首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The growing body of evidence suggests that intermediate products of alpha-synuclein aggregation cause death of sensitive populations of neurones, particularly dopaminergic neurones, which is a critical event in the development of Parkinson's disease and other synucleinopathies. The role of two other members of the family, beta-synuclein and gamma-synuclein, in neurodegeneration is less understood. We studied the effect of inactivation of gamma-synuclein gene on mouse midbrain dopaminergic neurones. Reduced number of dopaminergic neurones was found in substantia nigra pars compacta (SNpc) but not in ventral tegmental area (VTA) of early post-natal and adult gamma-synuclein null mutant mice. Similar reductions were revealed in alpha-synuclein and double alpha-synuclein/gamma-synuclein null mutant animals. However, in none of these mutants did this lead to significant changes of striatal dopamine or dopamine metabolite levels and motor dysfunction. In all three studied types of null mutants, dopaminergic neurones of SNpc were resistant to methyl-phenyl-tetrahydropyridine (MPTP) toxicity. We propose that both synucleins are important for effective survival of SNpc neurones during critical period of development but, in the absence of these proteins, permanent activation of compensatory mechanisms allow many neurones to survive and become resistant to certain toxic insults.  相似文献   

2.
3.
4.
Development of appropriate dendritic arbors is crucial for neuronal information transfer. We show, using seizure-related gene 6 (sez-6) null mutant mice, that Sez-6 is required for normal dendritic arborization of cortical neurons. Deep-layer pyramidal neurons in the somatosensory cortex of sez-6 null mice exhibit an excess of short dendrites, and cultured cortical neurons lacking Sez-6 display excessive neurite branching. Overexpression of individual Sez-6 isoforms in knockout neurons reveals opposing actions of membrane-bound and secreted Sez-6 proteins, with membrane-bound Sez-6 exerting an antibranching effect under both basal and depolarizing conditions. Layer V pyramidal neurons in knockout brain slices show reduced excitatory postsynaptic responses and a reduced dendritic spine density, reflected by diminished punctate staining for postsynaptic density 95 (PSD-95). In behavioral tests, the sez-6 null mice display specific exploratory, motor, and cognitive deficits. In conclusion, cell-surface protein complexes involving Sez-6 help to sculpt the dendritic arbor, in turn enhancing synaptic connectivity.  相似文献   

5.
Peripherin is a type III intermediate filament (IF) abundantly expressed in developing neurons, but in the adult, it is primarily found in neurons extending to the peripheral nervous system. It has been suggested that peripherin may play a role in axonal elongation and/or cytoskeletal stabilization during development and regeneration. To further clarify the function of peripherin, we generated and characterized mice with a targeted disruption of the peripherin gene. The peripherin null mice were viable, reproduced normally and did not exhibit overt phenotypes. Microscopic analysis revealed no gross morphological defects in the ventral and dorsal roots, spinal cord, retina and gut, but protein analyses showed increased levels of the type IV IF alpha-internexin in ventral roots of peripherin null mice. Whereas the number and caliber of myelinated motor and sensory axons in the L5 roots remained unchanged in peripherin knockout mice, there was a substantial reduction ( approximately 34%) in the number of L5 unmyelinated sensory fibers that correlated with a decreased binding of the lectin IB4. These results demonstrate a requirement of peripherin for the proper development of a subset of sensory neurons.  相似文献   

6.
Although N-CAM has previously been implicated in the growth and fasciculation of axons, the development of axon tracts in transgenic mice with a targeted deletion of the 180-kD isoform of the neural cell adhesion molecule (N-CAM-180) appears grossly normal in comparison to wild-type mice. We examined the organization of the olfactory nerve projection from the olfactory neuroepithelium to glomeruli in the olfactory bulb of postnatal N-CAM-180 null mutant mice. Immunostaining for olfactory marker protein revealed the normal presence of fully mature primary olfactory neurons within the olfactory neuroepithelium of mutant mice. The axons of these neurons form an olfactory nerve, enter the nerve fiber layer of the olfactory bulb, and terminate in olfactory glomeruli as in wild-type control animals. The olfactory bulb is smaller and the nerve fiber layer is relatively thicker in mutants than in wild-type mice. Previous studies have revealed that the plant lectin Dolichos biflorus agglutinin (DBA) clearly stains the perikarya and axons of a subpopulation of primary olfactory neurons. Thus, DBA staining enabled the morphology of the olfactory nerve pathway to be examined at higher resolution in both control and mutant animals. Despite a normal spatial pattern of DBA-stained neurons within the nasal cavity, there was a distorted axonal projection of these neurons onto the surface of the olfactory bulb in N-CAM-180 null mutants. In particular, DBA-stained axons formed fewer and smaller glomeruli in the olfactory bulbs of mutants in comparison to wild-type mice. Many primary olfactory axons failed to exit the nerve fiber layer and contribute to glomerular formation. These results indicate that N-CAM-180 plays an important role in the growth and fasciculation of primary olfactory axons and is essential for normal development of olfactory glomeruli. © 1997 John Wiley & Sons, Inc. J Neurobiol 32 : 643–658, 1997  相似文献   

