首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The energy distribution, state transitions and photosynthetic electron flow during photoinhibition of Chlamydomonas reinhardtii cells have been studied in vivo using photoacoustics and modulated fluorescence techniques. In cells exposed to 2500 W/m2 light at 21 °C for 90 min, 90% of the oxygen evolution activity was lost while photochemical energy storage as expressed by the parameter photochemical loss (P.L.) at 710–720 nm was not impaired. The energy storage vs. modulation frequency profile indicated an endothermic step with a rate constant of 2.1 ms. The extent of the P.L. was not affected by DCMU but was greatly reduced by DBMIB. The regulatory mechanism of the state 1 to state 2 transition process was inactivated and the apparent light absorption cross section of photosystem II increased during the first 20 min of photoinhibition followed by a significant decrease relative to that of photosystem I. These results are consistent with the inactivation of the LHC II kinase and the presence of an active cyclic electron flow around photosystem I in photoinhibited cells.Abbreviations PS I, PS II Photosystem I and Photosystem II respectively - P.L. photochemical loss - DCMU 3-(3,4-dichlorophenyl-1,1-dimethyl urea - LHC II light harvesting chlorophyll a,b-protein complex of PS II - DBMIB 2,5 dibromo-3-methyl-6-isopropyl-p-benzoquinone  相似文献   

2.
Activity of the photosynthetic apparatus of synchronized cultures was studied with the xanthophycean alga Bumilleriopsis filiformis, following the kinetics of fluorescence induction and photooxidation of cytochrome f (= cytochrome c-553) of intact cells. During the beginning of the cell-division phase, minimum cellular photosynthetic activity is observed and a maximum after its completion, which is accompanied by corresponding changes in Hill reaction activity and re-reduction of cytochrome f by photosystem II light. At minimum activity, the level of steady state fluorescence was higher than at the maximum. This is due, at least in part, to the diminished electron flow between the two photosystems seemingly caused by decreased photosystem I activity. This explanation was suported by the kinetics of cytochrome-f photooxidation.Thus, electron transport activity of both photosystems appears to vary during the cell cycle.Abbreviations pBQ p-benzoquinone - DBMIB 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - DCIP dichlorophenolindophenol - MV methylviologen (paraquat) - Q fluorescence quencher (in photosystem II)  相似文献   

3.
The redox state of plastoquinone was measured in vivo in the blue-green alga, Phormidium uncinatum by means of a double beam UV-spectrophotometer. The difference in absorbance of the oxidized and the reduced forms of plastoquinone was amplified, and stored and averaged in a computer. The redox state was changed by two alternating actinic light beams. When one actinic wavelength was kept constant at 700 nm (PSI) variation of the other yielded an action spectrum representing photosystem II. The inhibitors of the photosynthetic electron transport chain, DCMU and DBMIB, reduced the difference in absorbance between the oxidized and reduced forms of plastoquinone.Abbreviations DBMIB 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone - DCMU 3-(3,4-dichlorophenyl)-1, 1-dimethylurea  相似文献   

4.
S. J. Coughlan  U. Heber 《Planta》1982,156(1):62-69
The quaternary ammonium compound glycinebetaine has been tested for cryoprotective properties, using isolated spinach thylakoids as a model membrane system. The effect of a 3-h,-20°C freezing regime on different photosynthetic parameters was measured. These parameters were the light-stimulated pH formation and dark pH decay, light-stimulated proton uptake, electron flow through photosystem II, photosystem I and total linear electron flow, and pyocyanine-mediated cyclic photophosphorylation. It was shown that below 100 mM glycinebetaine was superior as a cryoprotectant to sucrose on a molar, a molal and an activity basis. At higher concentrations, glycinebetaine was less efficient in preventing inactivation of thylakoids during freezing than sucrose. These observations are discussed in relation to the permeability of biomembranes to glycinebetaine and the colligative theory of cryoprotection. It is concluded that colligative protection is modified by direct interaction between cryoprotectant and membranes.Abbreviations Asc ascorbate - cyt f cytochrome f - DAD 2,3,5,6-tetramethyl--phenylenediamine - DCMU 3-(3,4-dichlorophenyl)-1, 1-dimethylurea - DCPIP 2,6-dichlorophenolidophenol - DBMIB 2,5-dibromo-3-methyl-6-isopropyl--benzoquinone - DNP-INT 1,3-dinitrophenylether of iodonitrothymol - FeCy ferricyanide - MV methylviologen (1,1-dimethyl-4-4-bipyridinium-dichloride) - PQ plastoquinone - PS I photosystem I - PS II photosystem II  相似文献   

