首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Peptidylglycine alpha-amidating monooxygenase (PAM: EC 1.14.17.3) is a bifunctional protein which catalyzes the COOH-terminal amidation of bioactive peptides; the NH2-terminal monooxygenase and mid-region lyase act in sequence to perform the peptide alpha-amidation reaction. Alternative splicing of the single PAM gene gives rise to mRNAs generating PAM proteins with and without a putative transmembrane domain, with and without a linker region between the two enzymes, and forms containing only the monooxygenase domain. The expression, endoproteolytic processing, storage, and secretion of this secretory granule-associated protein were examined after stable transfection of AtT-20 mouse pituitary cells with naturally occurring and truncated PAM proteins. The transfected proteins were examined using enzyme assays, subcellular fractionation, Western blotting, and immunocytochemistry. Western blots of crude membrane and soluble fractions of transfected cells demonstrated that all PAM proteins were endoproteolytically processed. When the linker region was present between the monooxygenase and lyase domains, monofunctional soluble enzymes were generated from bifunctional PAM proteins; without the linker region, bifunctional enzymes were generated. Soluble forms of PAM expressed in AtT-20 cells and soluble proteins generated through selective endoproteolysis of membrane-associated PAM were secreted in an active form into the medium; secretion of the transfected proteins and endogenous hormone were stimulated in parallel by secretagogues. PAM proteins were localized by immunocytochemistry in the perinuclear region near the Golgi apparatus and in secretory granules, with the greatest intensity of staining in the perinuclear region in cell lines expressing integral membrane forms of PAM. Monofunctional and bifunctional PAM proteins that were soluble or membrane-associated were all packaged into regulated secretory granules in AtT-20 cells.  相似文献   

2.
Recent investigations have shown that the heart atrium is an endocrine tissue. In the present studies, high levels of peptidylglycine alpha-amidating monooxygenase (PAM), which catalyzes the formation of bioactive alpha-amidated peptides from their glycine-extended precursors, have been found in particulate fractions from bovine and rat heart atrium; only low levels of PAM activity were present in soluble fractions. Corresponding fractions from the ventricles contained 20-fold less activity. Immunocytochemical studies demonstrated that PAM was localized primarily to atrial cardiocytes, with a distribution resembling that of atriopeptin. Following differential centrifugation of rat atrial homogenates, most of the PAM activity was associated with crude granule fractions, with lesser amounts of activity associated with crude microsomal fractions. Upon further subcellular fractionation, PAM activity in the rat atrium was found primarily with immunoactive atriopeptin in fractions enriched in secretory granules. Following sodium dodecyl sulfate-polyacrylamide gel electrophoresis, antisera to purified bovine pituitary PAM identified a 113,000-dalton protein in bovine atrial microsomes and secretory granules; the protein predicted from the sequence of the cDNA encoding bovine pituitary PAM is of similar size (Eipper, B. A., Park, L. P., Dickerson, I. M., Keutmann, H. T., Thiele, E. A., Rodriguez, H., Schofield, P. R., and Mains, R. E. (1987) Mol. Endocrinol. 1, 777-790). Northern blot analysis using cDNA probes encoding bovine pituitary PAM demonstrated higher levels of PAM mRNA in heart atrium than in anterior pituitary. Rat heart contains PAM mRNA species of 3.6 and 3.8 kilobases, the smaller mRNA species corresponding in size to the PAM mRNA expressed in rat anterior pituitary.  相似文献   