7.
J K Morris  W Lin  C Hauser  Y Marchuk  D Getman  K F Lee 《Neuron》1999,23(2):273-283
ErbB2 receptor tyrosine kinase plays a role in neuregulin signaling and is expressed in the developing nervous system. We genetically rescued the cardiac defect of erbB2 null mutant embryos, which otherwise died at E11. These rescued erbB2 mutant mice die at birth and display a severe loss of both motor and sensory neurons. Motor and sensory axons are severely defasciculated and aberrantly projected within their final target tissues. Schwann cells are completely absent in the peripheral nerves. Schwann cell precursors are present within the DRG and proliferate normally, but their ability to migrate is decreased. Acetylcholine receptors cluster within the central band of the mutant diaphragm muscle. However, these clusters are dispersed and morphologically different from those in control muscle. Our results reveal an important role for erbB2 during normal peripheral nervous system development.  相似文献   

8.
9.
10.
It has been postulated that the aberrant projection of sympathetic axons to individual primary sensory neurons may provide the morphological basis for pain-related behaviors in rat models of chronic pain syndrome. Since nerve growth factor (NGF) can elicit the collateral sprouting of noradrenergic sympathetic terminals, it might be predicted that NGF plays a role in mediating the sprouting of sympathetic axons into sensory ganglia. Using a line of transgenic mice overexpressing NGF among glial cells, it was first found that trigeminal ganglia from adult transgenic mice possessed significantly higher levels of NGF protein in comparison to age-matched wild-type mice; as well, detectable levels of NGF mRNA transgene expression were present in both the ganglia and brain stem. Within the trigeminal ganglia, a small proportion of the sensory neuronal population stained immunohistochemically for NGF; a higher percentage of NGF-positive neurons was evident in transgenic mice. New sympathetic axons extended into the trigeminal ganglia of transgenic mice only and formed perineuronal plexuses surrounding only those neurons immunostained for NGF. In addition, such plexuses were accompanied by glial processes from nonmyelinating Schwann cells. From these data, we propose that accumulation of glial-derived NGF by adult sensory neurons and its putative release into the ganglionic environment induce the directional growth of sympathetic axons to the source of NGF, namely, the cell bodies of primary sensory neurons. © 1998 John Wiley & Sons, Inc. J Neurobiol 34: 347–360, 1998  相似文献   

11.
The transneuronal spread of a virulent wild-type herpes simplex virus type 2 (HSV-2) and its US3 protein kinase-deficient (US3 PK?) mutant was immunohistochemically studied in mice after inoculations into the cornea, anterior chamber, tongue, and masseter muscle. After corneal inoculation, the wild-type virus was demonstrated in various brain stem areas including the trigeminal tract and nucleus, the reticular formation, and cerebellar nucleus group. Viral antigen-positive neurons were strictly confined to the ipsilateral spinal trigeminal nucleus in mice corneally infected with the US3 PK? mutant. No viral antigens were detected in the central nervous system (CNS) after inoculation with the mutant into the tongue and masseter muscle. However, when mice were immunosuppressed by treatment with cyclophosphamide, both the corneally infected mutant and wild-type virus could invade the CNS. The results suggest that the US3 PK? mutant principally retains the capacity to spread in the CNS.  相似文献   

12.
To test the hypothesis that fast anterograde molecular motor proteins power the slow axonal transport of neurofilaments (NFs), we used homologous recombination to generate mice lacking the neuronal-specific conventional kinesin heavy chain, KIF5A. Because null KIF5A mutants die immediately after birth, a synapsin-promoted Cre-recombinase transgene was used to direct inactivation of KIF5A in neurons postnatally. Three fourths of such mutant mice exhibited seizures and death at around 3 wk of age; the remaining animals survived to 3 mo or longer. In young mutant animals, fast axonal transport appeared to be intact, but NF-H, as well as NF-M and NF-L, accumulated in the cell bodies of peripheral sensory neurons accompanied by a reduction in sensory axon caliber. Older animals also developed age-dependent sensory neuron degeneration, an accumulation of NF subunits in cell bodies and a reduction in axons, loss of large caliber axons, and hind limb paralysis. These data support the hypothesis that a conventional kinesin plays a role in the microtubule-dependent slow axonal transport of at least one cargo, the NF proteins.  相似文献   

