首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, glutathione reductase and pyruvate kinase of Candida utilis and baker's yeast, when in anionic form, were adsorbed on a cation exchanger, P-cellulose, due to affinities similar to those for the phosphoric groups of their respective substrates; thus, glucose-6-phosphate dehydrogenase was readily eluted by either NADP+ or NADPH, glutathione reductase by NADPH, 6-phosphogluconate dehydrogenase by 6-phosphogluconate, and pyruvate kinase by either ATP or ADP. This type of chromatography may be called "affinity-adsorption-elution chromatography"; the main principle is different from that of so-called affinity-elution chromatography. Based on these findings, a large-scale procedure suitable for successive purification of several enzymes having affinities for the phosphoric groups of their substrates was devised. As an example, glucose-6-phosphate dehydrogenase was highly purified from baker's yeast and crystallized.  相似文献   

2.
Hyperglycemia is associated with metabolic disturbances affecting cell redox potential, particularly the NADPH/NADP+ ratio and reduced glutathione levels. Under oxidative stress, the NADPH supply for reduced glutathione regeneration is dependent on glucose-6-phosphate dehydrogenase. We assessed the effect of different hyperglycemic conditions on enzymatic activities involved in glutathione regeneration (glucose-6-phosphate dehydrogenase and glutathione reductase), NADP(H) and reduced glutathione concentrations in order to analyze the relative role of these enzymes in the control of glutathione restoration. Male Sprague-Dawley rats with mild, moderate and severe hyperglycemia were obtained using different regimens of streptozotocin and nicotinamide. Fifteen days after treatment, rats were killed and enzymatic activities, NADP(H) and reduced glutathione were measured in liver and pancreas. Severe hyperglycemia was associated with decreased body weight, plasma insulin, glucose-6-phosphate dehydrogenase activity, NADPH/NADP+ ratio and glutathione levels in the liver and pancreas, and enhanced NADP+ and glutathione reductase activity in the liver. Moderate hyperglycemia caused similar changes, although body weight and liver NADP+ concentration were not affected and pancreatic glutathione reductase activity decreased. Mild hyperglycemia was associated with a reduction in pancreatic glucose-6-phosphate dehydrogenase activity. Glucose-6-phosphate dehydrogenase, NADPH/NADP+ ratio and glutathione level, vary inversely in relation to blood glucose concentrations, whereas liver glutathione reductase was enhanced during severe hyperglycemia. We conclude that glucose-6-phosphate dehydrogenase and NADPH/NADP+ were highly sensitive to low levels of hyperglycemia. NADPH/NADP+ is regulated by glucose-6-phosphate dehydrogenase in the liver and pancreas, whereas levels of reduced glutathione are mainly dependent on the NADPH supply.  相似文献   

3.
Enzymes of glucose metabolism in Frankia sp.   总被引:5,自引:1,他引:4       下载免费PDF全文
Enzymes of glucose metabolism were assayed in crude cell extracts of Frankia strains HFPArI3 and HFPCcI2 as well as in isolated vesicle clusters from Alnus rubra root nodules. Activities of the Embden-Meyerhof-Parnas pathway enzymes glucokinase, phosphofructokinase, and pyruvate kinase were found in Frankia strain HFPArI3 and glucokinase and pyruvate kinase were found in Frankia strain HFPCcI2 and in the vesicle clusters. An NADP+-linked glucose 6-phosphate dehydrogenase and an NAD-linked 6-phosphogluconate dehydrogenase were found in all of the extracts, although the role of these enzymes is unclear. No NADP+-linked 6-phosphogluconate dehydrogenase was found. Both dehydrogenases were inhibited by adenosine 5-triphosphate, and the apparent Km's for glucose 6-phosphate and 6-phosphogluconate were 6.86 X 10(-4) and 7.0 X 10(-5) M, respectively. In addition to the enzymes mentioned above, an NADP+-linked malic enzyme was detected in the pure cultures but not in the vesicle clusters. In contrast, however, the vesicle clusters had activity of an NAD-linked malic enzyme. The possibility that this enzyme resulted from contamination from plant mitochondria trapped in the vesicle clusters could not be discounted. None of the extracts showed activities of the Entner-Doudoroff enzymes or the gluconate metabolism enzymes gluconate dehydrogenase or gluconokinase. Propionate- versus trehalose-grown cultures of strain HFPArI3 showed similar activities of most enzymes except malic enzyme, which was higher in the cultures grown on the organic acid. Nitrogen-fixing cultures of strain HFPArI3 showed higher specific activities of glucose 6-phosphate and 6-phosphogluconate dehydrogenases and phosphofructokinase than ammonia-grown cultures.  相似文献   

