首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Interaction between the human immunodeficiency virus type 1 (HIV-1) envelope and the relevant chemokine receptors is crucial for subsequent membrane fusion and viral entry. Although the V3 region of gp120 is known to determine the cell tropism as well as the coreceptor usage, the significance of the binding of the V3 region to the chemokine receptor has not been fully understood. To address this issue, we adopted the pseudotyped virus infection assay in which the V3 region of the T-cell line-tropic (T-tropic) NL4-3 envelope was replaced with a portion of stromal cell-derived factor 1 (SDF-1), the ligand of CXCR4. The V3 region of the NL4-3 envelope expression vector was replaced with three different stretches of SDF-1 cDNA. Expression of each chimeric envelope protein was confirmed by immunoprecipitation and Western blotting. Luciferase reporter viruses were prepared by cotransfection of the pNL4-3.Luc.E(-)R(-) vector and each chimeric envelope expression vector, and the infection assay was then carried out. We showed that pseudotyped viruses with one of the chimeric envelopes, NL4-3/SDF1-51, could infect U87.CD4.CXCR4 but not U87.CD4 or U87.CXCR4 cells and that this infection was inhibited by the ligand of CXCR4, SDF-1beta, by anti-human SDF-1 antibody, or by an anti-CD4 antibody, Leu3a, in a dose-dependent manner. Furthermore, chimeric NL4-3/SDF1-51 gp120 significantly inhibited binding of labeled SDF-1 to CXCR4. It was suggested that replacement of the V3 region of the NL4-3 envelope with SDF-1 preserved the CD4-dependent infectivity of T-tropic HIV-1. These results indicate that binding between the V3 region and the relevant coreceptor is important for viral entry, whether its amino acid sequence is indigenous to the virus or not.  相似文献   

2.
Human immunodeficiency virus type 2 (HIV-2) is generally considered capable of using a broad range of coreceptors. Since HIV-2 variants from individuals with nonprogressive infection were not studied previously, the possibility that broad coreceptor usage is a property of variants associated with progressive infection could not be excluded. To test this, we determined the coreceptor usage of 43 HIV-2 variants isolated from six long-term-infected individuals with undetectable plasma viremia. Using GHOST indicator cells, we showed for the first time that the only coreceptors efficiently used by low-pathogenic HIV-2 variants are CCR5, GPR15 (BOB), and CXCR6 (BONZO). Surprisingly, control HIV-2 variants (n = 45) isolated from seven viremic individuals also mainly used these three coreceptors, whereas use of CCR1, CCR2b, or CCR3 was rare. Nearly a quarter of all HIV-2 variants tested could infect the parental GHOST cells, which could be partially explained by CXCR4 usage. Use of CXCR4 was observed only for HIV-2 variants from viremic individuals. Thirty-eight variants from aviremic and viremic HIV-2-infected individuals were additionally tested in U87 cells. All except one were capable of infecting the parental U87 cells, often with high efficiency. When virus production in parental cells was regarded as background in the coreceptor-transduced cell lines, the results in U87 cells were largely in agreement with the findings in GHOST cells. HIV-2 isolates from aviremic individuals commonly use as coreceptors CCR5, GPR15, and CXCR6, as well as an unidentified receptor expressed by U87 cells. Broad coreceptor usage, therefore, does not appear to be associated with pathogenicity of HIV-2.  相似文献   

3.
The G protein-coupled receptor CXCR4 is a coreceptor, along with CD4, for the human immunodeficiency virus type 1 (HIV-1) and has been implicated in breast cancer metastasis. We studied the binding of the HIV-1 gp120 envelope glycoprotein (gp) to CXCR4 but found that the gp120s from CXCR4-using HIV-1 strains bound nonspecifically to several cell lines lacking human CXCR4 expression. Therefore, we constructed paramagnetic proteoliposomes (CXCR4-PMPLs) containing pure, native CXCR4. CXCR4-PMPLs specifically bound the natural ligand, SDF-1alpha, and the gp120s from CXCR4-using HIV-1 strains. Conformation-dependent anti-CXCR4 antibodies and the CXCR4 antagonist AMD3100 blocked HIV-1 gp120 binding to CXCR4-PMPLs. The gp120-CXCR4 interaction was blocked by anti-gp120 antibodies directed against the third variable (V3) loop and CD4-induced epitopes, structures that have also been implicated in the binding of gp120 to the other HIV-1 coreceptor, CCR5. Compared with the binding of R5 HIV-1 gp120s to CCR5, the gp120-CXCR4 interaction exhibited a lower affinity (K(d) = 200 nm) and was dependent upon prior CD4 binding, even at low temperature. Thus, although similar regions of X4 and R5 HIV-1 gp120s appear to be involved in binding CXCR4 and CCR5, respectively, differences exist in nonspecific binding to cell surfaces, affinity for the chemokine receptor, and CD4 dependence at low temperature.  相似文献   