13.
14.
Mehta N  Loria PM  Hobert O 《Genetics》2004,166(3):1253-1267
Axon pathfinding and target recognition are highly dynamic and tightly regulated cellular processes. One of the mechanisms involved in regulating protein activity levels during axonal and synaptic development is protein ubiquitination. We describe here the isolation of several Caenorhabditis elegans mutants, termed eno (ectopic/erratic neurite outgrowth) mutants, that display defects in axon outgrowth of specific neuron classes. One retrieved mutant is characterized by abnormal termination of axon outgrowth in a subset of several distinct neuron classes, including ventral nerve cord motor neurons, head motor neurons, and mechanosensory neurons. This mutant is allelic to lin-23, which codes for an F-box-containing component of an SCF E3 ubiquitin ligase complex that was previously shown to negatively regulate postembryonic cell divisions. We demonstrate that LIN-23 is a broadly expressed cytoplasmically localized protein that is required autonomously in neurons to affect axon outgrowth. Our newly isolated allele of lin-23, a point mutation in the C-terminal tail of the protein, displays axonal outgrowth defects similar to those observed in null alleles of this gene, but does not display defects in cell cycle regulation. We have thus defined separable activities of LIN-23 in two distinct processes, cell cycle control and axon patterning. We propose that LIN-23 targets distinct substrates for ubiquitination within each process.  相似文献   

15.
Mice deficient in neurogenin 3 (Ngn3) fail to generate pancreatic endocrine cells and intestinal endocrine cells. Hypothalamic neuropeptides implicated in the control of energy homeostasis might also be affected in Ngn3 homozygous null mutant mice. We investigated the expression of two prominent orexigenic neuropeptides, neuropeptide Y (NPY) and agouti-related protein (AgRP), in the hypothalamic arcuate nucleus of newborn wild-type and Ngn3 null mutant mice. Immunohistochemical analysis demonstrated that, in Ngn3 null mutants, the number of NPY-immunoreactive neurons and nerve fibers was markedly increased in the arcuate nucleus, and the nerve fibers were widely distributed in the hypothalamic area, including the paraventricular and dorsomedial nuclei. Little increase of AgRP immunoreactivity was detected in the arcuate nucleus of mutant mice. In situ hybridization analysis confirmed the increased population of the NPY neurons in the arcuate nucleus of the mutants. The NPY mRNA level, as estimated by laser capture microdissection and real-time quantitative polymerase chain reaction, was 371% higher in Ngn3 null mutants than in wild-type mice. AgRP mRNA levels did not differ significantly between the null mutants and wild-type mice. Thus, up-regulation of the hypothalamic NPY system is probably a feature characteristic of Ngn3 null mice.  相似文献   

16.
Dystonia musculorum (dt) is a mouse inherited sensory neuropathy caused by mutations in the dystonin gene. While the primary pathology lies in the sensory neurons of dt mice, the overt movement disorder suggests motor neurons may also be affected. Here, we report on the contribution of motor neurons to the pathology in dt(27J) mice. Phenotypic dt(27J) mice display reduced alpha motor neuron cell number and eccentric alpha motor nuclei in the ventral horn of the lumbar L1 spinal cord region. A dramatic reduction in the total number of motor axons in the ventral root of postnatal day 15 dt(27J) mice was also evident. Moreover, analysis of the trigeminal nerve of the brainstem showed a 2.4 fold increase in number of degenerating neurons coupled with a decrease in motor neuron number relative to wild type. Aberrant phosphorylation of neurofilaments in the perikaryon region and axonal swellings within the pre-synaptic terminal region of motor neurons were observed. Furthermore, neuromuscular junction staining of dt(27J) mouse extensor digitorum longus and tibialis anterior muscle fibers showed immature endplates and a significant decrease in axon branching compared to wild type littermates. Muscle atrophy was also observed in dt(27J) muscle. Ultrastructure analysis revealed amyelinated motor axons in the ventral root of the spinal nerve, suggesting a possible defect in Schwann cells. Finally, behavioral analysis identified defective motor function in dt(27J) mice. This study reveals neuromuscular defects that likely contribute to the dt(27J) pathology and identifies a critical role for dystonin outside of sensory neurons.  相似文献   