5.
P. Hilditch  H. Thomas  L. Rogers 《Planta》1986,167(1):146-151
The photosynthetic capacity of detached leaves of a non-yellowing mutant of Festuca pratensis Huds. declined during senescence at a similar rate to that in a normal cultivar. Respiratory oxygen uptake in the dark continued at similar rates in both genotypes during several days of senescence. In chloroplasts isolated from leaves at intervals after excision, the rate of photosystem I (PS I)-mediated methyl viologen reduction using reduced N,N,N,N-tetramethyl-p-phenylene diamine as electron donor also declined in both genotypes, possibly due to loss of integrity of the photosynthetic apparatus in the cytochrome f-plastocyanin region. There was a similar fall in PS II electron transport using water as electron donor and measured at the rate of reduction of 2,6-dichlorophenolindophenol. Partial restoration of this activity by the addition of diphenyl carbazide was evidence for lability of the oxygen-evolving complex during senescence. An accentuated difference between mutant and normal material in this case indicated that the mutant retains a greater number of functional PS II centres. Changes in the light-saturation characteristics of the two photosystems have been discussed in relation to the organization of the photosynthetic membranes during senescence.Abbreviations and symbols DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - DCPIP 2,6-dichlorophenolindophenol - DMSO dimethyl sulphoxide - DPC diphenyl carbazide - MV methyl viologen - PS I, PS II photosystem I, II - TMPD N,N,N,N-tetramethyl-p-phenylene diamine  相似文献   

6.
V. Mell  H. Senger 《Planta》1978,143(3):315-322
Photosystem II (PS II) reactions of chloroplast particles show the same variations during the synchronous life cycle of Scenedesmus obliquus, strain D3 (Gaffron Biol. Zbl. 59, 302 1939), as the whole cells they derived from. Photosystem I (PS I) reactions of whole cells and of subchloroplast particles show little or no variation in their activity, whereas PS I reactions of chloroplast particles vary like PS II reactions during the life cycle. The variation in chloroplast particles could be attributed to the change in the reoxidation capacity of plastoquinone still attached to PS I. Digitonin-treatment of chloroplast particles from Scenedesmus and subsequent sucrose density gradient separation yielded 3 distinct fractions: Fraction I contained pure PS I particles with the most efficient PS I-mediated methylviologen (MV) reduction with subsequent oxygen uptake (3 mmol O2/mg Chl·h); no Hill reaction; and a high chlorophyll a/b ratio, and a vast amount of unbound protein xanthophyll complexes. Fraction II is enriched in PS II particles, with little PS I activity (less than 10% of the PS I particles) and a low chlorophyll a/b ratio. The activity of the water-splitting system was completely lost. This fraction must also contain most of the light-harvesting pigment system. Fraction III is also enriched in PS II with even less PS I activity, but the ratio of chlorophyll a/b is slightly higher than in whole cells and the water-splitting system is intact. -carotene was part of all fractions whereas functional xanthophylls seemed to be restricted to the PS II particles. From the constant chlorophyll P/700 ratio we had to conclude that size of the photosynthetic unit does not change during the life cycle of a synchronized Scenedesmus obliquus culture.Abbreviations DBMIB 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethyl-urea - DCPIP dichlorphenolindophenol - MV methylviologen (paraquat) - PS I photosystem I - PS II photosystem II - DPC diphenyl-carbazide  相似文献   

