首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Na+/K+-ATPase (EC 3.6.1.3) is an important membrane-bound enzyme. In this paper, kinetic studies on Na+/K+-ATPase were carried out under mimetic physiological conditions. By using microcalorimeter, a thermokinetic method was employed for the first time. Compared with other methods, it provided accurate measurements of not only thermodynamic data (deltarHm) but also the kinetic data (Km and Vmax). At 310.15K and pH 7.4, the molar reaction enthalpy (deltarHm) was measured as -40.514 +/- 0.9kJmol(-1). The Michaelis constant (Km) was determined to be 0.479 +/- 0.020 mM and consistent with literature data. The reliability of the thermokinetic method was further confirmed by colorimetric studies. Furthermore, a simple and reliable kinetic procedure was presented for ascertaining the true substrate for Na+/K+-ATPase and determining the effect of free ATP. Results showed that the MgATP complex was the real substrate with a Km value of about 0.5mM and free ATP was a competitive inhibitor with a Ki value of 0.253 mM.  相似文献   

2.
Oxidized metabolites of polyunsaturated fatty acids produced by lipoxygenase are among the endogenous regulators of Na+/K+-ATPase. The direct effect of lipoxygenase on Na+/K+-ATPase activity was assessed in vitro using soybean lipoxygenase. Treatment of 4.2 microg/mL Na+/K+-ATPase (from dog kidneys) with 4.2 microg/mL of soybean lipoxygenase caused 20+/-2% inhibition of ATPase activity. A 10-fold increase in lipoxygenase concentration (41.6 microg/mL) led to 30+/-0.3% inhibition. In the presence of 12 microg/mL phenidone (a lipoxygenase inhibitor) and 15.4 microg/mL glutathione (a tripeptide containing a cysteine residue) inhibition of Na+/K+-ATPase activity was blocked and an increase in ATPase activity was observed. The presence of lipoxygenase enhanced the inhibition of Na+/K+-ATPase activity caused by 20 ng/mL ouabain (31+/-2 vs. 19+/-2) but had little or no effect with higher concentrations of ouabain. These findings suggest that lipoxygenase may regulate Na+/K+-ATPase by acting directly on the enzyme.  相似文献   

3.
The osmoregulatory capabilities of 6-month-old juvenile obscure puffer Takifugu obscurus, transferred directly from fresh water to different salinities (0‰, freshwater control; 10‰; 20‰ and 30‰), were studied over an 8-day period. After transfer, plasma osmolality of the fish at 30‰ was significantly higher than those at all other salinities throughout the experiment. The Na+/K+ ATPase activity in the gills of the fish treated with various salinities increased significantly, peaking at 48 h, then decreased gradually to the control level at 192 h. Similar fluctuation trends of the Na+/K+ ATPase activity were observed in the kidneys. Modified Gaussian model provided accurate fits for the time-course changes in the Na+/K+ ATPase activities after abrupt salinity challenge. The results demonstrated that obscure puffer has strong capacity to tolerate abrupt salinity changes and can osmoregulate well over a wide range of salinities even in juvenile stage.  相似文献   

4.
Na+/K+-ATPase (sodium, potassium adenosine triphosphatase, EC 3.6.3.9) activity has been studied in whole erythrocytes from rats over time of total food deprivation for 1, 3, 5, 7–8, and 10–12 days with free access to water. Changes in Na+/K+-ATPase activity have been found to be phase-specific, i.e., associated with periods of certain metabolism level. After the hunger state and accommodation to endogenous nutrition (phases 0-I), from the 3rd to the 7th–8th day a period of compensated accommodation begins (phase II characterized by a stable euglycemic state, while the level of plateau of protein losses and hormonal stimulation are achieved). The Na+/K+-ATPase activity changes during the phase II were insignificant (p > 0.05), but potassium loss was observed in erythrocytes and blood plasma from the 5th day of starvation onwards. The phase III (the 10th–12th days) is an onset of the terminal period characterized by the lower activities of Na+/K+-ATPase (ouabain-sensitive activity) and Mg2+-ATPase (ouabain-independent activity) and by reduced sodium plasma levels that previously had remained virtually unchanged. There are considered possible causes of the observed decrease in the Na+/K+-ATPase activity during prolonged starvation, such as aging of the circulating erythrocyte population (the absence of reticulocytes and young erythrocytes), depletion of cell energy resources (hypoglycemia and glycopenia), effect of endogenous ouabain, and endotoxemia.  相似文献   