17.
S Park  J Frisén    M Barbacid 《The EMBO journal》1997,16(11):3106-3114
We have generated mice homozygous for a mutation that disrupts the gene encoding EphA8, a member of the Eph family of tyrosine protein kinase receptors, previously known as Eek. These mice develop to term, are fertile and do not display obvious anatomical or physiological defects. The mouse ephA8/eek gene is expressed primarily in a rostral to caudal gradient in the developing tectum. Axonal tracing experiments have revealed that in these mutant mice, axons from a subpopulation of tectal neurons located in the superficial layers of the superior colliculus do not reach targets located in the contralateral inferior colliculus. Moreover, ephA8/eek null animals display an aberrant ipsilateral axonal tract that projects to the ventral region of the cervical spinal cord. Retrograde labeling revealed that these abnormal projections originate from a small subpopulation of superior colliculus neurons that normally express the ephA8/eek gene. These results suggest that EphA8/Eek receptors play a role in axonal pathfinding during development of the mammalian nervous system.  相似文献   

18.
The mammalian Grf1 and Grf2 proteins are Ras guanine nucleotide exchange factors (GEFs) sharing a high degree of structural homology, as well as an elevated expression level in central nervous system tissues. Such similarities raise questions concerning the specificity and/or redundancy at the functional level between the two Grf proteins. grf1-null mutant mice have been recently described which showed phenotypic growth reduction and long-term memory loss. To gain insight into the in vivo function of Grf2, we disrupted its catalytic CDC25-H domain by means of gene targeting. Breeding among grf2(+/-) animals gave rise to viable grf2(-/-) adult animals with a normal Mendelian pattern, suggesting that Grf2 is not essential for embryonic and adult mouse development. In contrast to Grf1-null mice, analysis of grf2(-/-) litters showed similar size and weight as their heterozygous or wild-type grf2 counterparts. Furthermore, adult grf2(-/-) animals reached sexual maturity at the same age as their wild-type littermates and showed similar fertility levels. No specific pathology was observed in adult Grf2-null animals, and histopathological studies showed no observable differences between null mutant and wild-type Grf2 mice. These results indicate that grf2 is dispensable for mouse growth, development, and fertility. Furthermore, analysis of double grf1/grf2 null animals did not show any observable phenotypic difference with single grf1(-/-) animals, further indicating a lack of functional overlapping between the two otherwise highly homologous Grf1 and Grf2 proteins.  相似文献   

19.
Analysis of Genetic Mosaics of the Nematode CAENORHABDITIS ELEGANS   总被引:8,自引:5,他引:3       下载免费PDF全文
Robert K. Herman 《Genetics》1984,108(1):165-180
A new method for producing genetic mosaics, which involves the spontaneous somatic loss of free chromosome fragments, is demonstrated. Four genes that affect the behavior of C. elegans were studied in mosaic animals. The analysis was greatly aided by the fact that the complete cell lineage of wild-type animals is known. Two of the mutant genes affect certain sensory responses and prevent uptake of fluorescein isothiocyanate (FITC) by certain sensory neurons. Mosaic analysis indicated that one of these mutant genes is cell autonomous with respect to its effect on FITC uptake and the other is cell nonautonomous. In the latter case, the genotype of a non-neuronal supporting cell that surrounds the processes of the neurons that normally take up FITC probably is critical. The other two mutant genes affect animal movement. Mosaic analysis indicated that the expression of one of these genes is specific to certain neurons (motor neurons of the ventral and dorsal nerve cords are prime candidates) and the expression of the other gene is specific to muscle cells.  相似文献   

20.
Peripherin, a type III intermediate filament (IF) protein, upregulated by injury and inflammatory cytokines, is a component of IF inclusion bodies associated with degenerating motor neurons in sporadic amyotrophic lateral sclerosis (ALS). We report here that sustained overexpression of wild-type peripherin in mice provokes massive and selective degeneration of motor axons during aging. Remarkably, the onset of peripherin-mediated disease was precipitated by a deficiency of neurofilament light (NF-L) protein, a phenomenon associated with sporadic ALS. In NF-L null mice, the overexpression of peripherin led to early- onset formation of IF inclusions and to the selective death of spinal motor neurons at 6 mo of age. We also report the formation of similar peripherin inclusions in presymptomatic transgenic mice expressing a mutant form of superoxide dismutase linked to ALS. Taken together, these results suggest that IF inclusions containing peripherin may play a contributory role in motor neuron disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号