4.
Data are presented for 16 enzymes from 8 metabolic systems in cell cultures consisting of approximately 95% astrocytes and 5% oligodendrocytes. Nine of these enzymes were also measured in cultures of oligodendrocytes, Schwann cells, and neurons prepared from both cerebral cortex and superior cervical ganglia. Activities, in mature astrocyte cultures, expressed as percentage of their activity in brain, ranged from 9% for glycerol-3-phosphate dehydrogenase to over 300% for glucose-6-phosphate dehydrogenase. Creatine phosphokinase activity in astrocytes was about the same as in brain, half as high in oligodendrocytes, but 7% or less of the brain level in Schwann cells and superior cervical ganglion neurons and only 16% of brain in cortical neurons. Three enzymes which generate NADPH, the dehydrogenases for glucose-6-phosphate and 6-phosphogluconate, and the NADP-requiring isocitrate dehydrogenase, were present in astrocytes at levels at least twice that of brain. Oligodendrocytes had enzyme levels only 30% to 70% of those of astrocytes. Schwann cells had much higher lactate dehydrogenase and 6-phosphogluconate dehydrogenase activities than oligodendrocytes, but showed a remarkable similarity in enzyme pattern to those of cortical and superior cervical ganglion neurons.Special issue dedicated to Dr. Lewis Sokoloff.  相似文献   

5.
Common molecular changes in cancer cells are high carbon flux through the glycolytic pathway and overexpression of fatty acid synthase, a key lipogenic enzyme. Since glycerol 3-phosphate dehydrogenase creates a link between carbohydrates and the lipid metabolism, we have investigated the activity of glycerol 3-phosphate dehydrogenase and various lipogenic enzymes in human bladder cancer. The data presented in this paper indicate that glycerol 3-phosphate dehydrogenase activity in human bladder cancer is significantly higher compared to adjacent non-neoplastic tissue, serving as normal control bladder tissue. Increased glycerol 3-phosphate dehydrogenase activity is accompanied by increased enzyme activity, either directly (fatty acid synthase) or indirectly (through ATP-citrate lyase, glucose 6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase and citrate synthase) involved in fatty acid synthesis. Coordinated upregulation of glycerol 3-phosphate dehydrogenase and lipogenic enzymes activities in human bladder cancer suggests that glycerol 3-phosphate dehydrogenase supplies glycerol 3-phosphate for lipid biosynthesis.  相似文献   

6.
The activities of 6 enzymes involved in carbohydrate metabolism were determined quantitatively in preovulatory oocytes by cytochemical means per individual cell as well as biochemically in cell homogenates. Oocytes were incorporated in a polyacrylamide matrix for appropriate enzyme cytochemical staining. This incorporation preserves the morphology of the cells very well, and the enzymes keep their activity for a considerable period of time. This method could also be used to demonstrate more than one enzyme activity in the same cell. The results obtained by cytochemical means appeared to correlate very well with the biochemical data (P less than 0.005). Glucose 6-phosphate dehydrogenase, the key-enzyme in the pentose phosphate pathway, had very high activity in these preovulatory oocytes, but 6-phosphogluconate dehydrogenase activity was only about 2% of that of glucose 6-phosphate dehydrogenase. The activities of lactate dehydrogenase and to a lesser extent glucose phosphate isomerase and D-glyceraldehyde-3-phosphate dehydrogenase also appeared to be very high, while hexokinase showed a very low activity.  相似文献   

