首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Most Escherichia coli promoters studied so far form stable open complexes with sigma 70-RNA polymerase which have relatively long half-lives and, therefore, are resistant to a competitor challenge. A few exceptions are nevertheless known. The analysis of a number of promoters in Bacillus subtilis has suggested that the instability of open complexes formed by the vegetative sigma A-RNA polymerase may be a more general phenomenon than in Escherichia coli. We show that the main early and late promoters from the Bacillus subtilis phage phi 29 form unstable open complexes that are stabilized either by the formation of the first phosphodiester bond between the initiating nucleoside triphosphates or by DNA supercoiling. The functional characteristics of these two strong promoters suggest that they are not optimized for a tight and stable RNA polymerase binding. Their high activity is probably the consequence of the efficiency of further steps leading to the formation of an elongation complex.  相似文献   

4.
5.
6.
7.
A region upstream from the Escherichia coli rrnB P1 promoter, the upstream activator region (UAR), increases the activity of the promoter in vivo and the rate of association with RNA polymerase (E sigma 70) in vitro in the presence of the two initiating nucleotides. We have used four types of chemical and enzymatic footprinting probes to determine whether rrnB P1-E sigma 70 complexes formed in the presence of the initiating nucleotides (RPinit) differ from typical open complexes (RPo) formed in the absence of the initiating nucleotides and to examine the structural differences between rrnB P1 complexes containing the UAR and those lacking the UAR. We find that the rrnB P1-RPinit complex closely resembles open complexes formed at other E sigma 70 promoters, indicating that the formation of the first phosphodiester bond does not result in a major rearrangement of the promoter-RNA polymerase complex. An unusual potassium permanganate modification at position -18 in both RPo and RPinit indicates the possible presence of a subtle difference in the -10, -35 spacer structure compared to some other E. coli promoters. We show that the E sigma 70-rrnB P1 complex formed with the promoter containing the UAR has DNase I and hydroxyl radical cleavage patterns in the -50 region different from those observed with the same promoter lacking the UAR. These results are interpreted to indicate that E sigma 70 may interact with a region further upstream from that contacted by RNA polymerase bound at most other promoters and/or that unusual structural properties of this region are induced by bound E sigma 70.  相似文献   

8.
Iu N Zograf 《Genetika》1986,22(11):2583-2592
Recent data on regulation of gene activity in bacteria by substitution of RNA polymerase sigma subunits are reviewed. The htpR gene which controls the switch-on of the Escherichia coli heat-shock protein synthesis codes for sigma 32 subunit. sigma 32-containing RNA polymerase transcribes the heat-shock genes in vitro from specific promoters of no use for RNA polymerase containing the major sigma 70 subunit. Several minor sigma subunits have been found in Bacillus subtilis vegetative cells, in addition to the major sigma 55 subunit, differing in the specificity of promoter recognition. Many B. subtilis genes are controlled by tandemly located promoters recognized by RNA polymerases carrying different sigma subunits. sigma 29 subunit is encoded by spoIIG gene and is probably involved in the regulation of sporulation. Specific sigma subunits for transcribing "middle" or "late" genes are encoded by a number of phages.  相似文献   

9.
10.
11.
12.
13.
14.
The extent of productive RNA chain initiation in vitro by Escherichia coli RNA polymerase holoenzyme from the bacteriophage T7 A1 and A2 promoters on purified T7 DNA templates has been investigated at very low concentrations of the ribonucleoside triphosphate substrates. As the concentration of ribonucleoside triphosphates in the reaction is decreased from 10 to 1 micro M, the extent of productive RNA chain initiation at these promoter sites drops precipitously at about 3 micro M. At 1 micro M substrate concentration, productive chain initiation from the A1 promoter does not occur even after extended incubation although the dinucleoside tetraphosphate pppApU is produced at a significant rate under these conditions. The reason for the inability of RNA polymerase to carry out productive RNA chain initiation at 1 micro M substrate concentration is not yet understood. The phenomenon is not due to substrate consumption, enzyme inactivation, or a requirement for a nucleoside triphosphatase activity in the reaction. The possibility is raised that there are additional nucleoside triphosphate binding sites on E. coli RNA polymerase which play some role in the process of productive RNA chain initiation.  相似文献   

15.
16.
17.
The relationship between sigma (sigma) and delta (delta) factors of Bacillus subtilis RNA polymerase has been analyzed during initiation of RNA synthesis. When core enzyme (E) containing delta factor (E delta) binds to DNA, the delta factor is released with the formation of an E-DNA complex. The addition of sigma to the E-DNA complex results in the formation of a stable E sigma-DNA complex which can synthesize RNA upon addition of nucleoside triphosphates. Sigma factor, significantly, is not released from the core during RNA synthesis. These results suggest that delta and sigma factors can act sequentially during initiation of RNA synthesis with delta acting as a DNA recognition factor and sigma acting as an initiation factor. The results do not preclude the possibility that E sigma can initiate RNA synthesis correctly since E sigma alone can bind to DNA and initiate RNA synthesis.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号