5.
Na+/K+-ATPase activity was determined in striated muscles with different aerobic capacities. The underlying hypothesis was that different aerobic capacities are reflective of different contractile activity which imposes greater demands on sarcolemmal ion translocation and may thus set Na pumping capacity. The added ion translocation demands required during exercise-training on Na+/K+-ATPase activity in different muscle fiber types may require an adaptation of this enzyme. The highest and lowest Na+/K+-ATPase activity was in the heart and white gastrocnemius muscle (WG), respectively. A high linear correlation existed between Na+/K+-ATPase activity and succinate dehydrogenase activity in the six muscles studied. Exercise-training did not increase Na+/K+-ATPase activity in any of the muscles, but did increase the aerobic capacity, except in the heart and WG. It was concluded that Na+/K+-ATPase activity has a high positive correlation with the aerobic capacity of striated muscles in the rat and that the Na pump capacity does not adapt to exercise-training of 1 hr X day-1 as does aerobic capacity.  相似文献   

6.
A method is described for studying the coupling ratio of the Na+/K+ pump, i.e., the ratio of pump-mediated fluxes of Na+ and K+, in a reconstituted system. The method is based on the comparison of the pump-generated current with the rate of K+ transport. Na+/K+-ATPase from kidney is incorporated into the membrane of artificial lipid vesicles; ATPase molecules with outward-oriented ATP-binding site are activated by addition of ATP to the medium. Using oxonol VI as a potential-sensitive dye for measuring transmembrane voltage, the pump current is determined from the change of voltage with time t. In a second set of experiments, the membrane is made selectively K+-permeable by addition of valinomycin, so that the membrane voltage U is equal to the Nernst potential of K+. Under this condition, dU/dt reflects the change of intravesicular K+ concentration and thus the flux of K+. Values of the Na+/K+ coupling ratio determined in this way are close to 1.5 in the experimental range (10-75 mM) of extravesicular (cytoplasmic) Na+ concentrations.  相似文献   

7.
Na+/K+-ATPase during diabetes may be regulated by synthesis of its alpha and beta subunits and by changes in membrane fluidity and lipid composition. As these mechanisms were unknown in liver, we studied in rats the effect of streptozotocin-induced diabetes on liver Na+/K+-ATPase. We then evaluated whether fish oil treatment prevented the diabetes-induced changes. Diabetes mellitus induced an increased Na+/K+-ATPase activity and an enhanced expression of the beta1 subunit; there was no change in the amount of the alpha1 and beta3 isoenzymes. Biphasic ouabain inhibition curves were obtained for diabetic groups indicating the presence of low and high affinity sites. No alpha2 and alpha3 isoenzymes could be detected. Diabetes mellitus led to a decrease in membrane fluidity and a change in membrane lipid composition. The diabetes-induced changes are not prevented by fish oil treatment. The results suggest that the increase of Na+/K+-ATPase activity can be associated with the enhanced expression of the beta1 subunit in the diabetic state, but cannot be attributed to changes in membrane fluidity as typically this enzyme will increase in response to an enhancement of membrane fluidity. The presence of a high-affinity site for ouabain (IC50 = 10-7 M) could be explained by the presence of (alphabeta)2 diprotomeric structure of Na+/K+-ATPase or an as yet unknown alpha subunit isoform that may exist in diabetes mellitus. These stimulations might be related, in part, to the modification of fatty acid content during diabetes.  相似文献   

8.
Na+-ATPase activity is extremely sensitive to inhibition by vanadate at low Na+ concentrations where Na+ occupies only high-affinity activation sites. Na+ occupies low-affinity activation sites to reverse inhibition of Na+-ATPase and (Na+, K+)-ATPase activities by vanadate. This effect of Na+ is competitive with respect to both vanadate and Mg2+. The apparent affinity of the enzyme for vanadate is markedly increased by K+. The principal effect of K+ may be to displace Na+ from the low-affinity sites at which it activates Na+-ATPase activity.  相似文献   