3.
The tissue specific expression of peptidylglycine alpha-amidating monooxygenase [(PAM) EC 1.14.17.3], an enzyme which catalyzes the formation of amidated bioactive peptides from their glycine-extended precursors, was examined in adult rat. Soluble and membrane-associated PAM enzymatic activities were determined, and the levels and size classes of PAM mRNA were examined by Northern blot analysis. PAM specific activity varied 1000-fold in the tissues examined, with highest levels in heart atrium, pituitary and salivary glands, and hypothalamus. The fraction of total PAM activity that was membrane associated varied from approximately 70% in heart atrium to 10% in neurointermediate pituitary lobe and thyroid gland. Levels of PAM mRNA varied over 300-fold. In the heart atrium, PAM mRNA accounts for more than 0.1% of the mRNA. For many tissues the ratio of total PAM specific activity to PAM mRNA levels was similar; however, PAM activity was higher than expected from mRNA levels in the salivary glands and lower than expected in several tissues, including heart ventricle. Three major size classes of PAM mRNA were identified among the tissues. Use of RNAse H indicated that differences in size were not due to the length of the poly(A) tail. The heart and central nervous system expressed PAM mRNA of the 4.2 kilobase (kb) and 3.8 kb size classes, while the remaining tissues expressed predominantly 3.8 kb and 3.6 kb classes; few tissues contained only one size class of PAM mRNA. The two major forms of PAM mRNA in adult heart atrium differ by the presence or absence of a 315 nucleotide segment in the protein coding region. Using a cDNA probe from within this segment, the 4.2 kb and 3.8 kb size classes of PAM mRNA in the central nervous system appeared to resemble those in the heart atrium. In the remaining tissues, a subset of PAM mRNAs in the 3.8 kb and 3.6 kb size classes hybridized with this probe, suggesting that additional forms of PAM mRNA are present.  相似文献   

4.
The subcellular localization of the post-translational processing steps which occur in the conversion of pro-adrenocorticotropic hormone (ACTH)/endorphin into beta-endorphin-sized molecules in rat intermediate pituitary has been studied. Primary cell cultures were incubated in radioactively labeled amino acids, and a subcellular fraction containing secretory granules was separated from a subcellular fraction containing rough endoplasmic reticulum and Golgi apparatus by centrifugation of homogenates on gradients on Percoll (Pharmacia Fine Chemicals). The radiolabeled beta-endorphin-related material in the granule and rough endoplasmic reticulum/Golgi apparatus fractions was quantitated by immunoprecipitation and sodium dodecyl sulfate polyacrylamide gel electrophoresis. A pulse-chase labeling experiment demonstrated that newly synthesized beta-endorphin-related material first appeared in the rough endoplasmic reticulum/Golgi apparatus fraction and after longer incubations (chase) appeared in the secretory granule fraction. After 2 h of chase incubation, about 85% of the beta-endorphin-related material synthesized during the 30-min pulse incubation had been transferred from the rough endoplasmic reticulum/Golgi apparatus to the secretory granule fraction. The conversion of most of the newly synthesized pro-ACTH/endorphin into beta-lipotropin occurred in the rough endoplasmic reticulum/Golgi apparatus fraction, whereas the conversion of most of the beta-lipotropin into beta-endorphin-sized molecules occurred in the secretory granule fraction.  相似文献   

5.
The pituitary is a rich source of peptidylglycine alpha-amidating monooxygenase (PAM). This bifunctional protein contains peptidylglycine alpha-hydroxylating monooxygenase (PHM) and peptidyl-alpha-hydroxyglycine alpha-amidating lyase (PAL) catalytic domains necessary for the two-step formation of alpha-amidated peptides from their peptidylglycine precursors. In addition to the four forms of PAM mRNA identified previously, three novel forms of PAM mRNA were identified by examining anterior and neurointermediate pituitary cDNA libraries. None of the PAM cDNAs found in pituitary cDNA libraries contained exon A, the 315-nucleotide (nt) segment situated between the PHM and PAL domains and present in rPAM-1 but absent from rPAM-2. Although mRNAs of the rPAM-3a and -3b type encode bifunctional PAM precursors, the proteins differ significantly. rPAM-3b lacks a 54-nt segment encoding an 18-amino acid peptide predicted to occur in the cytoplasmic domain of this integral membrane protein; rPAM-3a lacks a 204-nt segment including the transmembrane domain and encodes a soluble protein. rPAM-5 is identical to rPAM-1 through nt 1217 in the PHM domain; alternative splicing generates a novel 3'-region encoding a COOH-terminal pentapeptide followed by 1.1 kb of 3'-untranslated region. The soluble rPAM-5 protein lacks PAL, transmembrane, and cytoplasmic domains. These three forms of PAM mRNA can be generated by alternative splicing. The major forms of PAM mRNA in both lobes of the pituitary are rPAM-3b and rPAM-2. Despite the fact that anterior and neurointermediate pituitary contain a similar distribution of forms of PAM mRNA, the distribution of PAM proteins in the two lobes of the pituitary is quite different. Although integral membrane proteins similar to rPAM-2 and rPAM-3b are major components of anterior pituitary granules, the PAM proteins in the neurointermediate lobe have undergone more extensive endoproteolytic processing, and a 75-kDa protein containing both PHM and PAL domains predominates. The bifunctional PAM precursor undergoes tissue-specific endoproteolytic cleavage reminiscent of the processing of prohormones.  相似文献   