7.
The intoxication of white mice with sodium nitrite results in the decrease of red cell superoxide dismutase (SOD) and catalase activity. The glutathione peroxidase activity is the same as in the control group. The level of red cell lipid peroxidation in the group of mice that receive sodium nitrite is higher as compared to the control group. After the intoxication the total activity of glucose-6-phosphate dehydrogenase and dehydrogenase of 6-phosphogluconate as well as the activity of glutathione reductase are higher than in the control group. The level of SH-groups and reduced glutathione is higher in the group of mice that receive sodium nitrite in comparison with the control group.  相似文献   

8.
1. Measurements were made of the non-oxidative reactions of the pentose phosphate cycle in liver (transketolase, transaldolase, ribulose 5-phosphate epimerase and ribose 5-phosphate isomerase activities) in a variety of hormonal and nutritional conditions. In addition, glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase activities were measured for comparison with the oxidative reactions of the cycle; hexokinase, glucokinase and phosphoglucose isomerase activities were also included. Starvation for 2 days caused significant lowering of activity of all the enzymes of the pentose phosphate cycle based on activity in the whole liver. Re-feeding with a high-carbohydrate diet restored all the enzyme activities to the range of the control values with the exception of that of glucose 6-phosphate dehydrogenase, which showed the well-known ;overshoot' effect. Re-feeding with a high-fat diet also restored the activities of all the enzymes of the pentose phosphate cycle and of hexokinase; glucokinase activity alone remained unchanged. Expressed as units/g. of liver or units/mg. of protein hexokinase, glucose 6-phosphate dehydrogenase, transketolase and pentose phosphate isomerase activities were unchanged by starvation; both 6-phosphogluconate dehydrogenase and ribulose 5-phosphate epimerase activities decreased faster than the liver weight or protein content. 2. Alloxan-diabetes resulted in a decrease of approx. 30-40% in the activities of 6-phosphogluconate dehydrogenase, ribose 5-phosphate isomerase, ribulose 5-phosphate epimerase and transketolase; in contrast with this glucose 6-phosphate dehydrogenase, transaldolase and phosphoglucose isomerase activities were unchanged. Treatment of alloxan-diabetic rats with protamine-zinc-insulin for 3 days caused a very marked increase to above normal levels of activity in all the enzymes of the pentose phosphate pathway except ribulose 5-phosphate epimerase, which was restored to the control value. Hexokinase activity was also raised by this treatment. After 7 days treatment of alloxan-diabetic rats with protamine-zinc-insulin the enzyme activities returned towards the control values. 3. In adrenalectomized rats the two most important changes were the rise in hexokinase activity and the fall in transketolase activity; in addition, ribulose 5-phosphate epimerase activity was also decreased. These effects were reversed by cortisone treatment. In addition, in cortisone-treated adrenalectomized rats glucokinase activity was significantly lower than the control value. 4. In thyroidectomized rats both ribose 5-phosphate isomerase and transketolase activities were decreased; in contrast with this transaldolase activity did not change significantly. Hypophysectomy caused a 50% fall in transketolase activity that was partially reversed by treatment with thyroxine and almost fully reversed by treatment with growth hormone for 8 days. 5. The results are discussed in relation to the hormonal control of the non-oxidative reactions of the pentose phosphate cycle, the marked changes in transketolase activity being particularly outstanding.  相似文献   

9.
Previously we have shown that treatment with the peroxisome proliferator perfluorodecanoic acid (PFDA) significantly increased hepatic reduced glutathione (GSH) content without altering the activity of selenium-glutathione peroxidase. In this study we examined some potential mechanisms by which PFDA treatment increases GSH levels. Male Sprague-Dawley rats were given a single injection of 0, 8.8, 17.5, and 35 mg PFDA in corn oil per kg body weight. Twelve days later the effects of PFDA on the activities of enzymes associated with GSH synthesis, utilization, and regeneration were assessed. The results showed that in a dose-dependent manner, PFDA treatment significantly decreased the activity of gamma-glutamylcysteine synthetase, while the activities of NADPH-generating enzymes, malic enzyme, glucose-6-phosphate dehydrogenase, and 6-phosphogluconate dehydrogenase were increased. PFDA treatment also dose dependently decreased cytosolic, but not microsomal, glutathione S-transferase activity, and the activity of glutathione reductase was decreased by the highest dose of PFDA. The data obtained suggest that increased hepatic GSH levels following PFDA treatment may result from increased regeneration and/or decreased utilization.  相似文献   

