首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
During Drosophila oogenesis, two clusters of chorion genes and their flanking DNA sequences undergo amplification in the ovarian follicle cells. Amplification results from repeated rounds of initiation and bidirectional replication within the chorion gene regions, possibly from a single origin, producing nested replication forks. Previously we have shown that following reintroduction into the Drosophila genome, a specific 3.8 kilobase pair DNA segment from the amplified third chromosome domain could induce developmentally regulated amplification at its site of insertion. Here we present the complete nucleotide sequence of this amplification control element and of genes encoding the chorion structural proteins s18-1 and s15-1, which are contained within it. Sequences that may be involved in the regulation of chorion gene amplification and expression are identified.  相似文献   

4.
The role of ACE3 in Drosophila chorion gene amplification.   总被引:6,自引:0,他引:6       下载免费PDF全文
  相似文献   

5.
Germ line transformation has been used to map the cis regulatory DNA elements responsible for the precise and evolutionarily stable developmental expression of the s18 chorion gene. Constructs containing chimeric combinations of Drosophila melanogaster and D. grimshawi DNA regions, as well as D. grimshawi sequences alone, can direct expression in the follicular epithelium, in an s18-specific temporal and spatial pattern. The results indicate that both positive and negative regulatory elements can function when transferred from D. grimshawi to D. melanogaster. The first ca. 100 bp of the 5'-flanking DNA region constitute a minimal, developmentally regulated promoter, expression of which is inhibited by the next 100-bp DNA segment and activated by positive elements located further upstream. Expression of the minimal promoter can also be enhanced by more distant chorion regulatory elements, provided the inhibitory DNA segment is absent.  相似文献   

6.
DNA from Drosophila egg chambers undergoing chorion gene amplification was analyzed using the two-dimensional gel technique of Brewer and Fangman. At stage 10, 34% of DNA molecules from the maximally amplified region of the third chromosome chorion gene cluster contained replication forks or bubbles. These nonlinear forms were intermediates in the process of amplification; they were confined to follicle cells, and were found only within the replicating region during the time of amplification. Multiple origins gave rise to these intermediates, since three separate regions of the third chromosome chorion locus contained replication bubbles. However, initiation was nonrandom; the majority of initiations appeared to occur near the Bgl II site located between the s18 and s15 chorion genes. The P[S6.9] chorion transposon also contained abundant replication intermediates in follicle cells from a transformed line. Initiation within P[S6.9] occurred near two previously defined cis-regulatory elements, one near the same Bgl II site (in the AER-d region) and one near the ACE3 element.  相似文献   

7.
8.
9.
The Drosophila chorion genes amplify in the follicle cells by repeated rounds of reinitiation of DNA replication. ACE3 (amplification control element from the third chromosome) has been identified by a series of deletion experiments as an important control element for amplification of the third-chromosome chorion cluster. Several elements that quantitatively enhance amplification also have been defined. We show that a single 440-bp ACE3 sequence is sufficient to regulate amplification with proper developmental specificity autonomously from other chorion DNA sequences and regulatory elements. Although ACE3 is sufficient for amplification, the levels of amplification are low even when ACE3 is present in multiple copies. When controlled solely by ACE3, amplification initiates either at ACE3 or within closely linked sequences. Amplification of an ACE3 transposon insertion produces a gradient of amplified DNA that extends into flanking sequences approximately the same distance as does the amplification gradient at the endogenous chorion locus. The profile and extent of the amplified gradient imply that the low levels of amplification observed are the result of limited rounds of initiation of DNA replication. Transposon inserts containing multiple copies of ACE3 in a tandem, head-to-tail array are maintained stably in the chromosome. However, mobilization of the P-element transposons containing ACE3 multimers results in deletions within the array at a high frequency.  相似文献   

10.
K575 is a temperature-sensitive female sterile mutant which shows abnormal chorion structure and subnormal amounts of the major chorion proteins at the restrictive temperature. These phenotypes apparently result from a temperature-sensitive defect in amplification. Both clusters of chorion genes are affected, indicating that the gene operates in trans.  相似文献   

11.
Duplication of the eukaryotic genome initiates from multiple origins of DNA replication whose activity is coordinated with the cell cycle. We have been studying the origins of DNA replication that control amplification of eggshell (chorion) genes during Drosophila oogenesis. Mutation of genes required for amplification results in a thin eggshell phenotype, allowing a genetic dissection of origin regulation. Herein, we show that one mutation corresponds to a subunit of the minichromosome maintenance (MCM) complex of proteins, MCM6. The binding of the MCM complex to origins in G1 as part of a prereplicative complex is critical for the cell cycle regulation of origin licensing. We find that MCM6 associates with other MCM subunits during amplification. These results suggest that chorion origins are bound by an amplification complex that contains MCM proteins and therefore resembles the prereplicative complex. Lethal alleles of MCM6 reveal it is essential for mitotic cycles and endocycles, and suggest that its function is mediated by ATP. We discuss the implications of these findings for the role of MCMs in the coordination of DNA replication during the cell cycle.  相似文献   

12.
13.
14.
15.
Summary Further IF screening ofDrosophila melanogaster geographic strains has revealed a variant of the s19 major chorion protein. Developmental analysis of F1 hybrids indicates that the source of the variation is found in the structural gene for this protein. The linkage group of the variant gene was determined to be the third, and the gene was localized by several methods of recombination analysis. The s19 gene was found to be tightly linked to thesepia locus, as had been previously found for the s18 gene (Yannoni and Petri 1980). Lack of recombination between the s19 and s18 genes in double heterozygotes suggested that these two genes are within 0.3 map units of each other. Although more precise localization of the s19 gene failed, the s18 gene could be more specifically located to the right ofsepia, betweensepia andhairy. Contrary to our prediction (ibid.), the s19 and s18 genes have been found to be tightly linked in spite of the fact that they display somewhat different developmental stage specificity.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号