7.
Thylakoids of Oscillatoria chalybea are able to split water. The Hill reaction of these thylakoids is sensitive to DCMU. Diphenylcarbazide can substitute for water as the electron donor to photosystem II with these fully functioning thylakoids. However, the diphenylcarbazide photooxidation is completely insensitive to 3-(3,4-dichlorophenyl)-N-N-dimethyl urea (DCMU) at high diphenylcarbazide concentrations. In with Tris-treated Oscillatoria thylakoids the water splitting capacity is lost and diphenylcarbazide restores electron transport through photosystem II as occurs with higher plant chloroplasts. However, also these photoreactions are insensitive to DCMU. If diphenylcarbazide acts in Oscillatoria as an electron donor to photosystem II the result suggests that diphenylcarbazide feeds in its electrons behind the DCMU inhibition site. This in turn indicates that in Oscillatoria the site of inhibition of DCMU is on the donor side of photosystem II.Abbreviations Used DCMU 3-(3,4-dichlorophenyl)-N-N-dimethyl urea - DPC diphenylcarbazide - DCPiP 2,6-dichlorophenol indophenol - TMB tetramethyl benzidine - A-2-sulf anthraquinone-2-sulfonate  相似文献   

8.
State 1/State 2 changes in higher plants and algae   总被引:3,自引:0,他引:3  
Current ideas regarding the molecular basis of State 1/State 2 transitions in higher plants and green algae are mainly centered around the view that excitation energy distribution is controlled by phosphorylation of the light-harvesting complex of photosystem II (LHC-II). The evidence supporting this view is examined and the relationship of the transitions occurring in these systems to the corresponding transitions seen in red and blue-green algae is explored.Abbreviations CCCP carbonylcyanide-m-chlorophenylhydrazone - Chl a chlorophyll a - Chl b chlorophyll b - DAD diaminodurene - DBMIB 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone - DCCD N,N-dicyclohexyl carbodiimide - DCMU 3-(3,4-dichlorophenyl)-l,l-dimethylurea (also called diuron) - FCCP carbonylcyanide-p-trifluoromethoxyphenylhydrazone - FSBA 5-fluorosulphonylbenzoyl adenosine - kDa kilodalton - LHC-II light-harvesting Chl a/Chl b protein - PMS phenazine methosulfate - PS I photosystem I - PS II photosystem II - SDS sodium dodecyl sulfate - TPTC triphenyl tin chloride This paper follows our new instructions for citation of references—authors are requested to follow Photosynth Res 10: 519–526 (1986)—editors.  相似文献   

9.
Treatment of spheroplasts of Nostoc museorum with hypotonic buffer results in membranes depleted of cytochrome c-553, but still active in photosynthetic and respiratory electron transport. These membranes retain full photosystem II activity (H2ODADox). Complete linear electron transport (H2ONADP+), however, is decreased as compared with untreated spheroplasts. Addition of basic Nostoc cytochrome c-553 to depleted membranes reconstitutes NADP+ reduction and redox reactions of the photosystem I region as well.Using NADPH as electron donor, respiration of depleted membranes is also stimulated by adding cytochrome c-553, indicative of its function in respiratory electron transport.Cytochrome c-553 from Bumilleriopsis filiformis, Spirulina platensis (acidic types), Phormidium foveolarum (basic type), and mitochondrial horse-heart cytochrome c-550 are not effective in reconstituting both photosynthetic and respiratory electron transport, which points to a specific role of Nostoc cytochrome c-553.Abbreviations BSA bovine serum albumin - DAD 3,6-diaminodurene - DADox 3,6-diaminodurene oxidized by potassium ferricyanide - DBMIB 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - DCIP 2,6-dichlorophenolindophenol - DPC 1,5-diphenylcarbazide - Fd ferredoxin - HEPES N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid - MES 2(-N-morpholino)-ethanesulfonic acid - MV methylviologen (1,1-dimethyl-4,4-bipyridylium dichloride) - PS I photosystem I - PS II photosystem II - Tris tris-(hydroxymethyl)-aminomethane  相似文献   