10.
A serum-free, hormone-supplemented medium (SFHM) for maintaining neonatal rat heart cells in culture has been developed in this laboratory (Mohamed et al., 1983). Morphological assessment of heart cells grown in SFHM show it to be similar to commonly used serum-supplemented media. To quantitatively compare cell behavior in SFHM with serum-supplemented media, the activities of ten regulatory enzymes which represent four metabolic pathways were studied in heart cells cultured in SFHM. The enzyme activities which were measured included hexokinase, glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, phosphofructokinase, pyruvate kinase, NAD+-linked sn-glycerol-3-phosphate dehydrogenase, malate dehydrogenase, NAD+-linked isocitrate dehydrogenase, NADH-cytochrome c reductase, and succinic cytochrome c reductase. Rat heart cells maintained in culture on SFHM are not only qualitatively and quantitatively similar to those maintained in serum-supplemented medium but also provide a more suitable model system for metabolic studies of neonatal cardiac tissue for several reasons: 1) many enzyme activities that may represent dedifferentiation are elevated by serum; 2) NAD-linked glycerol-3-phosphate dehydrogenase activity in cells maintained on SFHM is similar to the in vivo activity; 3) cells beat at or near the in vivo frequency and can be maintained 3 months on SFHM; 4) the SFHM is chemically defined and thus can be completely manipulated by the investigator. The effects of three concentrations of hydrocortisone (HC) (5,000 ng/ml, 50 micrograms/ml, 0 ng/ml) on heart cells cultured in SFHM supported our previous conclusion that function (beating) and growth (protein accumulation) are inversely related in cultured neonatal rat heart cells.  相似文献   

11.
Perfusion of rat livers with 10 mM-fructose or pretreatment of the rat with 6-aminonicotinamide (70 mg/kg) 6 h before perfusion decreased intracellular ATP concentrations and increased the rate of p-nitroanisole O-demethylation. This increase was accompanied by a decrease in the free [NADP+]/[NADPH] ratio calculated from concentrations of substrates assumed to be in near-equilibrium with isocitrate dehydrogenase. After pretreatment with 6-aminonicotinamide the [NADP+]/[NADPH] ratio also declined. Reduction of NADP+ during mixed-function oxidation may be explained by inhibition of of one or more NADPH-generating enzymes. Glucose 6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, isocitrate dehydrogenase and "malic" enzyme, partially purified from livers of phenobarbital-treated rats, were inhibited by ATP and ADP. Inhibitor constants of ATP for the four dehydrogenases varied considerably, ranging from 9 micrometer for "malic" enzyme to 1.85 mM for glucose 6-phosphate dehydrogenase. NADPH-cytochrome c reductase was also inhibited by ATP (Ki 2.8 mM) and by ADP (Ki 0.9 mM), but not by AMP. Concentrations of ATP and ADP that inhibited glucose 6-phosphate dehydrogenase and the reductase were comparable with concentrations in the intact liver. Thus agents that lower intracellular ATP may accelerate rates of mixed-function oxidation by a concerted mechanism involving deinhibition of NADPH-cytochrome c reductase and one or more NADPH-generating enzymes.  相似文献   

12.
Approximately 15% of the total nitrite reductase of crude homogenates of wheat roots applied to sucrose gradients was separated with an organelle whose isopycnic density was about 1.22 g·cm−3. The activity recovered in the supernatant was thought to be particulate in origin, because similar ratios of activity of isoenzyme 1 and 2 of nitrite reductase were found in both particulate and supernatant fractions. The particle with nitrite reductase activity also contained glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, triose phosphate isomerase and NADPH diaphorase. This root particle and whole chloroplasts from leaves had a similar isopycnic density as well as these enzymes, and thus the data suggest that the root particle may be a proplastid.

