首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A marine filamentous cyanobacterium capable of rapid growth under N2-fixing conditions has been isolated from the Texas Gulf Coast. This organism appears to be an Anabaena sp. and has been given the strain designation CA. Cultures grown on mineral salts medium bubbled with 1% CO2-enriched air at 42°C show a growth rate of 5.6±0.1 generations per day with molecular nitrogen as the sole nitrogen source. This growth rate is higher than any other reported in the literature to date for heterocystous cyanobacteria growing on N2. Under similar growth conditions, 7.5 mM NH4Cl yields a growth rate of 6.6±0.1 generations per day while 7.5 mM KNO3 allows for a growth rate of 5.8±0.4 generations-day. Nitrogen-fixation rates, as measured by acetylene reduction, show maximum activity values in the range of 50–100 nmoles ethylene produced/minxmg protein. These values compare favorably with those obtained from heterotrophic bacteria and are much higher than values reported for other cyanobacteria. Growth experiments indicate that the organism requires relatively high levels of sodium and grows maximally at 42°C. Because of its high growth rate on N2, this newly isolated organism appears ideal for studying nitrogen metabolism and heterocyst development among the cyanobacteria.  相似文献   

2.
The kinetic and molecular properties of cyanobacterial glucose-6-phosphate dehydrogenase, partly purified from Anabaena sp. ATCC 27893, show that it undergoes relatively slow, reversible transitions between different aggregation states which differ in catalytic activity. Sucrose gradient centrifugation and polyacrylamide gel electrophoresis reveal three principal forms, with approximate molecular weights of 120 000 (M 1), 240 000 (M 2) and 345 000 (M 3). The relative catalytic activities are: M 1M 2<M 3. In concentrated solutions of the enzyme, the equilibrium favors the more active, oligomeric forms. Dilution in the absence of effectors shifts the equilibrium in favor of the M 1 form, with a marked diminution of catalytic activity. This transition is prevented by a substrate, glucose-6-phosphate, and also by glutamine. The other substrate, nicotinamide adenine dinucleotide phosphate (NADP+), and (in crude cell-free extracts) ribulose-1,5-diphosphate are negative effectors, which tend to maintain the enzyme in the M 1 form. The equilibrium state between different forms of the enzyme is also strongly dependent on hydrogen ion concentration. Although the optimal pH for catalytic activity is 7.4, dissociation to the hypoactive M 1 form is favored at pH values above 7; a pH of 6.5 is optimal for maintenace of the enzyme in the active state. Reduced nicotamide adenine dinucleotide phosphate (NADPH) and adenosine 5-triphosphate (ATP), inhibit catalytic activity, but do not significantly affect the equilibrium state. The relevance of these findings to the regulation of enzyme activity in vivo is discussed.Abbreviations G6PD glucose-6-phosphate dehydrogenase - 6PGD 6-phosphogluconate dehydrogenase - RUDP ribulose-1,5-diphosphate - G6P glucose-6-phosphate - 6PG 6-phosphogluconate  相似文献   

3.
The complete nucleotide sequence of the petH gene encoding ferredoxin-NADP+ reductase from the nitrogen-fixing cyanobacterium Anabaena sp. PCC 7119 has been determined. The encoded polypeptide is 136 amino acids longer than the enzyme obtained after purification to homogeneity. The extended N-terminal domain consists of 80 amino acids which shows homology to the CpcD phycobilisome linker polypeptide, through which FNR might be anchored to the thylakoid-bound phycobilisomes. A 56 amino acid interdomain fragment is found which could be a target for proteolysis.  相似文献   

4.
5.
The activity of enzyme carbonic anhydrase (CA) was investigated in two diazotrophic cyanobacteria, Anabaena sp. (ARM 629) and Nostoc calcicola, in the presence of CO2/NaHCO3 and different inhibitors. The CA activity increased when the cells were pretreated with a high concentration of CO2/NaHCO3 and then transferred to ambient level CO2. Maximum activity of CA was observed after 8 h of incubation in light on transfer of cells from high Ci to ambient level CO2, and was low when incubated in dark. Addition of the photosynthetic inhibitor DCMU brought about a differential reduction in CA activity, depending on the carbon source (NaHCO3/CO2). CA inhibitors--ethoxyzolamide (EZ) and acetazolamide (AZ)--inhibited the enzyme activity in both the genera, but the extent of inhibition was greater in Anabaena sp. than in N. calcicola. Such a variation in extent of inhibition/stimulation of CA activity being different in the two genera reflects differences in their inherent potential and genetic background. The relevance of such cyanobacterial strains as CO2 sinks is also discussed.  相似文献   