6.
A 43-kDa protein factor that increases the ability of purified bovine peptidylglycine alpha-amidating monooxygenase (PAM)-A and -B to produce alpha-amidated peptides at physiological pH was purified to homogeneity from bovine neurointermediate pituitary. At each step of the purification, the amount of activity correlated with the amount of protein detected on Western blots by antibody to bovine PAM(561-579). In the bovine neurointermediate pituitary the 108-kDa PAM precursor protein is cleaved to form a peptidylglycine alpha-hydroxylating monooxygenase and a peptidyl-alpha-hydroxyglycine alpha-amidating lyase, which function sequentially in the 2-step formation of alpha-amidated peptides.  相似文献   

7.
Highly enriched Golgi complex and endoplasmic reticulum fractions were isolated from total microsomes obtained from Trypanosoma brucei, Trypanosoma congolense, and Trypanosoma vivax, and tested for glycosyltransferase activity. Purity of the fractions was assessed by electron microscopy as well as by biochemical analysis. The relative distribution of all the glycosyltransferases was remarkably similar for the three species of African trypanosomes studied. The Golgi complex fraction contained most of the galactosyltransferase activity followed by the smooth and rough endoplasmic reticulum fractions. The dolichol- dependent mannosyltransferase activities were highest for the rough endoplasmic reticulum, lower for the smooth endoplasmic reticulum, and lowest for the Golgi complex. Although the dolichol-independent form of N-acetylglucosaminyltransferase was essentially similar in all the fractions, the dolichol-dependent form of this enzyme was much higher in the endoplasmic reticulum fractions than in the Golgi complex fraction. Inhibition of this latter activity in the smooth endoplasmic reticulum fraction by tunicamycin A1 suggests that core glycosylation of the variable surface glycoprotein may occur in this organelle and not in the rough endoplasmic reticulum as previously assumed.  相似文献   

8.
9.
Unlike the neuroendocrine cell lines widely used to study trafficking of soluble and membrane proteins to secretory granules, the endocrine cells of the anterior pituitary are highly specialized for the production of mature secretory granules. Therefore, we investigated the trafficking of three membrane proteins in primary anterior pituitary endocrine cells. Peptidylglycine alpha-amidating monooxygenase (PAM), an integral membrane protein essential to the production of many bioactive peptides, is cleaved and enters the regulated secretory pathway even when expressed at levels 40-fold higher than endogenous levels. Myc-TMD/CD, a membrane protein lacking the lumenal, catalytic domains of PAM, is still stored in granules. Secretory granules are not the default pathway for all membrane proteins, because Tac accumulates on the surface of pituitary endocrine cells. Overexpression of PAM is accompanied by a diminution in its endoproteolytic cleavage and in its BaCl(2)-stimulated release from mature granules. Because internalized PAM/PAM-antibody complexes are returned to secretory granules, the endocytic machinery of the pituitary endocrine cells is not saturated. As in corticotrope tumor cells, expression of PAM or Myc-TMD/CD alters the organization of the actin cytoskeleton. PAM-mediated alterations in the cytoskeleton may limit maturation of PAM and storage in mature granules.  相似文献   

