首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
F Hayashi  K Akasaka  H Hatano 《Biopolymers》1977,16(3):655-667
The molecular mechanism of thermal unfolding of yeast tRNAPhe in 20 mM NaCl, 1 mM EDTA, and 10 mM MgSO4, pH 7.1 ± 0.1, has been examined by 31P magnetic relaxation and the nuclear Overhauser effect methods at 40.48 MHz in the temperature range of 22.5–80°C. Two partially resolved 31P resonance peaks of yeast tRNAPhe have been found to behave distinctively different in their longitudinal relaxation times. Individual intensities of the two partially resolved peaks have been quantitatively estimated by the use of relaxation data and the nuclear Overhauser effect as a function of temperature. The results of these observations largely support the earlier suggestion by Guéron and Shulman that the high- and low-field parts of the main 31P resonance cluster originate from phosphorus nuclei belonging to the double-helical and nonhelical regions of the tRNA, respectively. The spin-lattice relaxation of the phosphorus nucleus has been found to be determined dominantly by the dipolar interaction with the surrounding ribose protons at this observing frequency. Rotational correlation times for the two portions of the ribose-phosphate backbone of the tRNA have been separately deduced from the quantitative treatment of the 31P nuclear spin-lattice relaxation times (T1) and the nuclear Overhauser effect. The result indicates that the two portions undergo internal motions at distinctively different rates of 108–1010 sec?1 order in the temperature range of 22.5–80°C, and that the thermal activation of these motions occurs at least in three distinctive steps, i.e., 22.5–31, 31–40, and 40–80°C. The rates of the internal motions and the associated activation energies in respective steps give some insight into the thermo-induced change of the yeast tRNAPhe structure.  相似文献   

2.
Charge-transfer-to-solvent excited iodide–polar solvent molecule clusters, [I(Solv)n]*, have attracted substantial interest over the past 20 years as they can undergo intriguing relaxation processes leading ultimately to the formation of gas-phase molecular analogues of the solvated electron. In this review article, we present a comprehensive overview of the development and application of state-of-the-art first-principles molecular dynamics simulation approaches to understand and interpret the results of femtosecond photoelectron spectroscopy experiments on [I(Solv)n]* relaxation, which point to a high degree of solvent specificity in the electron solvation dynamics. The intricate molecular details of the [I(Solv)n]* relaxation process are presented, and by contrasting the relaxation mechanisms of clusters with several different solvents (water, methanol and acetonitrile), the molecular basis of the solvent specificity of electron solvation in [I(Solv)n]* is uncovered, leading to a more refined view of the manifestation of electron solvation in small gas-phase clusters.  相似文献   

3.
Xia J  Case DA 《Biopolymers》2012,97(5):289-302
We report 100 ns molecular dynamics simulations, at various temperatures, of sucrose in water (with concentrations of sucrose ranging from 0.02 to 4M), and in a 7:3 water‐DMSO mixture. Convergence of the resulting conformational ensembles was checked using adaptive‐biased simulations along the glycosidic Φ and ψ torsion angles. NMR relaxation parameters, including longitudinal (R1) and transverse (R2) relaxation rates, nuclear Overhauser enhancements (NOE), and generalized order parameter (S2) were computed from the resulting time‐correlation functions. The amplitude and time scales of molecular motions change with temperature and concentration in ways that track closely with experimental results, and are consistent with a model in which sucrose conformational fluctuations are limited (with 80–90% of the conformations having ??ψ values within 20° of an average conformation), but with some important differences in conformation between pure water and DMSO‐water mixtures. © 2011 Wiley Periodicals, Inc. Biopolymers 97: 289–302, 2012.  相似文献   

4.
K Akasaka 《Biopolymers》1974,13(11):2273-2280
Proton and phosphorus-31 nuclear spin-lattice relaxation times (T1) have been measured with the Fourier-transform method at 100 and 40.5 MHz, respectively, on single-stranded polyriboadenylic acid (poly(A)) in a neutral D2O solution in the temperature range of 14–82°C. T1 minimum is observed around 35–45°C for H(8), H(1′), and phosphorus resonances. Rotational correlation times have been deduced from the T1 data, which indicate that the sugar–phosphate backbone as well as the base–sugar segment is undergoing rapid internal motion of 10?8–10?10 sec range. The molecular motion of the sugar–phosphate backbone as deduced from the phosphorus relaxation is well-characterized by a single activation enthalpy of 8.1 kal/mole for the whole temperature range of 14–82°C. Activation enthalpies of similar magnitude have been obtained for the motion of the adenine–ribose moiety from H(8) and H(1′) relaxation. The relative magnitude of T1 for H(8) and H(1′) infers that the poly(A) nucleotide exists on the average as anti in the single-stranded form. The phosphorus T1 value is consistent with a conformation such that both C(4′)–C(5′) and C(4′)–C(3′) bonds are nearly trans to their connected O–P bonds.  相似文献   