Nitrate reductase was found only in the supernatant and it was not associated with any of the root organelles.

Mitochondria from wheat roots had an equilibrium density of 1.18 g·cm−3 and contained both NAD and NADP glutamate dehydrogenase, glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, triosephosphate isomerase and NADPH diaphorase but not nitrite reductase. Microbodies of wheat roots had an equilibrium density of about 1.20 g·cm−3 on the sucrose gradient and contained catalase and glycollate oxidase.  相似文献   


13.
Cell suspension cultures of the Madagascan Periwinkle, Catharanthus roseus (L). G. Don were grown as batch cultures in two different types of media; in one medium the limiting nutrient was inorganic nitrogen, and in the other it was carbon. The response of the cells to these growth-limiting conditions was monitored by measuring cellular fresh weight, dry weight and protein accumulation, cell viability, medium sugar and nitrate levels, and the activities of certain intracellular enzymes throughout growth in batch culture. The enzymes investigated were glucose-6-phosphate dehydrogenase (EC 1.1.1.49), 6-phosphogluconate dehydrogenase (EC 1.1.1.44), hexokinase (EC 2.7.1.40), phosphofructokinase (EC 2.7.1.11), nitrate reductase (EC 1.6.6.1), glutamate dehydrogenase (EC 1.4.1.2) and glutamine synthetase (EC 6.3.1.2). The effect of culturing the cells under different nutritional regimes was apparent in all aspects of growth; only some enzyme activities were unaffected. Cell viability remained at a high level for several days after growth limitation in both types of culture. The possibility that protein degradation in nitrogen-limited batch cultures is under very stringent control is discussed.  相似文献   

14.
1. 6-phosphogluconate dehydrogenase from sheep liver has been purified 350-fold by affinity chromatography with a final specific activity of 18 micronmol of NADP+/reduced min per mg of protein and an overall yield of greater than 40%. 2. A systematic investigation of potential ligands has been carried out: these included 6-phosphogluconate and NADP+, pyridoxal phosphate and several immobilized nucleotides. The results indicate that NADP+ is the most suitable ligand for the purification of 6-phosphogluconate dehydrogenase. 3. The effects of pH and alternative eluents have been examined in relation to the parameters known to affect the desorption phase of affinity chromatography; careful manipulation of the elution conditions permitted the separation of glucose 6-phosphate dehydrogenase, glutathione reductase and 6-phosphogluconate dehydrogenase from sheep liver on NADP+-Sepharose 4B. 4. A large-scale purification scheme for 6-phosphogluconate dehydrogenase is presented that uses the competitive inhibitors inorganic pyrophosphate and citrate as specific eluents.  相似文献   

15.
Evidence for a pentose phosphate pathway in Helicobacter pylori   总被引:1,自引:0,他引:1  
Abstract Evidence for the presence of enzymes of the pentose phosphate pathway in Helicobacter pylori was obtained using 31P nuclear magnetic resonance spectroscopy. Activities of enzymes which are part of the oxidative and non-oxidative phases of the pathway were observed directly in incubations of bacterial lysates with pathway intermediates. Generation of NADPH and 6-phosphogluconate from NADP+ and glucose 6-phosphate indicated the presence of glucose 6-phosphate dehydrogenase and 6-phosphogluconolactonase. Reduction of NADP+ with production of ribulose 5-phosphate from 6-phosphogluconate revealed 6-phosphogluconate dehydrogenase activity. Phosphopentose isomerase and transketolase activities were observed in incubations containing ribulose 5-phosphate and xylulose 5-phosphate, respectively. The formation of erythrose 4-phosphate from xylulose 5-phosphate and ribose 5-phosphate suggested the presence of transaldolase. The activities of this enzyme and triosephosphate isomerase were observed directly in incubations of bacterial lysates with dihydroxyacetone phosphate and sedoheptulose 7-phosphate. Glucose-6-phosphate isomerase activity was measured in incubations with fructos 6-phosphate. The presence of these enzymes in H. pylori suggested the existence of a pentose phosphate pathway in the bacterium, possibly as a mechanism to provide NADPH for reductive biosynthesis and ribose 5-phosphate for synthesis of nucleic acids.  相似文献   