10.
Exposure of tomato plants (Lycopersicon esculentum Mill. cv. Floramerica) to chilling temperatures in the dark for as little as 12 h resulted in a sizable inhibition in the rate of light- and CO2-saturated photosynthesis. However, when photosynthesis was measured at low light intensity, the inhibition disappeared and the quantum yield of CO2 reduction was diminished only slightly. Chilling the tomato plants under strong illumination caused an even more rapid and severe decline in the rate of light- and CO2-saturated photosynthesis, accompanied by a large decline in the quantum efficiency. Sizeable inhibition of photosystem II activity was observed only after dark exposures to low temperature of grater than 16 h. No inhibition of photosystem I electron transfer capacity was observed even after 40 h of dark chilling. Chilling under high light resulted in a rapid decline in both photosystem I and photosystem II electron transfer capacity as well as in significant reaction center inactivation.Regardless of whether the chilling exposure was in the presence or absence of illumination and regardless of its duration, the electron transfer capacity of thylakoid membranes isolated from the treated plants was always in excess of that necessary to support light- and CO2-saturated photosynthesis. Thus, in neither case of chilling inhibition of photosynthesis does it appear that impaired electron transfer capacity represents a significant rate limitation to whole plant photosynthesis.Abbreviations BSA bovine serum albumin - DBMIB 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone - DCMU 3-(3,4-Dichlorophenyl)-1,1-dimethylurea - DHQ duroquinol - EDTA ethylene-diamine-tetraacetic acid - HEPES N-2-hydroxylpiperazine-N-2-ethanesulfonic acid - MES 2-(N-Morpholino)ethanesulfonic acid - MV methylviologen - PS I & II photosystems I and II - PDOX p-phenylenediimine (oxidized) - TMPD N,N,N,N-tetramethyl-p-phenylenediamine  相似文献   

11.
A Synechococcus sp. strain PCC 7002 psaAB::cat mutant has been constructed by deletional interposon mutagenesis of the psaA and psaB genes through selection and segregation under low-light conditions. This strain can grow photoheterotrophically with glycerol as carbon source with a doubling time of 25 h at low light intensity (10 E m–2 s–1). No Photosystem I (PS I)-associated chlorophyll fluorescence emission peak was detected in the psaAB::cat mutant. The chlorophyll content of the psaAB::cat mutant was approximately 20% that of the wild-type strain on a per cell basis. In the absence of the PsaA and PsaB proteins, several other PS I proteins do not accumulate to normal levels. Assembly of the peripheral PS I proteins PsaC,PsaD, PsaE, and PsaL is dependent on the presence of the PsaA and PsaB heterodimer core. The precursor form of PsaF may be inserted into the thylakoid membrane but is not processed to its mature form in the absence of PsaA and PsaB. The absence of PS I reaction centers has no apparent effect on Photosystem II (PS II) assembly and activity. Although the mutant exhibited somewhat greater fluorescence emission from phycocyanin, most of the light energy absorbed by phycobilisomes was efficiently transferred to the PS II reaction centers in the absence of the PS I. No light state transition could be detected in the psaAB::cat strain; in the absence of PS I, cells remain in state 1. Development of this relatively light-tolerant strain lacking PS I provides an important new tool for the genetic manipulation of PS I and further demonstrates the utility of Synechococcus sp. PCC 7002 for structural and functional analyses of the PS I reaction center.Abbreviations ATCC American type culture collection - Chl chlorophyll - DCMU 3-(3,4-dichlorophyl)-1,1-dimethylurea - DBMIB 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone - HEPES N-[2-hydroxyethyl]piperazine-N-[2-ethanesulfonic acid] - PCC Pasteur culture collection - PS I Photosystem I - PS II Photosystem II - SDS sodium dodecyl sulfate  相似文献   

12.
A method is described for the isolation and purification of active oxygen-evolving photosystem II (PS II) membranes from the green alga Chlamydomonas reinhardtii. The isolation procedure is a modification of methods evolved for spinach (Berthold et al. 1981). The purity and integrity of the PS II preparations have been assesssed on the bases of the polypeptide pattern in SDS-PAGE, the rate of oxygen evolution, the EPR multiline signal of the S2 state, the room temperature chlorophyll a fluorescence yield, the 77 K emission spectra, and the P700 EPR signal at 300 K. These data show that the PS II characteristics are increased by a factor of two in PS II preparations as compared to thylakoid samples, and the PS I concentration is reduced by approximately a factor ten compared to that in thylakoids.Abbreviations BSA bovine serum albumin - Chl chlorophyll - DCBQ 2,6-dichloro-p-benzoquinone - DCMU (diuron) 3-(3,4-dichlorophenyl)-1,1-dimethylurea - DMQ 2,5-dimethyl-p-benzoquinone - EDTA ethylenediamine tetraacetic acid - EPR electron paramagnetic resonance - Hepes N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid - MES 2-[N-Morpholino]ethanesulfonic acid - OEE oxygen evolving enhancer - PS II photosystem II - SDS-PAGE sodium dedocyl sulfate polyacrylamide gel electrophoresis  相似文献   