5.
Prion diseases are associated with the misfolding of the prion protein (PrPC) from a largely α‐helical isoform to a β‐sheet rich oligomer (PrPSc). Flexibility of the polypeptide could contribute to the ability of PrPC to undergo the conformational rearrangement during PrPC–PrPSc interactions, which then leads to the misfolded isoform. We have therefore examined the molecular motions of mouse PrPC, residues 113–231, in solution, using 15N NMR relaxation measurements. A truncated fragment has been used to eliminate the effect of the 90‐residue unstructured tail of PrPC so the dynamics of the structured domain can be studied in isolation. 15N longitudinal (T1) and transverse relaxation (T2) times as well as the proton‐nitrogen nuclear Overhauser effects have been used to calculate the spectral density at three frequencies, 0, ωN, and 0.87ωH. Spectral densities at each residue indicate various time‐scale motions of the main‐chain. Even within the structured domain of PrPC, a diverse range of motions are observed. We find that removal of the tail increases T2 relaxation times significantly indicating that the tail is responsible for shortening of T2 times in full‐length PrPC. The truncated fragment of PrP has facilitated the determination of meaningful order parameters (S2) from the relaxation data and shows for the first time that all three helices in PrPC have similar rigidity. Slow conformational fluctuations of mouse PrPC are localized to a distinct region that involves residues 171 and 172. Interestingly, residues 170–175 have been identified as a segment within PrP that will form a steric zipper, believed to be the fundamental amyloid unit. The flexibility within these residues could facilitate the PrPC–PrPSc recognition process during fibril elongation.  相似文献   

6.
Peptide GVKGDKGNPGWPGAPY from the triple-helix domain of type IV collagen aggregates in solution at a critical aggregation concentration of 18 mM. This molecular self association process is investigated by 1H- and 13C-nmr spectroscopy. As a function of increasing peptide concentration, selective 1H resonances are cooperatively chemically shifted by up to 0.04 ppm to apparently saturable values at high concentration. Pulsed field gradient nmr was used to derive translation diffusion constants that, as the peptide concentration is increased, also cooperatively and monotonically decrease to an apparent limiting value. An average number of 6 monomer units per aggregate have been estimated from diffusion constant and 13C relaxation data. Comparative 1H nuclear Overhauser effect spectroscopy (NOESY) spectra accumulated at high and low peptide concentrations suggest that average internuclear distances are decreased as a result of peptide association. 13C-nmr multiplet spin-lattice relaxation and 13C- {1H} NOE effects on 13C-enriched glycine methylene positions in the peptide demonstrate that overall molecular tumbling and backbone internal motions are attenuated in the aggregate state. Lowering the solution pD from pD 6 to pD 2 disrupts the aggregate state, suggesting a role for electrostatic interactions in the association process. Based on thermodynamic considerations, hydrophobic interactions also probably act to stabilize the aggregate state. These data are discussed in terms of an nmr/NOE constrained computer-modeled structure of the peptide. © 1993 John Wiley & Sons, Inc.  相似文献   

7.
The five phosphates of the deoxynucleotide d(CpGpTpApCpG)2 have been assigned by two-dimensional heteronuclear NMR spectroscopy. The chemical shift anisotropy and correlation time of each phosphate group has been determined from measurements of the spin-lattice, spin-spin relaxation rate constants and the 31P-{1H} nuclear Overhauser enhancement (NOE) at three magnetic field strengths (4.7 T, 9.4 T, and 11.75 T) and two temperatures (288 K and 298 K). As expected, the relaxation data require two mechanisms to account for the observed rate constants, i.e. dipole-dipole and chemical shift anisotropy. At 9.4 T and 11.75 T, the latter mechanism dominates the relaxation, leading to insignificant NOE intensities. The correlation time, chemical shift anisotropy and effective P-H distance were obtained from least-squares fitting to the data. Comparison of the fitted value for the correlation time with that obtained from 1H measurements shows that the molecule behaves essentially as rigid rotor on the nanosecond timescale. Large amplitude motions observed in long segments of DNA are due to bending motions that do not contribute significantly to relaxation in short oligonucleotides.Abbreviations CSA chemical shift anisotropy - NOE nuclear Overhauser enhancement Offprint requests to: A. N. Lane  相似文献   