6.
Curatti L  Giarrocco L  Salerno GL 《Planta》2006,223(5):891-900
In higher plants and cyanobacteria, sucrose (Suc) metabolism is carried out by a similar set of enzymes. The function and regulation of Suc metabolism in cyanobacteria has begun to be elucidated. In strains of Anabaena sp., filamentous nitrogen-fixing cyanobacteria, Suc synthase (SuS, EC 2.4.1.13) controls Suc cell level through the cleavage of the disaccharide. The present work shows that there are two sus genes in Anabaena (Nostoc) sp. that are co-regulated regarding the nitrogen source; however, only susA accounts for the extractable SuS activity and for the control of the Suc level. Primer extension analysis has uncovered the sequence of the Anabaena susA and susB ammonium-activated putative promoters, which share a high sequence similarity with that of rbcLS encoding ribulose bisphosphate carboxylase/oxygenase (EC 4.1.1.39) and other ammonium up-regulated genes. Moreover, susA and rbcLS expression is developmentally co-localized to the vegetative cells of the nitrogen-fixing cyanobacterial filaments. Our results strongly suggest the existence of a regulatory network that would coordinate the expression of key genes for Suc and nitrogen metabolism, carbon fixation, and development in Anabaena sp.  相似文献   

7.
Huang W  Wu QY 《Biotechnology letters》2004,26(18):1397-1401
A computational search was carried out to identify additional binding sites for the manganese response regulator, ManR, in the genome of Anabaena sp. PCC 7120. This approach predicted ManR binding sites: the promoter regions of the genes of all3575-alr3576 and the gene of alr5134 from Anabaena sp. PCC 7120. Electrophoretic mobility shift assays confirmed that the ManR of Anabaena sp. PCC 7120 specifically bound to the promoter regions of all3575-alr3576 and alr5134.  相似文献   

8.
Hydrogen production rates by Anabaena sp. strain TU37-1 obtained after an initial 1-day incubation period were approximately 70 to 80 and 3 to 9 µmol (mg chl)–1 h–1 under argon and nitrogen atmospheres, respectively. Hydrogen production under argon was not enhanced by addition of carbon dioxide, but was enhanced to some extent under nitrogen by increasing the initial carbon dioxide concentration. Rates of hydrogen and oxygen production during the initial 7-hour period were 15 and 220 µmol (mg chl)–1 h–1, respectively, in vessels with 18.5% initial carbon dioxide. Hydrogen production under nitrogen was enhanced by addition of carbon monoxide (1%). The rate obtained from the initial 1-day incubation period was about 40 µmol (mg chl)–1 h–1, which corresponded to about 60% of that under argon. On the basis of these observations, a possible strategy for hydrogen production by nitrogen-fixing cyanobacteria under nitrogen in the presence of carbon monoxide is indicated.  相似文献   

9.
Incubation in the dark of photoautotrophically grown N2-fixing heterocystous cyanobacteria leads to a loss of nitrogenase activity. Original levels of nitrogenase activity are rapidly regained upon re-illumination of the filaments, in a process dependent on de novo protein synthesis. Ammonia, acting indirectly through some of its metabolic derivatives, inhibits the light-promoted development of nitrogenase activity in filaments of Anabaena sp. ATCC 33047 and several other cyanobacteria containing mature heterocysts. The ammonia-mediated control system is also operative in N2-fixing filaments in the absence of any added source of combined nitrogen, with the ammonia resulting from N2-fixation already partially inhibiting full expression of nitrogenase. High nitrogenase levels, about two-fold higher than those in normal N2-fixing Anabaena sp. ATCC 33047, are found in cell suspensions which have been treated with the glutamine synthetase inhibitor l-methionine-d,l-sulfoximine or subjected to nitrogen starvation. Filaments treated in either way are insensitive to the ammonia-promoted inhibition of nitrogenase development, although this insensitivity is only transitory for the nitrogen-starved filaments, which become ammonia-sensitive once they regain their normal nitrogen status.Abbreviations Chl chlorophyll - EDTA ethylenediaminetetraacetic acid - MSX l-methionine-d,l-sulfoximine  相似文献   