10.
Labeling of the Golgi complex with the lectin conjugate wheat germ agglutinin-horseradish peroxidase (WGA-HRP), which binds to cell surface membrane and enters cells by adsorptive endocytosis, was analyzed in secretory cells of the anterior, intermediate, and posterior lobes of mouse pituitary gland in vivo. WGA-HRP was administered intravenously or by ventriculo-cisternal perfusion to control and salt-stressed mice; post-injection survival times were 30 min-24 hr. Peroxidase reaction product was identified within the extracellular clefts of anterior and posterior pituitary lobes through 24 hr but was absent in intermediate lobe. Endocytic vesicles, spherical endosomes, tubules, dense and multivesicular bodies, the trans-most saccule of the Golgi complex, and dense-core secretory granules attached or unattached to the trans Golgi saccule were peroxidase-positive in the different types of anterior pituitary cells and in perikarya of supraoptico-neurohypophyseal neurons; endoplasmic reticulum and the cis and intermediate Golgi saccules in the same cell types were consistently devoid of peroxidase reaction product. Dense-core secretory granules derived from cis and intermediate Golgi saccules in salt-stressed supraoptic perikarya likewise failed to exhibit peroxidase reaction product. The results suggest that in secretory cells of anterior and posterior pituitary lobes, WGA-HRP, initially internalized with cell surface membrane, is eventually conveyed to the trans-most Golgi saccule, in which the lectin conjugate and associated membrane are packaged in dense-core secretory granules for export and potential exocytosis of the tracer. Endoplasmic reticulum and the cis and intermediate Golgi saccules appear not to be involved in the endocytic/exocytic pathways of pituitary cells exposed to WGA-HRP.  相似文献   

11.
Kallikrein-positive cells in the anterior pituitary of female rats were identified to be the same as prolactin-producing cells by using an immunoelectron microscopic method. The kallikrein immunoreactivity was localized at the Golgi apparatus, the rough endoplasmic reticulum, and secretory granules, suggesting that kallikrein is synthesized in the prolactin-producing cells and also may be secreted into the blood vessels.  相似文献   

12.
A morphometric study of prolactin cell ultrastructure in the pituitary gland of the Corkwing wrasse, Crenilabrus melops L., showed that cytoplasmic vacuoles, which accounted for 25% of the cell volume, were associated with signs of decreased secretory activity. The Golgi apparatus, mitochondria and rough endoplasmic reticulum, all contributed relatively little to the total cell volume, and there was no sign of secretory-granule release by exocytosis. All vacuoles were intracellular and membrane-bound, and probably derived from rough endoplasmic reticulum, Golgi apparatus and the nuclear envelope. It is thought that smaller vacuoles coalesce to form larger ones. The secretory granules were small and sparse, and this could account for the chromophobia of prolactin cells in light-microscopy preparations. Similar vacuoles were reported in the prolactin cells of the gobiid fish, Chaparrudo flavescens, Pomatoschistus pictus, Pomatoschistus minutus and Pomatoschistus microps . The vacuoles in Chuparrudo were of similar ultrastructure to those in Crenilabrus .  相似文献   

13.
A G Katopodis  D Ping  S W May 《Biochemistry》1990,29(26):6115-6120
We report here the isolation of a novel enzyme from bovine neurointermediate pituitary which catalyzes the conversion of alpha-hydroxybenzoylglycine to benzamide. This enzyme, termed HGAD (alpha-hydroxyglycine amidating dealkylase), is a soluble protein with an apparent molecular mass of 45 kDa and no apparent cofactor requirement. Addition of HGAD to purified neurointermediate pituitary PAM (peptidylglycine alpha-amidating monooxygenase, EC 1.14.17.3) increases the rate of formation of amide products by an order of magnitude. Sequential additions of PAM and HGAD gave results consistent with PAM first catalyzing the formation of an intermediate that is subsequently, in a separate reaction, converted by HGAD to the final amide product. Experiments with olefinic inactivators demonstrate that HGAD is not required for turnover-dependent inactivation of PAM and, correspondingly, that HGAD activity is not affected by inactivators of PAM. As expected, HGAD has no effect on the rate of PAM-catalyzed sulfoxidation, where a reaction analogous to that occurring during amidation of glycine-extended substrates is not possible. On the basis of these results, we propose that peptide C-terminal amidation in neurointermediate pituitary is a two-step process, with PAM first catalyzing the conversion of a glycine-extended peptide to the alpha-hydroxyglycine derivative, which is in turn converted to the final amide product by HGAD.  相似文献   