8.
The longitudinal proton magnetic relaxation times T1 were measured for ferri (met)-and carbonmonoxy-bovine haemoglobin and equine myoglobin in 0.1 M KH2PO4 aqueous solutions near pH 6 at 5°C and 35°C from 1.5- to 60-MHz Larmor frequencies. It is concluded that the correlation time τC for the dipole–dipole interaction of electron and nuclear spins is in fact the electron (ferric) spin relaxation time τS being close to 1.5 × 10?10 sec for both metHb and metMb at 5°C. At 35°C the paramagnetic relaxation rates are not determined solely by the relaxation of protons exchanging from the haem pocket with bulk solvent. Hence, τC at 35°C cannot be calculated from the dispersion data obtained at this temperature. The relevance of this for the determination of interspin distances r is discussed.  相似文献   

9.
M Sakamoto  R Hayakawa  Y Wada 《Biopolymers》1979,18(11):2769-2782
As a continuation of previous papers [Biopolymers (1976) 15 , 879; (1978) 17 , 1508], the low-frequency dielectric relaxation of DNA solutions was studied with a four-electrode cell and the simultaneous two-frequency measurement. Below a critical concentration, the dielectric relaxation time agrees with the rotational relaxation time estimated from the reduced viscosity and is almost independent of DNA concentration Cp, and the dielectric increment is proportional to Cp. The critical concentration is approximately 0.02% of DNA for molecular weight Mr 2 × 106 and 0.2% for Mr 4.5 × 105 in 1 mM NaCl. Dielectric relaxations are compared for samples before and after deproteinization, and the protein contamination is found to have a minor effect on the dipole moment of DNA. The effect of a mixed solvent of water and ethanol on the dielectric relaxation of DNA is well interpreted in terms of changes in viscosity and the dielectric constant of the solvent, assuming that the relaxation arises from rotation of the molecule with a quasi-permanent dipole due to counterion fluctuation.  相似文献   

10.
Bacterial biofilms of Pseudomonas aeruginosa selectively labeled by introduction of 2-13C-glycerol was studied by solid-state and high-resolution nuclear magnetic resonance. The 13C nuclei were mainly integrated into mannuronate and guluronate, the two monomer units forming the bacterial alginate. The signal for the C5 position of the mannuronate, which was easily identified and well separated from other peaks, was analyzed for molecular mobility. The result indicated a high degree of motional freedom within the molecular network of the alginate. Despite the fact that the alginate was part of a solid aqueous gel phase, the reorientation mechanism of the monomer units came close to isotropic tumbling. Solid-state spectra of biofilms labeled in the described manner may serve as a valuable tool for noninvasive analyses of molecular mobility of the alginate component under various influences, thereby revealing important structural information. In addition, the effect of a monovalent electrolyte (LiCl) on the molecular mobility of alginate fragments in an aqueous solution was studied by determining the spin–lattice relaxation times, line widths and line shapes under variations of the ion concentration. The presence of ions accelerated overall motions but left rapid local motions virtually unaffected. Journal of Industrial Microbiology & Biotechnology (2001) 26, 62–69. Received 26 January 2000/ Accepted in revised form 30 August 2000  相似文献   

11.
31P-Nmr relaxation parameters (spin-lattice relaxation time, linewidth, and nuclear Overhauser effect) were obtained at three different frequencies for poly(U) and a well-defined (145 ± 3 base-pair) fragment of DNA in solution. Data sets for the two samples were analyzed by theories which included relaxation by the mechanisms of 31P chemical shift anisotropy as well as by 1H-31P dipole–dipole interaction. Neither data set could be satisfactorily described by a single correlation time. A model of a rigid rotor most nearly fits the data for the DNA molecule. Parameters obtained from the least-square fit indicate (1) that the DNA undergoes anisotropic reorientation with a correlation time τ0 = 6.5 × 10?7 sec for the end-to-end motion, (2) the ratio of diffusion constants D/D is 91, and (3) that the linewidth is due to chemical shift dispersion to the extent of 0.5 ppm. Some deviations of the calculated from the observed values suggested that significant torsional and bending motions may also take place for this DNA. Another model which contains isotropic motion but with a broad distribution of correlation times was required to fit the data for poly(U). A log ? χ2 distribution function of correlation times [Scheafer, J. (1973) Macromolecules 6 , 881–888] described well the motion of poly(U) with the average correlation time τ = 3.3 × 10?9 sec and a distribution parameter p = 14.  相似文献   