16.
The influence of glucose and insulin on pentose phosphate shunt enzymes and malic enzyme activity in cultured human endothelial cells has been investigated. Glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase and malic enzyme were present in endothelial cells. Enzyme activities were not altered either by 20 mM glucose or 10(-8) M insulin after 3, 6 and 12 hour incubations respectively. Neither increased glucose nor increased insulin alter the activity of the pentose phosphate shunt. As a consequence fatty acid and cholesterol synthesis in the endothelial cell is unlikely to be altered in the presence of increased glucose or increased insulin.  相似文献   

17.
The effect of methotrexate (MTX) and leucovorin (LCV) on pentose cycle enzymes and the activity of enzymes involved in enzyme defence mechanisms against ROS in HeLa cells, were studied. The effect of MTX was also investigated on the cellular levels of glutathione. MTX inhibited the activity of glucose-6-phosphate and 6-phosphogluconate dehydrogenases. The activities of glutathione reductase and γ-glutamylcysteine synthetase were also inhibited by the drug. No effect was observed on the activities of catalase, superoxide dismutase or transketolase. LCV had no effect on any of the enzymes studied. MTX decreased the cellular levels of glutathione (70 per cent), while the presence of LCV and glutamine did not interfere with the effect of MTX. The net results appear to show that the biological situation resulting from treatment with MTX leads to a reduction of effectiveness of the antioxidant enzyme defence system. Copyright © 1998 John Wiley & Sons, Ltd.  相似文献   

18.
Cell-free preparations of Chlorella pyrenoidosa Chick, van Niel's strain, were assayed for oxidative enzymes, utilizing isotopic and spectrophotometric techniques. The enzyme activity of heterotrophic and autotrophic cells was compared. The study was divided into categories, one concerned with the spectrophotometric detection of enzymes involved in the initial reactions of glycolysis and the hexose monophosphate shunt, and the other with the direct oxidation of glucose as compared with that oxidized via glycolysis. The reduction of pyridine nucleotides in crude extracts was studied with glucose, glucose-6-phosphate, 6-phosphogluconate, and fructose-1-6-diphosphate as substrates. Enzymes detected in both heterotrophic and autotrophic cells were hexokinase, fructose-diphosphate-aldolase, NAD-linked 3-phosphoglyceraldchyde dehydrogenase, glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, and a NADP-linked 3-phosphoglyceraldchyde dehydrogenase. In addition to isotopic studies designed to make an appraisal of the hexose monophosphate shunt, a comparison of the rate of reduction of NADP by glucose-6-phosphate and 6-phosphogluconate in relation to the reduction of NAD by 3-phosphoglyceraldehyde was made in light- and dark-grown cells. The rate of reduction of NADP appeared to be lowered in the light-grown cells, suggesting, as did also the isotopic studies, that the hexose monophosphate shunt is less active in autotrophic metabolism than in heterotrophic metabolism.  相似文献   

19.
The frequency of variant forms of 6 red cell enzymes, adenylate kinase, adenosine deaminase, phosphoglucomutase, acid phosphatase, 6-phosphogluconate dehydrogenase and glutathione reductase, were determined in 9 Greek populations. The frequencies of the variants in these populations were similar to those previously reported in most other European populations. However, several differences, particularly in the 6-phosphogluconate dehydrogenase, phosphoglucomutase and acid phosphatase alleles, were found in a comparison of Greeks and Bulgarians, in accordance with their separate ethnic origins. The Macedonians resembled the other Greeks and differed from the Bulgarians.  相似文献   

20.
The activities of the hexose monophosphate pathway enzymes glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase were measured at autopsy in control and Alzheimer's disease brains. Enzyme activities did not vary between different areas of brain and were unaltered by age. In Alzheimer's disease, the activities of both enzymes were increased, the glucose-6-phosphate dehydrogenase activity being almost double the activity of normal controls. We propose that this increased enzyme activity is a response to elevated brain peroxide metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号