10.
A comparative study has been made on the pigment composition and nitrogenase activity of whole filaments and isolated beterocysts from a mutant strain of Anabaena CA. The whole cell absorption spectra of intact filaments and isolated heterocysts showed close resemblance especially between 550–700 nm region. On a quantitative basis the chlorophyll a content was found almost equal between the vegetative cell and heterocyst but the c-phycocyanin content in the heterocyst was about 1/2 that of the vegetative cell. The purification of the phycobiliprotein on DEAE-cellulose showed the presence of c-phycocyanin (max 615 nm) and allophycocyanin (max 645 nm, shoulder 620 nm). Isolated heterocysts under H2 showed acetylene reduction rates of 57 nmol C2H4/mg dry wt·min (342 mol C2H4/mg chl a·h), whereas intact filaments reduced at the rate of 18 nmol C2H4/mg dry wt·min (108 mol C2H4/mg chl a·h). This rate accounts for 30% recovery of nitrogenase activity in isolated heterocysts compared to whole filaments. The activity was strictly light dependent and was linear under H2 for more than 3 h. Addition of as little as 5% H2 under argon stimulated the C2H2 reductionseveral fold. The acetylene reduction (nitrogenase activity) also showed tolerance to 5% added O2 either under H2 or argon. The results suggest that the heterocyst of Anabaena CA-V is different in some characteristics (viz., higher endogenous C2H2 reduction rate, prolonged activity and higher levels of phycobiliproteins) than those reported in other Anabaena species.  相似文献   

11.
Bacillus species producing a thermostable phytase was isolated from soil, boiled rice, and mezu (Korean traditinal koji). The activity of phytase increased markedly at the late stationary phase. An extracellular phytase from Bacillus sp. KHU-10 was purified to homogeneity by acetone precipitation and DEAE-Sepharose and phenyl-Sepharose column chromatographies. Its molecular weight was estimated to be 46 kDa on gel filtration and 44 kDa on SDS-polyacrylamide gel elctrophoresis. Its optimum pH and temperature for phytase activity were pH 6.5-8.5 and 40°C without 10 mM CaCl2 and pH 6.0-9.5 and 60°C with 10 mM CaCl2. About 50% of its original activity remained after incubation at 80°C or 10 min in the presence of 10 mM CaCl2. The enzyme activity was fairly stable from pH 6.5 to 10.0. The enzyme had an isoelectric point of 6.8. As for substrate specificity, it was very specific for sodium phytate and showed no activity on other phosphate esters. The K m value for sodium phytate was 50 M. Its activity was inhibited by EDTA and metal ions such as Ba2+, Cd2+, Co2+, Cr3+, Cu2+, Hg2+, and Mn2+ ions.  相似文献   

12.
Four novel yeast species are described, two from decaying mushrooms, viz. Candida cretensis and Candida vadensis, and two from rotten wood, viz. Blastobotrys robertii and Candida scorzettiae. Accession numbers for the CBS and ARS Culture Collections, and GenBank accession numbers for the D1/D2 domains of the large subunit of ribosomal DNA are: B. robertii CBS 10106T, NRRL Y-27775, DQ839395; C. cretensis CBS 9453T, NRRL Y-27777, AY4998861 and DQ839393; C. scorzettiae CBS 10107T, NRRL Y-27665, DQ839394; C. vadensis CBS 9454T, NRRL Y-27778, AY498863 and DQ839396. The GenBank accession number for the ITS region of C. cretensis is AY498862 and that for C. vadensis is AY498864. C. cretensis was the only species of the four that displayed fermentative activity. All four type strains grew on n-hexadecane. C. scorzettiae is the only one of the new species that assimilates some phenolic compounds, viz. 3-hydroxy derivatives of benzoic, phenylacetic and cinnamic acids, but not the corresponding 4-hydroxy acids. This is indicative of an operative gentisate pathway.  相似文献   