12.
The conformation and dynamic structure of single-stranded poly(inosinic acid), poly(I), in aqueous solution at neutral pH have been investigated by nmr of four nuclei at different frequencies: 1H (90 and 250 MHz), 2H (13.8 MHz), 13C (75.4 MHz), and 31P (36.4 and 111.6 MHz). Measurements of the proton-proton coupling constants and of the 1H and 13C chemical shifts versus temperature show that the ribose is flexible and that base-base stacking is not very significant for concentrations varying from 0.04 to 0.10M in the monomer unit. On the other hand, the proton T1 ratios between the sugar protons, T1 (H1′)/T1 (H3′), indicate a predominance of the anti orientation of the base around the glycosidic bond. The local motions of the ribose and the base were studied at different temperatures by measurements of nuclear Overhauser enhancement (NOE) of protonated carbons, the ratio of the proton relaxation times measured at two frequencies (90 and 250 MHz), and the deuterium quadrupolar transverse relaxation time T2. For a given temperature between 22 and 62°C, the 13C-{1H} NOE value is practically the same for seven protonated carbons (C2, C8, C1′, C2′, C3′, C4′, C5′). This is also true for the T1 ratio of the corresponding protons. Thus, the motion of the ribose–base unit can be considered as isotropic and characterized by a single correlation time, τc, for all protons and carbons. The τc values determined from either the 13C-{1H} NOE or proton T1 ratios, T1(90 MHz)/T1(250 MHz), and/or deuterium transverse relaxation time T2 agree well. The molecular motion of the sugar-phosphate backbone (O-P-O) and the chemical-shift anisotropy (CSA) were deduced from T1 (31P) and 31P-{1H} NOE measurements at two frequencies. The CSA contribution to the phosphorus relaxation is about 12% at 36.4 MHz and 72% at 111.6 MHz, corresponding to a value of 118 ppm for the CSA (σ = σ∥ ? σ?). Activation energies of 2–6 kcal/mol for the motion of the ribose–base unit and the sugarphosphate backbone were evaluated from the proton and phosphorus relaxation data.  相似文献   

13.
The interaction of the fluorinated antimalarial drug fluoroquine [7-fluoro-4-(diethyl-amino-1-methylbutylamino)quinoline] with DNA, tRNA, and poly(A) has been investigated by optical absorption, fluorescence, and 19F-nmr chemical-shift and relaxation methods. Optical absorption and fluorescence experiments indicate that fluoroquine binds to nucleic acids in a similar manner to that of its well-known analog chloroquine. At low drug-to-base pair ratios, binding of both drugs appears to be random. Fluoroquine and chloroquine also elevate the melting temperature (Tm) of DNA to a comparable extent. Binding of fluoroquine to DNA, tRNA, or poly(A) results in a downfield shift of about 1.5 ppm for the 19F-nmr resonance. The chemical shift of free fluoroquine depends on the isotopic composition of the solvent (D2O vs H2O). The solvent isotope shift is virtually eliminated by fluoroquine binding to any one of the nucleic acids. 19F-nmr relaxation experiments were carried out to measure the spin-lattice relaxation time (T1), 19F{1H} nuclear Overhauser effect (NOE), off-resonance intensity ratio (R), off-resonance rotating-frame spin-lattice relaxation time (T), and linewidth for fluoroquine in the nucleic acid complexes. By accounting for intramolecular proton-fluorine dipolar and chemical-shift anisotropy contributions to the fluorine relaxation, all of the relaxation parameters for the fluoroquine–DNA complex can be well described by a motional model incorporating long-range DNA bending on the order of a microsecond and an internal motion of the drug on the order of a nanosecond. Selective NOE experiments indicate that the fluorine in the drug is near the ribose protons in the RNA complexes, but not in the DNA complex. Details of the binding evidently differ for the two types of nucleic acids. This study provides the foundation for an investigation of fluoroquine in intact cells.  相似文献   