4.
Lentiviral Nef proteins are key factors for pathogenesis and are known to downregulate functionally important molecules, including CD4 and major histocompatibility complex class I (MHC-I), from the surfaces of infected cells. Recently, we demonstrated that Nef reduces cell surface levels of the human immunodeficiency virus type 1 (HIV-1) entry coreceptor CCR5 (N. Michel, I. Allespach, S. Venzke, O. T. Fackler, and O. T. Keppler, Curr. Biol. 15:714-723, 2005). Here, we report that Nef downregulates the second major HIV-1 coreceptor, CXCR4, from the surfaces of HIV-infected primary CD4 T lymphocytes with efficiencies comparable to those of the natural CXCR4 ligand, stromal cell-derived factor-1 alpha. Analysis of a panel of mutants of HIV-1(SF2) Nef revealed that the viral protein utilized the same signature motifs for downmodulation of CXCR4 and MHC-I, including the proline-rich motif P(73)P(76)P(79)P(82) and the acidic cluster motif E(66)E(67)E(68)E(69.) Expression of wild-type Nef, but not of specific Nef mutants, resulted in a perinuclear accumulation of the coreceptor. Remarkably, the carboxy terminus of CXCR4, which harbors the classical motifs critical for basal and ligand-induced receptor endocytosis, was dispensable for the Nef-mediated reduction of surface exposure. Functionally, the ability of Nef to simultaneously downmodulate CXCR4 and CD4 correlated with maximum-level protection of Nef-expressing target cells from fusion with cells exposing X4 HIV-1 envelopes. Furthermore, the Nef-mediated downregulation of CXCR4 alone on target T lymphocytes was sufficient to diminish cells' susceptibility to X4 HIV-1 virions at the entry step. The downregulation of chemokine coreceptors is a conserved activity of Nef to modulate infected cells, an important functional consequence of which is an enhanced resistance to HIV superinfection.  相似文献   

5.
The biological phenotype of primary human immunodeficiency virus type 1 (HIV-1) isolates varies according to the severity of the HIV infection. Here we show that the two previously described groups of rapid/high, syncytium-inducing (SI) and slow/low, non-syncytium-inducing (NSI) isolates are distinguished by their ability to utilize different chemokine receptors for entry into target cells. Recent studies have identified the C-X-C chemokine receptor CXCR4 (also named fusin or Lestr) and the C-C chemokine receptor CCR5 as the principal entry cofactors for T-cell-line-tropic and non-T-cell-line-tropic HIV-1, respectively. Using U87.CD4 glioma cell lines, stably expressing the chemokine receptor CCR1, CCR2b, CCR3, CCR5, or CXCR4, we have tested chemokine receptor specificity for a panel of genetically diverse envelope glycoprotein genes cloned from primary HIV-1 isolates and have found that receptor usage was closely associated with the biological phenotype of the virus isolate but not the genetic subtype. We have also analyzed a panel of 36 well-characterized primary HIV-1 isolates for syncytium induction and replication in the same series of cell lines. Infection by slow/low viruses was restricted to cells expressing CCR5, whereas rapid/high viruses could use a variety of chemokine receptors. In addition to the regular use of CXCR4, many rapid/high viruses used CCR5 and some also used CCR3 and CCR2b. Progressive HIV-1 infection is characterized by the emergence of viruses resistant to inhibition by beta-chemokines, which corresponded to changes in coreceptor usage. The broadening of the host range may even enable the use of uncharacterized coreceptors, in that two isolates from immunodeficient patients infected the parental U87.CD4 cell line lacking any engineered coreceptor. Two primary isolates with multiple coreceptor usage were shown to consist of mixed populations, one with a narrow host range using CCR5 only and the other with a broad host range using CCR3, CCR5, or CXCR4, similar to the original population. The results show that all 36 primary HIV-1 isolates induce syncytia, provided that target cells carry the particular coreceptor required by the virus.  相似文献   

6.
Chemokine receptor expression may vary dramatically among cell subsets. Therefore, the stage of differentiation and the lineage of CD4 cells may profoundly affect their susceptibility to infection by human immunodeficiency virus type 1 (HIV-1). However, the mechanisms of coreceptor competition for association with HIV-1 glycoproteins remain unknown. Here, we propose mathematical models that address the interdependence of the concentrations of CD4 and CCR5 for efficient infection by M-tropic HIV-1 as well as additional complications originated by coreceptor competition caused by posttranslational modifications that positively or negatively affect the coreceptor ability to form complexes with CD4 and/or HIV-1 envelope. Furthermore, since CCR5 and CXCR4 expression on human leukocytes designate these cells as HIV-1 potential targets, the expression of the major HIV-1 coreceptors are also dynamically modeled/quantified as function of the stage of cell differentiation. Results show that although coreceptor competition degree has limited influence on R5 strain infectivity, the infectivity of CXCR4-using isolates strongly depends on the CD4 expression, according to the coreceptor competition model proposed in Lee et al. [J. Virol. 74(11) (2000) 5016]. Understanding the role of in vivo alterations in CD4, CCR5 and CXCR4 densities on HIV-1 cell entry may help the development of optimal control strategies for AIDS pathogenesis.  相似文献   