13.
The photosynthetic energy storage yield of uncoupled thylakoid membranes was monitored by photoacoustic spectroscopy at various measuring beam intensities. The energy storage rate as evaluated by the half-saturation measuring beam intensity (i50) was inhibited by 3-(3,4-dichlorophenyl)-1,1 dimethylurea, by heat inactivation or by artificial electron acceptors specific for photosystem I or photosystem II; and was activated by electron donors to photosystem I. The reactions involving both photosystems were all characterized by a similar maximal energy storage yield of 16±2 percent. The data could be interpreted if we assumed that the energy storage elicited by the photosystems at 35 Hz is detected at the level of the plastoquinone pool.Abbreviations PS photosystem - Tes N-Tris [hydroxymethl] methyl-2-aminoethanesulfonic acid - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - DCIP 2,6-dichlorophenolindophenol - FeCN potassium ferricyanide - DCBQ 2,5-dichlorobenzoquinone - TMPD N,N,N-tetramethyl-p-phenilenediamine  相似文献   

14.
W. G. Hei  H. Senger 《Planta》1986,167(2):233-239
The phosphorylation of thylakoid proteins, which comprise apoproteins of the light-harvesting chlorophyll a/b-protein complex (LHCP), was investigated in vivo and in vitro during the development of Scenedesmus obliquus in synchronous cultures. The in-vitro and in-vivo protein phosphorylation exhibited a maximum activity in cells with maximum photosynthetic capacity (8th hour) and miximum activity in cells with minimum photosynthetic capacity (16th hour). The major phosphorylated polypeptides in vivo were the 24/25-kDa and 28–30-kDa apoprotein of the LHCP, a protein of about 32 kDa, and some smaller polypeptides within the range 10 to 20 kDa. In vitro, the main phosphoproteins were the 28–30-kDa apoprotein and the protein characterized by an apparent molecular weight of 32 kDa. Pulse-chase experiments in vivo established that the latter had the fastest radioactivity turnover of the thylakoidal phosphoproteins.Abbreviations DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - LHCP light-harvesting chlorophyll a/b-protein complex - PSII photosystem II Dedicated to Prof. Erwin Bünning on the occasion of his 80th birthday  相似文献   

15.
Tim S. Stuart 《Planta》1971,96(1):81-92
Summary Photosynthesis, photoreduction, the p-benzoquinone Hill reaction, and glucose uptake by whole cells, as well as cyclic photophosphorylation (with PMS) by chloroplast particles were strongly inhibited by 10-2 M salicylaldoxime or by heating whole cells for 1–2 min at 55°. In contrast, H2 photoproduction by whole cells of mutant No. 11 and wild type Scenedesmus and PS I-mediated MR reduction by chloroplast particles were either stimulated or not significantly inhibited by these agents. H2 production by mutant No. 8 was slightly depressed by salicylaldoxime. DCMU inhibited H2 photoproduction with 10-2 M salicylaldoxime approximately 20%, indicating some contribution of electrons by endogenous organic compounds to photosystem II between the O2-evolving mechanism and the DCMU-sensitive site. We conclude that photohydrogen production by PS I of Scenedesmus does not require cyclic photophosphorylation but is due to non-cyclic electron flow from organic substrate(s) through PS I to hydrogenase where molecular H2 is released.The following abbreviations were used CI-CCP carbonyl cyanide m-chlorophenylhydrazone - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - DCPIP dichlorophenol-indophenol - MR methyl red - PMS phenazine methosulfate - PS photosystem This work was supported by contract AT-(40-1)-2687 from the U.S. Atomic Energy Commission to Professor H. Gaffron.  相似文献   