14.
The solution three-dimensional structure of the protonated [Leu7]-surfactin, an hepta-peptide extracted from Bacillus subtilis, has been determined from two-dimensional 1Hnmr performed in 2H6-dimethylsulfoxide and combined with molecular modeling. Experimental data included 9 coupling constants, 61 nuclear Overhauser effect derived distances, NH temperature coefficients, and 13C relaxation times. Two distance geometry (DISMAN) protocols converged toward models of the structure and the best of them were refined by restrained and unrestrained molecular dynamics (GROMOS). Two structures in accord with the set of experimental constraints are presented. Both are characterized by a “horse saddle” topology for ring atoms on which are attached the two polar Glu and Asp side chains showing an orientation clearly opposite to that of the C11–13 aliphatic chain. Amphipathic and surface properties of surfactin are certainly related to the existence of such minor polar and a major hydrophobic domains. The particular “claw” configuration of acidic residues observed in surfactin gives important clues for the understanding of its cation binding and transporting ability. © 1994 John Wiley & Sons, Inc.  相似文献   

15.
C Marion  B Roux  M Hanss 《Biopolymers》1983,22(11):2353-2366
The rotational relaxation tiem τ3 of DNA molecules (Mw ? 5 × 106) in solution has been determined by the transient electric birefringence method. The analysis of the birefringence decay makes it possible to study only the higher-molecular-weight fraction, the molecules being considered as rigid elongated particles in a short time scale. A marked concentration dependence of the relaxation time has been observed for DNA in low ionic strengths. Above a critical concentration c*, τ3 increases with the DNA concentration, c. The value of c* increases with the ionic strength. For 10?3 ionic strength (with NaCl), c* is about 10 μg/mL; then we observe the same strong concentration dependence of rotational relaxation times as recently reported for rodlike M-13 viruses [Maguire, J. F., McTague, J. P. & Rondelez, F. (1980) Phys. Rev. Lett. 45 , 1891–1894]. These results may be discussed in terms of the Doi-Edwards theory for rotational relaxation time of rigid macromolecules [Doi, M. (1975) J. Phys. 36 , 607–611; Doi, M. & Edwards, S. F. (1978) J. Chem. Soc. Faraday Trans. 74 , 918–932] and the critical concentration above which the interactions between the molecules begin to appear allows determining the corresponding molecular length. We observe a very good agreement between the DNA lengths obtained from the c* values and by using the infinite dilution value of τ3 and Broersma's equation. Therefore, only highly diluted solutions can be used if intrinsic molecular properties based on the rotational diffusion of high-molecular-weight elongated molecules are studied.  相似文献   

16.
The real and imaginary parts of complex viscosity, η′ and η″, are measured for dilute solutions of poly(γ-benzyl-L -glutamate) in m-cresol, a helicogenic solvent. The frequency range is 2.2–525 kHz; the concentration range 0.2–5 g/dl; the temperature 30°C, and the molecular weights Mr are 6.4 × 104–17 × 104. The dispersion curve of extrapolated intrinsic dynamic viscosity [η′] of samples with Mr > 105 is interpreted in terms of three mechanisms appearing from low to high frequencies: end-over-end rotation, flexural deformation, and side-chain motion. For a sample with Mr < 105, the flexural relaxation disappears and a plateau of [η′] is distinctly observed between rotational and side-chain relaxations. Rotational relaxation times of all the samples obey the Kirkwood–Auer theory. The strong concentration dependence of rotational relaxation time is explained by collisions of molecules rather than association. Flexural relaxation times calculated from a theory by assuming the persistence length as 1200 Å are consistent with observed dispersion curves of [η′].  相似文献   

