transmural pressure was zero. The pattern of end-diastolic transmural pressure--strain relations was similar in all dogs. The change in strain in the posterior wall was always greater than that in the anterior wall. Opening the pericardium did not affect the difference in distensibility of the anterior and posterior walls. The results suggest that the posterior wall is more compliant than the anterior wall (that is, for a given difference in transmural pressure, the local segment length change of the posterior wall was greater). This seems consistent with other observations, which suggest that the posterior wall might make a greater contribution to diastolic filling.  相似文献   

19.
To determine the temporal changes in oxidative stress, mitogen-activated protein (MAP) kinases and mitochondrial apoptotic proteins, and their relationship to myocyte apoptosis in the remote noninfarcted myocardium after myocardial infarction (MI), rabbits were randomly assigned to either coronary artery ligation to produce MI or sham operation. The animals were sacrificed at 1, 4, 8, or 12 weeks after coronary artery occlusion. Sham rabbits were sacrificed at 12 weeks after surgery. MI rabbits exhibited progressive increases of left ventricular (LV) end-diastolic pressure and end-diastolic dimension, and progressive decreases of LV fractional shortening and dP/dt over 12 weeks. The LV remodeling with LV chamber dilation and LV systolic dysfunction was temporally associated with progressive increases of cardiac oxidative stress as evidenced by decreased myocardial reduced-to-oxidized-glutathione ratio and increased myocardial 8-hydroxydeoxyguanosine and myocyte apoptosis. The ERK and JNK activities were decreased while p38 MAP kinase activity was increased with age of MI. The extent of p38 MAP kinase activation correlated with Bcl-2 phosphorylation. Bcl-2 protein was decreased in both mitochondrial and cytosolic fractions with age of MI. Bax protein was increased in both mitochondrial and cytosolic fractions. Cytochrome c was reduced in mitochondrial fraction and increased in cytosolic fraction in a time-dependent manner after MI. Cleaved caspase 9 and caspase 3 proteins were time-dependently increased after MI. These data suggest that p38 MAP kinase activation is not only time-dependent after MI, but also correlates with oxidative stress, Bcl-2 phosphorylation, and myocyte apoptosis. These changes in the remote noninfarcted myocardium may contribute to LV remodeling and dysfunction after MI.  相似文献   

20.
To determine whether endurance exercise training can alter the beta-adrenergic-stimulated inotropic response in older women, we studied 10 postmenopausal healthy women (65.4 +/- 0.9 yr old) who exercised for 11 mo. Left ventricular (LV) function was evaluated with two-dimensional echocardiography during infusion of isoproterenol after atropine. Maximal O(2) consumption increased 23% in response to training (from 1.35 +/- 0.06 to 1.66 +/- 0.07 l/min; P = 0.004). Training had no effect on baseline LV function, end-diastolic diameter, LV wall thickness, or LV mass. The increase in LV systolic function in response to isoproterenol was unaffected by training. Furthermore, neither the systolic shortening-to-end-systolic wall stress relationship nor the end-systolic wall stress-to-end-systolic diameter relationship during isoproterenol infusion changed with training. We conclude that older postmenopausal women can increase their maximal O(2) consumption with exercise training without eccentric LV hypertrophy or enhancement of beta-adrenergic-mediated LV contractile function. These observations provide an explanation for the finding that maximal cardiac output and stroke volume are not increased in older women in response to training.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号