9.
Increased fragility fracture risk with improper healing is a frequent and severe complication of insulin resistance (IR). The mechanisms impairing bone health in IR are still not fully appreciated, which gives importance to studies on bone pathologies in animal models of diabetes. Mice deficient in leptin signaling are widely used models of IR and its comorbidities. Leptin was first recognized as a hormone, regulating appetite and energy balance; however, recent studies have expanded its role showing that leptin is a link between insulin-dependent metabolism and bone homeostasis. In the light of these findings, it is intriguing to consider the role of leptin resistance in bone regeneration. In this study, we show that obese diabetic mice lacking leptin receptor (db/db) are deficient in postnatal regenerative osteogenesis. We apply an ectopic osteogenesis and a fracture healing model, both showing that db/db mice display compromised bone acquisition and regeneration capacity. The underlying mechanisms include delayed periosteal mesenchymatic osteogenesis, premature apoptosis of the cartilage callus and impaired microvascular invasion of the healing tissue. Our study supports the use of the db/db mouse as a model of IR associated bone-healing deficits and can aid further studies of mesenchymatic cell homing and differentiation, microvascular invasion, cartilage to bone transition and callus remodeling in diabetic fracture healing.  相似文献   

10.
The total fractions of gangliosides and cerebrosides isolated from the tissue of human brain were studied for their effect on the Na+, K+-ATPase activity of native erythrocytes and their membranes. It is shown that gangliosides depending on time of their preincubation with the enzyme preparation and concentration produce both the activating and inhibiting action and cerebrosides--only the inhibiting one. Gangliosides inhibit the transport ATPase activity noncompetitively with respect to ATP and Na+ and competitively--to K+, cerebrosides inhibit it noncompetitively with respect to all ATPase activators.  相似文献   

11.
Ethanol disorders biological membranes causing perturbations in the bilayer and also by altering the physicochemical properties of membrane lipids. But, chronic alcohol consumption also increases nitric oxide (NO) production. There was no systemic study was done related to alcohol-induced production of NO and consequent formation of peroxynitrite mediated changes in biophysical and biochemical properties, structure, composition, integrity and function of erythrocyte membranes in chronic alcoholics. Hence, keeping all these conditions in mind the present study was undertaken to investigate the role of over produced nitric oxide on red cell membrane physicochemical properties in chronic alcoholics. Human male volunteers aged 44 ± 6 years with similar dietary habits were divided into two groups, namely nonalcoholic controls and chronic alcoholics (~125 g of alcohol at least five times per week for the past 10–12 years). Elevated nitrite and nitrate levels in plasma and lysate, changes in erythrocyte membrane individual phospholipid composition, increased lipid peroxidation, protein carbonyls, cholesterol and phospholipids ratio (C/P ratio) and anisotropic value (γ) with decreased sulfhydryl groups and Na+/K+-ATPase activity in alcoholics was evident from this study. RBC lysate NO was positively correlated with C/P ratio (r = 0.547) and anisotropic (γ) value (r = 0.428), Na+/K+-ATPase activity was negatively correlated with RBC lysate NO (r = ?0.372) and anisotropic (γ) value (r = ?0.624) in alcoholics. Alcohol-induced overproduction of nitric oxide reacts with superoxide radicals to produce peroxynitrite, which appears to be responsible for changes in erythrocyte membrane lipids and the activity of Na+/K+-ATPase.  相似文献   

12.
Experiments with the reconstituted (Na+ + K+)-ATPase show that besides the ATP-dependent cytoplasmic Na(+)-K+ competition for Na+ activation there is a high affinity inhibitory effect of cytoplasmic K+. In contrast to the high affinity K+ inhibition seen with the unsided preparation at a low ATP especially at a low temperature, the high affinity inhibition by cytoplasmic K+ does not disappear when the ATP concentration an-or the temperature is increased. The high affinity inhibition by cytoplasmic K+ is also observed with Cs+, Li+ or K+ as the extracellular cation, but the fractional inhibition is much less pronounced than with Na+ as the extracellular cation. The results suggest that either there are two populations of enzyme, one with the normal ATP dependent cytoplasmic Na(+)-K+ competition, and another which due to the preparative procedure has lost this ATP sensitivity. Or that the normal enzyme has two pathways for the transition from E2-P to E1ATP. One on which the enzyme with the translocated ion binds cytoplasmic K+ with a high affinity but not ATP, and another on which ATP is bound but not K+. A kinetic model which can accommodate this is suggested.  相似文献   