16.
A study was made of the fluorescence induction curves from gently-broken spinach chloroplasts inhibited with DCMU. It was found that there were four kinetically different phases associated with such curves of which only the fastest did not appear to follow exponential kinetics. A comparison of the effects of various concentrations of DCMU on the rate of oxygen evolution and on the fluorescence induction curve did not support the hypothesis that any of the kinetic phases was simply an artefact caused by incomplete inhibition of electron transport. It was also found that 5 min of dark incubation did not maximally oxidize the electron acceptors to photosystem 2 since some acceptors were only oxidized following far-red illumination, suggesting a heterogeneity among these acceptors with respect to their re-oxidation properties. Investigation of the effect of the Q400 oxidation state on the fluorescence induction curve revealed that it only influenced the slowest kinetic phase and that Q400 did not seem to be associated with the other phases.Abbreviations DCMU 3-(3,4-dichlorophenyl)-1 - 1 dimethylurea - PS 1 photosystem 1 - PS2 photosystem 2 - HEPES N-2-Hydroxyethylpiperazine-N-2-ethanesulfonic acid - EDTA ethylene-diaminetetraacetic acid - Fmax maximum yield of fluorescence emission - F0 initial yield of fluorescence emission - Fv variable yield of fluorescence emission - N.E. non-exponential kinetics  相似文献   

17.
The higher the incubation temperature, the higher the light intensity that membrane vesicles of the thermophilic cyanobacterium Synechococcus 6716 require for the saturation of O2-production. If membrane vesicles are incubated at temperatures at which intact cells are growing optimally, photosynthetic O2-production and membrane energization decrease rapidly, suggesting that the thermophilic properties are rapidly lost. If membrane integrity is maintained (spheroplasts) the harmful effect of higher temperatures is much less. The effects of 2,5-dibromo-3-methyl-6-isopropyl-p-benzo-quinone (DBMIB), 5-chloro-3-t-butyl-2-chloro-4-nitrosalicylanilide (S-13), 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) and N,N-dicyclohexylcarbodiimide (DCCD) are the same as in chloroplasts, be it that DCCD acts as an electron transfer inhibitor at higher concentrations. The supposed alternative site of DCMU inhibition in cyanobacteria is rejected.Spheroplasts show a reversible energy-dependent fluorescence quenching of 9-amino-6-chloro-2-methoxyacridine (ACMA) caused by illumination. ATP hydrolysis only give rise to fluorescence quenching in membrane vesicles. Long incubation at higher temperatures reduces the fluorescence quenching of membrane vesicles and spheroplasts, the latter being more stable than the former.Abbreviations 9AA 9-aminoacridine - ACMA 9-amino-6-chloro-2-methoxyacridine - Chl chlorophyll - DBMIB 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone - DCCD N,N-dicyclohexylcarbodiimide - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - DCPIP 2,6-dichlorophenolindophenol - DCP 1,5-diphenylcarbazide - PMS methyl-phenazoniummethosulfate - PS-I photosystem I - PS-II photosystem II - S-13 5-chloro-3-t-butyl-2 chloro-4-nitrosalicylanilide  相似文献   

18.
The filamentous cyanobacterium Oscillatoria chalybea grows phototrophically on a mineral medium in the presence of either nitrate or ammonium ions as nitrogen source at similar growth rates. In the absence of any combined nitrogen source in the medium the cyanobacterium also grows, although at a reduced growth rate. The steady state rate of oxygen evolution by filaments from these three culture conditions is approximately constant if compared on an equal chlorophyll basis. Qualitative differences, however, emerge, if transient phenomena, e.g. the oxygen gush, are investigated. Only nitrate-and nitrogen-free-grown cultures show an oxygen gush, whereas ammonium sulfate-grown cultures do not show this phenomenon. Fluorescence induction in O. chalybea shows a fast monophasic rise, comparable to the fluorescence rise curves of higher plant chloroplasts in the presence of dithionite. The steady state level of fluorescence in ammonium sulfate-grown cells is up to seven times higher than in nitrate-grown cells when compared on an equal chlorophyll basis. In ammonium sulfate-grown cells, DCMU (N,N-3,4-Dichlorophenyl dimethylurea) causes a further increase in fluorescence level. In nitrate-grown cyanobacteria, however, the effect of DCMU consists of a decrease of the steady state level of fluorescence. In context with earlier research on Anabaena cylindrica, another filamentous cyanobacterium, it appears that the type of the nitrogen source used for growth determines the main location of the DCMU-block in this organism. It thus appears that in O. chalybea the site of DCMU inhibition lies on the oxygen-evolving side of photosystem II, if the organism is grown on nitrate. If grown on ammonium sulfate, no substantial difference of the location of the inhibition site when compared to algae or higher plant chloroplasts is found.Thylakoid preparations of O. chalybea perform the usual Hill reactions with ferricyanide, p-benzoquinone or silicomolybdate as electron acceptors. In each case it is seen that with thylakoids of nitrate-grown cells the steady-state level of fluorescence is lowered by DCMU in the presence of these acceptors, which should be the case, if DCMU inhibits electron transfer on the donor side of photosystem II. According to the literature silicomolybdate accepts electrons mainly before the DCMU-block in higher plant chloroplasts. Hence, in higher plants this reaction is mainly DCMU-insensitive. In thylakoids of O. chalybea, however, the Hill reaction with silicomolybdate is DCMU-sensitive which provides further evidence that the DCMU-block is on the oxygen-evolving side of photosystem II in O. chalybea provided the cells have been grown on nitrate.Abbreviations DCMU N-N-3,4-Dichlorophenyl dimethylurea  相似文献   