13.
Some properties of the biosynthetic and -glutamyltransferase activities of glutamine synthetase (EC 6.3.1.2) from Anabaena cylindrica are described, including requirement for divalent cations, pH optimum and Km for substrates. The -glutamyl-transferase reaction was inhibited by L-glutamate, ammonia and ATP. The inhibition by L-glutamate and ammonia was competitive for L-glutamine and non-competitive for hydroxylamine. Both the biosynthetic and the -glutamyltransferase activities of the desalted enzyme were much more sensitive to inactivation by treatments such as urea, hydroxylamine and incubation at 50° C than the preparation which contained a divalent cation. The effects of some substrates of these reactions on protection against thermal denaturation and hydroxylamine were examined. An interpretation of these results in terms of the sequence of binding of substrates both in the biosynthetic and the -glutamyltransferase reactions are discussed.  相似文献   

14.
A Gram positive, motile, rod-shaped, strictly anaerobic bacterium isolated from intestine of decaying fish was identified as Clostridium sp. RKD and produced a botulinum type B-like neurotoxin as suggested by mouse bioassay and protection with anti botulinum antibodies. The neurotoxicity was functionally characterized by the phrenic nerve hemi-diaphragm assay. Phylogenetic analysis based on 16S rDNA sequence, placed it at a different position from the reported strains of Clostridium botulinum. The strain exhibited differences from both Clostridium botulinum and Clostridium tetani with respect to morphological, biochemical and chemotaxonomic characteristics. Botulinum group specific and serotype specific primers amplified the DNA fragments of 260 and 727 bp, respectively, indicating presence of botulinum type 'B' toxin gene. Sequence of nearly 700 bp amplified using primers specific for botulinum neurotoxin type B gene, did not show any significant match in the database when subjected to BLAST search.  相似文献   

15.
In prokaryotes, cell division is normally achieved by binary fission, and the key player FtsZ is considered essential for the complete process. In cyanobacteria, much remains unknown about several aspects of cell division, including the identity and mechanism of the various components involved in the division process. Here, we report results obtained from a search of the players implicated in cell division, directly associating to FtsZ in the filamentous, heterocyst-forming cyanobacterium Anabaena sp. PCC 7120. Histidine tag pull-downs were used to address this question. However, the main observation was that FtsZ is a target of proteolysis. Experiments using various cell-free extracts, an unrelated protein, and protein blot analyses further supported the idea that FtsZ is proteolytically cleaved in a specific manner. In addition, we show evidence that both FtsZ termini seem to be equally prone to proteolysis. Taken together, our data suggest the presence of an unknown player in cyanobacterial cell division, opening up the possibility to investigate novel mechanisms to control cell division in Anabaena PCC 7120.  相似文献   

16.
In a taxonomic study on the ascomycetous yeasts isolated from plant materials collected in tropical forests in Yunnan and Hainan Provinces, southern China, four strains isolated from tree sap (YJ2E(T)) and flowers (YF9E(T), YWZH3C(T) and YYF2A(T)) were revealed to represent four undescribed yeast species. Molecular phylogenetic analysis based on the large subunit (26S) rRNA gene D1/D2 domain sequences showed that strain YJ2E(T) was located in a clade together with Candida haemulonii and C. pseudohaemulonii. Strain YF9E(T) was most closely related to C. azyma and strain YWZH3C(T) to C. sorbophila and C. spandovensis. Strain YYF2A(T) was clustered in a clade containing small-spored Metschnikowia species and related anamorphic Candida species. The new strains differed from their closely related described species by more than 10% mismatches in the D1/D2 domain. No sexual states were observed for the four strains on various sporulation media. The new species are therefore assigned to the genus Candida and described as Candida alocasiicola sp. nov. (type strain, YF9E(T) = AS 2.3484(T) = CBS 10702(T)), Candida hainanensis sp. nov. (type strain, YYF2A(T) = AS 2.3478(T) = CBS 10696(T)), Candida heveicola sp. nov. (type strain, YJ2E(T) = AS 2.3483(T) = CBS 10701(T)) and Candida musiphila sp. nov. (type strain, YWZH3C(T) = AS 2.3479(T) = CBS 10697(T)).  相似文献   