13.
14.
Elevated concentrations of dissolved carbon dioxide (CO2) and reduced pH levels are observed during the culture and transportation of aquatic organisms. Studies on the toxicity effects of CO2 in penaeid shrimp are scarce when compared to the amount of research in fish. The objective of the present study was to determine the lethal concentration and safety levels of CO2 for juvenile white shrimp Litopenaeus vannamei. Juveniles (1.76 ± 0.36 g) were exposed for 96 h to one of six concentrations of dissolved CO2 (14.5, 23.8, 59.0, 88.0, 115.0, and 175.0 mg/L) or a control condition (without the addition of CO2), and their survival was monitored for 96 h. The LC50 values with 95% confidence limits at 24, 48, 72, and 96 h were 130.05 (104.2–162.1), 77.2 (73.8–80.02), 69.65 (65.47–74.32), and 59.12 (53.08–66.07) mg/L of CO2, respectively. The calculated safety level was 5.9 mg/L of CO2, and the highest concentration that did not induce significantly higher mortality than that observed in controls (NOEC) was 23.8 mg/L of CO2. We recommend that CO2 levels should be kept below the safety level obtained in this study.  相似文献   

15.
Circulating Na+/K+-ATPase inhibitors have been implicated in volume-expanded forms of hypertension. Inhibition of vascular smooth muscle cell Na+/K+-ATPase has been demonstrated to elevate intracellular Ca2+ levels and enhance contractility, thus providing a mechanism of raised peripheral resistance. In cells chronically subjected to Na+/K+-ATPase inhibition, however, new Na+/K+-ATPase molecules are synthesized, which then restore the intracellular milieu to preinsult conditions. Restoral of the preinsult intracellular milieu in vascular smooth muscle cells would then be expected to lead to the reduction of muscle cell contractility and peripheral resistance. Thus circulating Na+/K+-ATPase inhibitors may not be effective in eliciting chronic forms of hypertension unless the target cell "homeostatic response" is impaired. We demonstrate an apparent such impairment in Dahl salt-sensitive rats, a genetic model of salt-sensitive hypertension.  相似文献   

16.
Internalization of the Na+/K+-ATPase (the Na+ pump) has been studied in the human lung carcinoma cell line H1299 that expresses YFP-tagged α1 from its normal genomic localization. Both real-time imaging and surface biotinylation have demonstrated internalization of α1 induced by ≥100 nm ouabain which occurs in a time scale of hours. Unlike previous studies in other systems, the ouabain-induced internalization was insensitive to Src or PI3K inhibitors. Accumulation of α1 in the cells could be augmented by inhibition of lysosomal degradation but not by proteosomal inhibitors. In agreement, the internalized α1 could be colocalized with the lysosomal marker LAMP1 but not with Golgi or nuclear markers. In principle, internalization could be triggered by a conformational change of the ouabain-bound Na+/K+-ATPase molecule or more generally by the disruption of cation homeostasis (Na+, K+, Ca2+) due to the partial inhibition of active Na+ and K+ transport. Overexpression of ouabain-insensitive rat α1 failed to inhibit internalization of human α1 expressed in the same cells. In addition, incubating cells in a K+-free medium did not induce internalization of the pump or affect the response to ouabain. Thus, internalization is not the result of changes in the cellular cation balance but is likely to be triggered by a conformational change of the protein itself. In physiological conditions, internalization may serve to eliminate pumps that have been blocked by endogenous ouabain or other cardiac glycosides. This mechanism may be required due to the very slow dissociation of the ouabain·Na+/K+-ATPase complex.  相似文献   