19.
In cells of the green alga Chlorella fusca, which contain active hydrogenase(s), the concentration of ATP, NADH and NADPH were measured during a 5 h period of anaerobiosis in the dark and upon subsequent illumination with high light intensities (770 W/m2), conditions which favour optimal hydrogen photoproduction.ATP concentrations were also determined in cells of Chlorella fusca, whose hydrogenase was inactivated prior to illumination, and in cells of Chlorella vulgaris which do not contain hydrogenase. In the dark, the ATP concentration increased slightly during anaerobiosis in cells with active hydrogenase. This increase in ATP concentration was accompanied by an increase of NADH and a decrease of NADPH content.Upon illumination, the ATP content increased in cells with an active hydrogenase, whereas the NADH content decreased. The rate of phosphorylation was twice that observed in cells without active hydrogenase.This ATP synthesis in the light was not inhibited by 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) (10 mol/l) nor by carbonylcyanide-3-chlorophenyl-hydrazone (CCCP) (1 mol/l) but was diminished by 500 mol/l dibromothymoquinone (DBMIB) and 6 mol/l carbonylcyanide-3-chlorophenyl-hydrazone (CCCP).It was concluded that an active hydrogenase can support ATP production under anaerobic conditions in the dark as well as in the light. NADH might serve in vivo as electron donor for a fermentative production of hydrogen in the light.Possible mechanisms underlying ATP production under anaerobiosis and hydrogen productive conditions are discussed.Abbreviations CCCP Carbonylcyanide-3-chlorophenyl-hydrazone - DBMIB dibromothymoquinone - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - FCCP carbonylcyanide-p-trifluormethoxyphenyl-hydrazone - HEPES N-2-hydroxyethylpiperazin-N-2-ethan-sulfonic acid - PSI II, photosystem I, II respectively - PQ plastoquinone  相似文献   

20.
Electron transport from Photosystem II to Photosystem I of spinach chloroplasts can be stimulated by bicarbonate and various carbonyl or carboxyl compounds. Monovalent or divalent cations, which have hitherto been implicated in the energy distribution between the two photosystems, i.e., spillover phenomena at low light intensities, show a similar effect under high light conditions employed in this study. A mechanism for this stimulation of forward electron transport from Photosystem II to Photosystem I could involve inhibition of two types of Photosystem II partial reactions, which may involve cycling of electrons around Photosystem II. One of these is the DCMU-insensitive silicomolybdate reduction, and the other is ferricyanide reduction by Photosystem II at pH 8 in the presence of dibromothymoquinone. Greater stimulation of forward electron transport reactions is observed when both types of Photosystem II cyclic reactions are inhibited by bicarbonate, carbonyl and carboxyl-type compounds, or by certain mono- or divalent cations.Abbreviations used: DCMU, 3-(3,4-dichlorophenyl)-1, 1-dimethylurea; DCIP, 2,6-dichloroindophenol; DBMIB, 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone; FeCN, potassium ferricyanide; MV, methylviologen; PS I, photosystem I; PS II, photosystem II; SM, silicomolybdic acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号