14.
The localization of 5α-reductase was immunohistochemically studied in the anterior pituitary of male rats, using a polyclonal antibody against 5α-reductase rat type 1. The immunoreactive cells were concentrated in the central region and on the border of the intermediate lobe in the anterior pituitary, but not in the intermediate or posterior lobe. The immunoreaction was located mostly in the cytoplasm and occasionally in the cell nuclei. The immunoreactive cells showed alterations in size and number and in the intensity of the immunoreaction after gonadectomy. One week after castration, the cells became larger and the immunoreactivity increased. Two weeks after castration, the number of immunoreactive cells increased. Double immunostaining using antiluteinizing hormone β-subunit or anti-follicle stimulating hormone β-subunit antibody revealed that most of the cells containing 5α-reductase were gonadotrophs. Electron microscopically, the immunoreactive cells showed lamelliform rough endoplasmic reticulum and a depletion of secretory granules 1 week after castration. One week later, the rough endoplasmic reticulum was developed and dilated and the number of secretory granules increased. These results suggest that 5α-reductase is located in the gonadotrophs of rat anterior pituitary and that it is involved in the feedback regulation of gonadotropin secretion by androgens.  相似文献   

15.
Although a critical role of microsomal transfer protein (MTP) has been recognized in the assembly of nascent apolipoprotein B (apoB)-containing lipoproteins, it remains unclear where and how MTP transfers lipids in the secretory pathway during the maturational process of apoB lipidation. The aims of this study were to determine whether MTP functions in the secretory pathway as well as in the endoplasmic reticulum and whether its large 97-kDa subunit interacts with the small 58-kDa protein disulfide isomerase (PDI) subunit and apoB, particularly in the Golgi apparatus. Using a high resolution immunogold approach combined with specific polyclonal antibodies, the large and small subunits of MTP were observed over the rough endoplasmic reticulum and the Golgi. Double immunocytochemical detection unraveled the colocalization of MTP and PDI as well as MTP and apoB in these same subcellular compartments. To confirm the spatial contact of these proteins, Golgi fractions were isolated, homogenized, and incubated with an anti-MTP large subunit antibody. Immunoprecipitates were applied on SDS-PAGE and then transferred on to nitrocellulose. Immunoblotting the membrane with PDI and apoB antibodies confirmed the colocalization of these proteins with MTP. Furthermore, MTP activity assay disclosed a substantial triglyceride transfer in the Golgi fractions. The occurrence of membrane-associated apoB in the Golgi, coupled with its interaction with active MTP, suggests an important role for the Golgi in the biogenesis of apoB-containing lipoproteins.  相似文献   

16.
Summary Fine structural localization of an ACTH-like substance was obtained in neurons of the rat arcuate nucleus using immuno-electron microscopy, whereas it could not be confirmed that ACTH-containing cell bodies are present in the supraoptic nucleus. The immunoreactive cells of the arcuate nucleus appeared to be more numerous than the unreactive neurons. Immunostaining was carried out before embedding in resin. Empty vesicles of irregular shape were found in dendrites of immunoreactive arcuate neurons, but their significance and nature remain enigmatic. The reaction product was distributed uniformly throughout the cytoplasm of the ACTH-positive cells, except that the mitochondria, rough endoplasmic reticulum and Golgi vesicles and cisternae were devoid of PAP molecules. This distribution differed from the localization reported in ACTH-secreting cells of the rat anterior pituitary, where the reaction product was found in the rough endoplasmic reticulum and Golgi complex as well as in secretory granules.  相似文献   