17.
G E Ellis  K J Packer 《Biopolymers》1976,15(5):813-832
The nuclear magnetic spin-lattice and transverse relaxation processes for the 1H and 2D nuclei in purified elastin (ligamentum nuchae), exchanged and hydrated with excess D2O, have been studied in the temperature range 276°–340°K. The 2D relaxation results clearly show the presence of D2O (1) external to the bulk elastin sample, (2) in spaces within the bulk elastin, and (3) as an integral part of the protein on a molecular level. It is shown from these measurements that the protein on a molecular level. It is shown from these measurements that the water content of the protein itself changes from ~0.8 g D2O/g dry elastin at ~280°K to ~0.2 g D2O/g dry elastin at ~335°K, a decrease of 400%. The D2O content of the interfiber spaces decreases by less than 20% over the same temperature range. This fact throws considerable doubt on the validity of the values of β, the thermal expansion coefficient of elastin, used by other workers in discussion of the elastic mechanism in elastin. The elastin proton transverse relaxation shows the presence of three regions in elastin having different degrees of molecular mobility. These are assigned to protons associated with the crosslinks, a fairly mobile, hydrophobic, and low-water-content region, and a more mobile higher water-content region. The temperature variation of the relative proportions of these three regions is explained in terms of a hypothetical temperature-composition phase diagram in which the two mobile regions are represented as two partially miscible phases with different negative temperature coefficients of ‘solubility’ in water. The implications of these observations for current views of the nature of elastin are assessed. It is concluded that the spin-relaxation results are consistent with a multiphase structural model for elastin. An approximate sorption isotherm for the water/elastin system is reported and shows the relatively weak nature of the water/elastin interaction.  相似文献   

18.
Evidence suggests that the mitochondrial (mt)DNA of anthozoans is evolving at a slower tempo than their nuclear DNA; however, parallel surveys of nuclear and mitochondrial variations and calibrated rates of both synonymous and nonsynonymous substitutions across taxa are needed in order to support this scenario. We examined species of the scleractinian coral genus Acropora, including previously unstudied species, for molecular variations in protein-coding genes and noncoding regions of both nuclear and mt genomes. DNA sequences of a calmodulin (CaM)-encoding gene region containing three exons, two introns and a 411-bp mt intergenic spacer (IGS) spanning the cytochrome b (cytb) and NADH 2 genes, were obtained from 49 Acropora species. The molecular evolutionary rates of coding and noncoding regions in nuclear and mt genomes were compared in conjunction with published data, including mt cytochrome b, the control region, and nuclear Pax-C introns. Direct sequencing of the mtIGS revealed an average interspecific variation comparable to that seen in published data for mt cytb. The average interspecific variation of the nuclear genome was two to five times greater than that of the mt genome. Based on the calibration of the closure of Panama Isthmus (3.0 mya) and closure of the Tethy Seaway (12 mya), synonymous substitution rates ranged from 0.367% to 1.467% Ma−1 for nuclear CaM, which is about 4.8 times faster than those of mt cytb (0.076–0.303% Ma−1). This is similar to the findings in plant genomes that the nuclear genome is evolving at least five times faster than those of mitochondrial counterparts. I-Ping Chen and Chung-Yu Tang, co-first author (equal contribution)  相似文献   

19.
Particles carrying heterogeneous nuclear RNA (30–40 S-particles) were isolated from rat liver nuclei and the particle proteins separated by sodium dodecylsulfate gel electrophoresis. Some properties of a 110000 molecular weight component (P 110/103) were studied in detail: (i) P 110/103 was labeled to a 4–5 times higher specific activity than the major particle proteins in the presence of [14C]-amino acidsin vivo. (ii) In nuclei incubated with [3H]- or [32P]-nicotinamide adenine dinucleotide P 110/103 was labeled presumably by ADP-ribosylation. (iii) A protein with the same molecular weight as P 110/103 and isolated from the nuclear extract by affinity chromatography was phosphorylated in vitro.Abbreviations hnRNA heterogeneous nuclear RNA - hnRNP and mRNP ribonucleoproteins which contain hnRNA respectively mRNA  相似文献   

20.
Assessing how excipients affect the self-association of monoclonal antibodies (mAbs) requires informative and direct in situ measurements for highly concentrated solutions, without sample dilution or perturbation. This study explores the application of solution nuclear magnetic resonance (NMR) spectroscopy for characterization of typical mAb behavior in formulations containing arginine glutamate. The data show that the analysis of signal intensities in 1D 1H NMR spectra, when compensated for changes in buffer viscosity, is invaluable for identifying conditions where protein-protein interactions are minimized. NMR-derived molecular translational diffusion rates for concentrated solutions are less useful than transverse relaxation rates as parameters defining optimal formulation. Furthermore, NMR reports on the solution viscosity and mAb aggregation during accelerated stability study assessment, generating data consistent with that acquired by size-exclusion chromatography. The methodology developed here offers NMR spectroscopy as a new tool providing complementary information useful to formulation development of mAbs and other large therapeutic proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号