17.
The rate of CO2- and p-benzoquione-dependent photosynthetic O2 evolution by Anabaena variabilis cells remained unaltered and the rate of O2 uptake observed after switching off the light (endogenous respiration) was enhanced by a factor of 6–8 when the O2 concentration was increased from 200 to 400 M. Photosystem-I-linked O2 uptake and respiration of the cells incubated with ascorbate and N,N,NN-tetramethyl-p-phenylenediamine was not appreciable influenced by the O2 concentration. 2-Iodo-6-isopropyl-3-methyl-2,4,4-trinitrodiphenyl ether, blocking electron transfer at the plastoquinone level, suppressed O2 evolution and had no influence on endogenous respiration. 2-n-Heptyl-4-hydroxyquinoline-N-oxide, an inhibitor of electron transfer between photosystems II and I, as well as the cytochrome-oxidase inhibitors N 3 - , CN- and NH2OH, caused a 35–50% retardation of endogenous respiration and blocked photosynthetic O2 evolution. The molar ratio of cytochromes b6, f, c-553, aa3 and photosystem-I reaction centers in the isolated membranes equalled approx. 2:1:2:0.7:2. It is inferred that endogenous respiration of A. variabilis cells is inhibited by the light-induced electron flow through both photosystems at the level of the plastoquinone-plastocyanin-oxidoreductase complex.Abbreviations DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - DNP-INT 2-iodo-6-isopropyl-3-methyl-2,4,4-trinitrodiphenyl ether - Hepes 4-(2-hydroxyethyl)-1-piperazine ethansulfonic acid - TMPD N,N,NN-tetramethyl-p-phenylenediamine  相似文献   

18.
Non-regulated enzymes in the Calvin cycle are generally presumed to be less important for the regulation of photosynthetic yield. Here, to investigate the relationship between the activity of non-regulated enzymes and photosynthetic yield, two non-regulated enzymes in the Calvin cycle—a rice cytosolic fructose-1,6-bisphosphate aldolase (FBA) and a spinach chloroplast triosephosphate isomerase (TPI)—were cloned and co-expressed in cells of the cyanobacterium Anabaena sp. strain PCC 7120. The activity of FBA and TPI and the photosynthetic yield reflected by photosynthetic O2 evolution and cell dry weight were measured and compared between wild-type and transgenic cells. Our results demonstrated that the activity of FBA and TPI were increased in transgenic cells relative to wild-type cells, and that activity was further increased in a transgenic strain harboring two sets of FBA-TPI tandem genes relative to cells containing one copy of the FBA-TPI tandem gene. The increased activity of FBA and TPI in Anabaena sp. strain PCC 7120 increased photosynthetic yield, with increased activity levels correlating closely with the degree of changes in photosynthetic yield. This implies that the photosynthetic yield is limited by the activity of the non-regulated enzymes FBA and TPI, and that the endogenous activity of non-regulated enzymes is not sufficient to increase photosynthetic yield. We discuss the various roles of FBA and TPI, and regulated and non-regulated enzymes, in modulating photosynthetic yield. W. Ma and L. Wei contributed equally to this work.  相似文献   

19.
20.
Three Gram-positive bacterial strains, 7-3, 255-15 and 190-11, previously isolated from Siberian permafrost, were characterized and taxonomically classified. These microorganisms are rod-shaped, facultative aerobic, motile with peritrichous flagella and their growth ranges are from -2.5 to 40 degrees C. The chemotaxonomic markers indicated that the three strains belong to the genus Exiguobacterium. Their peptidoglycan type was A3alpha L-Lys-Gly. The predominant menaquinone detected in all three strains was MK7. The polar lipids present were phosphatidyl-glycerol, diphosphatidyl-glycerol and phosphatidyl-ethanolamine. The major fatty acids were iso-C13:0, anteiso-C13:0, iso-C15:0, C16:0 and iso-C17:0. Phylogenetic analysis based on 16S rRNA and six diverse genes, gyrB (gyrase subunit B), rpoB (DNA-directed RNA polymerase beta subunit), recA (homologous recombination), csp (cold shock protein), hsp70 (ClassI-heat shock protein-chaperonin) and citC (isocitrate dehydrogenase), indicated that the strains were closely related to Exiguobacterium undae (DSM 14481(T)) and Exiguobacterium antarcticum (DSM 14480(T)). On the basis of the phenotypic characteristics, phylogenetic data and DNA-DNA reassociation data, strain 190-11 was classified as E. undae, while the other two isolates, 7-3 and 255-15, comprise a novel species, for which the name Exiguobacterium sibiricum sp. nov. is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号