17.
18.
The distribution of activities for synthesis of phosphatidylinositol among cell fractions from rat liver was determined. Activity was concentrated in endoplasmic reticulum; rough and smooth fractions were nearly equal. Golgi apparatus exhibited a biosynthetic rate 44% that of endoplasmic reticulum. Plasma membranes and mitochondrial fractions were only 6% as active as endoplasmic reticulum. Thus, endoplasmic reticulum and Golgi apparatus fractions from rat liver catalyze the net synthesis of phosphatidylinositol in vitro, whereas plasma membrane and mitochondrial fractions do not.  相似文献   

19.
《The Journal of cell biology》1984,99(6):1917-1926
To study the assembly of newly synthesized lipids with apoprotein A1, we administered [2-3H]glycerol to young chickens and determined the hepatic intracellular sites of lipid synthesis and association of nascent lipids with apoprotein A1. [2-3H]glycerol was rapidly incorporated into hepatic lipids, reaching maximal levels at 5 min, and this preceded the appearance of lipid radioactivity in the plasma. The liver was fractionated into rough and smooth endoplasmic reticulum and Golgi cell fractions. The isolated cell fractions were further subfractionated into membrane and soluble (content) fractions by treatment with 0.1 M Na2CO3, pH 11.3. At various times, the lipid radioactivity was measured in each of the intracellular organelles, in immunoprecipitable apoprotein A1, and in materials that floated at buoyant densities similar to those of plasma lipoproteins. Maximal incorporation occurred at 1 min in the rough endoplasmic reticulum, at 3-5 min in the smooth endoplasmic reticulum, and at 5 min in the Golgi cell fractions. The majority (66-93%) of radioactive glycerol was incorporated into triglycerides with smaller (4-27%) amounts into phospholipids. About 80% of the lipid radioactivity in the endoplasmic reticulum and 70% of that in the Golgi cell fractions was in the membranes. The radioactive lipids in the content subfraction were distributed in various density classes with most nascent lipids floating at a density less than or equal to 1.063 g/ml. Apoprotein A1 from the Golgi apparatus, obtained by immunoprecipitation, contained sixfold more nascent lipids than did that from the endoplasmic reticulum. These data indicate that [2-3H]glycerol is quickly incorporated into lipids of the endoplasmic reticulum and the Golgi cell fractions, that most of the nascent lipids are conjugated with apoproteins A1 in the Golgi apparatus, and that very little association of nascent lipid to apoprotein A1 occurs in the endoplasmic reticulum.  相似文献   

20.
Summary The spontaneous dwarf rat is a novel experimental model animal on the study of pituitary dwarfism. The fine structure of the anterior pituitary cells was studied in the immature and mature dwarf rats. Pituitary glands were removed from 5-, 10-, 20-day-old immature dwarfs, adult (45 days-16 weeks) dwarfs and normal 3-month-old rats and processed for electron-microscopic observation. In the control animals, growth hormone cells were readily identified by their ultrastructural characteristics, such as the presence of numerous electron-dense secretory granules, 300–350 nm in diameter, well developed rough endoplasmic reticulum and a prominent Golgi complex. In contrast, growth hormone cells were not found in the anterior pituitary gland of the spontaneous dwarf rat at any age examined. Other pituitary cell types, i.e., luteinizing hormone/ follicle stimulating hormone, thyroid stimulating hormone, adrenocorticotropic hormone and prolactin cells, appeared similar in their fine structure to those found in the control rats. In the pituitary gland of dwarf rats, a number of polygonal cells were observed either with no or relatively few secretory granules. The rough endoplasmic reticulum was arranged in parallel cisternae and the Golgi complex was generally prominent in these cells. In addition, many were found to have abundant lysosomes. A few minute secretory granules were occasionally observed; however, the immunogold technique failed to localize growth hormone or prolactin in the granules. The nature of these cells remained obscure in this study. Since their incidence and fine structural features, other than the secretory granules, were quite similar to those of the growth hormone cells in normal rats, we postulate that these cells are dysfunctional growth hormone cells. These results suggest that the cause of the growth impairment in the spontaneous dwarf rat is due to a defect in the functional growth hormone cells in the pituitary gland, and since other pituitary cell types appeared normal, the disorder seems to be analogous to the isolated growth hormone deficiency in the human.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号