17.
Na+/K+ -ATPase, reconstituted into phospholipid vesicles, has been used to study the localisation of binding sites of ligands involved in the phosphorylation reaction. Inside-out oriented Na+/K+ -ATPase molecules are the only population in this system, which can be phosphorylated, as the rightside-out oriented as well as the non-incorporated enzyme molecules are inhibited by ouabain. In addition, the right-side-out oriented Na+/K+ -ATPase molecules have their ATP binding site intravesicularly and are thus not accessible to substrate added to the extravesicular medium. Functional binding sites for the following ligands have been demonstrated: (i) Potassium, acting at the extracellular side with high affinity (stimulating the dephosphorylation rate of the E2P conformation) and low affinity (inducing the non-phosphorylating E2K complex). (ii) Potassium, acting at the cytoplasmic side with both high and low affinity. The latter sites are also responsible for the formation of an E2K complex and complete with Na+ for its binding sites. (iii) Sodium at the cytoplasmic side responsible for stimulation of the phosphorylation reaction. (iv) Sodium (and amine buffers) at the extracellular side enhancing the phosphorylation level of Na+/K+ -ATPase where choline chloride has no effect. (v) Magnesium at the cytoplasmic side, stimulating the phosphorylation reaction and inhibiting it above optimal concentrations.  相似文献   

18.
Synopsis Juvenile bluegill,Lepomis macrochirus, collected from Mississippi coastal drainages were held at 0, 5, and 10% S and fed diets containing 0, 2, and 4% dietary NaCl. Over a 58 day period, fish from each of the nine treatments (salinity x diet) were fed ad libitum twice daily for 5 min. Mean treatment growth rates did not differ when adjusted for initial wet weights. Hematocrit and intestinal Na+/K+-ATPase activity also did not differ. All fish maintained in 0% S had a marginally lower plasma osmolality compared to fish held in 5 and 10% S. Plasma Cl concentration of fish held in 0% S receiving the 0% NaCl diet was lower than that of the other eight treatments. Results indicate that coastal juvenile bluegill can exploit waters up to 10% S while consuming prey items containing up to 4% NaCl with no influence on growth or certain osmoregulatory characteristics.  相似文献   

19.
Synaptosomal fractions and synaptosomal membranes from rat brain tissue were prepared and characterized enzymatically. Arecoline increased both the activity of K+-phosphatase in incubated synaptosomal fractions and the (Na+ + K+)-ATPase activity of synaptosomal membranes by 40% and 78%, respectively. This activation of ion transport processes is believed to be associated with increased ACh synthesis produced by arecoline.  相似文献   

20.
A single Na+/K+-ATPase pumps three Na+ outwards and two K+ inwards by alternately exposing ion-binding sites to opposite sides of the membrane in a conformational sequence coupled to pump autophosphorylation from ATP and auto-dephosphorylation. The larger flow of Na+ than K+ generates outward current across the cell membrane. Less well understood is the ability of Na+/K+ pumps to generate an inward current of protons. Originally noted in pumps deprived of external K+ and Na+ ions, as inward current at negative membrane potentials that becomes amplified when external pH is lowered, this proton current is generally viewed as an artifact of those unnatural conditions. We demonstrate here that this inward current also flows at physiological K+ and Na+ concentrations. We show that protons exploit ready reversibility of conformational changes associated with extracellular Na+ release from phosphorylated Na+/K+ pumps. Reversal of a subset of these transitions allows an extracellular proton to bind an acidic side chain and to be subsequently released to the cytoplasm. This back-step of phosphorylated Na+/K+ pumps that enables proton import is not required for completion of the 3 Na+/2 K+ transport cycle. However, the back-step occurs readily during Na+/K+ transport when external K+ ion binding and occlusion are delayed, and it occurs more frequently when lowered extracellular pH raises the probability of protonation of the externally accessible carboxylate side chain. The proton route passes through the Na+-selective binding site III and is distinct from the principal pathway traversed by the majority of transported Na+ and K+ ions that passes through binding site II. The inferred occurrence of Na+/K+ exchange and H+ import during the same conformational cycle of a single molecule identifies the Na+/K+ pump as a hybrid transporter. Whether Na+/K+ pump–mediated proton inflow may have any physiological or pathophysiological significance remains to be clarified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号