7.
Human immunodeficiency virus type 1 (HIV-1) infection of the human thymus results in depletion of CD4-bearing thymocytes. This depletion is initially manifested in the immature CD4+/CD8+ thymocyte subset. To determine cellular factors involved in HIV infection in the thymus, we examined the expression of the recently identified viral coreceptor, CXCR4, on fresh human thymocytes and on human cells from SCID-hu (Thy/Liv) mice. CXCR4 is a member of the chemokine receptor family which is required along with CD4 for entry into the cell of syncytium-inducing (SI) HIV-1 strains. Our analyses show that CXCR4 expression is modulated during T-lymphoid differentiation such that immature thymocytes display an increased frequency and higher surface density of the coreceptor than do more mature cells. In addition, using an SI strain of HIV-1 which directs expression of a reporter protein on the surface of infected cells, we have found that the immature CD4+/CD8+ thymocytes that express the highest levels of both CD4 and CXCR4 are the cells that are preferentially infected and depleted by the virus in vitro. Thus, high levels of both primary receptor and coreceptor may allow efficient infection of the thymus by certain HIV-1 strains. This in part may explain the rapid disease progression seen in some HIV-infected children, where the thymus is actively involved in the production of new T lymphocytes.  相似文献   

8.
Antigenically distinct conformations of CXCR4   总被引:1,自引:0,他引:1       下载免费PDF全文
The major human immunodeficiency virus type 1 (HIV-1) coreceptors are the chemokine receptors CCR5 and CXCR4. The patterns of expression of the major coreceptors and their use by HIV-1 strains largely explain viral tropism at the level of entry. However, while virus infection is dependent upon the presence of CD4 and an appropriate coreceptor, it can be influenced by a number of factors, including receptor concentration, affinity between envelope gp120 and receptors, and potentially receptor conformation. Indeed, seven-transmembrane domain receptors, such as CCR5, can exhibit conformational heterogeneity, although the significance for virus infection is uncertain. Using a panel of monoclonal antibodies (MAbs) to CXCR4, we found that CXCR4 on both primary and transformed T cells as well as on primary B cells exhibited considerable conformational heterogeneity. The conformational heterogeneity of CXCR4 explains the cell-type-dependent ability of CXCR4 antibodies to block chemotaxis to stromal cell-derived factor 1 alpha and to inhibit HIV-1 infection. In addition, the MAb most commonly used to study CXCR4 expression, 12G5, recognizes only a subpopulation of CXCR4 molecules on all primary cell types analyzed. As a result, CXCR4 concentrations on these important cell types have been underestimated to date. Finally, while the factors responsible for altering CXCR4 conformation are not known, we found that they do not involve CXCR4 glycosylation, sulfation of the N-terminal domain of CXCR4, or pertussis toxin-sensitive G-protein coupling. The fact that this important HIV-1 coreceptor exists in multiple conformations could have implications for viral entry and for the development of receptor antagonists.  相似文献   

9.
Coreceptor usage of primary human immunodeficiency virus type 1 (HIV-1) isolates varies according to biological phenotype. The chemokine receptors CCR5 and CXCR4 are the major coreceptors that, together with CD4, govern HIV-1 entry into cells. Since CXCR4 usage determines the biological phenotype for HIV-1 isolates and is more frequent in patients with immunodeficiency, it may serve as a marker for viral virulence. This possibility prompted us to study coreceptor usage by HIV-2, known to be less pathogenic than HIV-1. We tested 11 primary HIV-2 isolates for coreceptor usage in human cell lines: U87 glioma cells, stably expressing CD4 and the chemokine receptor CCR1, CCR2b, CCR3, CCR5, or CXCR4, and GHOST(3) osteosarcoma cells, coexpressing CD4 and CCR5, CXCR4, or the orphan receptor Bonzo or BOB. The indicator cells were infected by cocultivation with virus-producing peripheral blood mononuclear cells and by cell-free virus. Our results show that 10 of 11 HIV-2 isolates were able to efficiently use CCR5. In contrast, only two isolates, both from patients with advanced disease, used CXCR4 efficiently. These two isolates also promptly induced syncytia in MT-2 cells, a pattern described for HIV-1 isolates that use CXCR4. Unlike HIV-1, many of the HIV-2 isolates were promiscuous in their coreceptor usage in that they were able to use, apart from CCR5, one or more of the CCR1, CCR2b, CCR3, and BOB coreceptors. Another difference between HIV-1 and HIV-2 was that the ability to replicate in MT-2 cells appeared to be a general property of HIV-2 isolates. Based on BOB mRNA expression in MT-2 cells and the ability of our panel of HIV-2 isolates to use BOB, we suggest that HIV-2 can use BOB when entering MT-2 cells. The results indicate no obvious link between viral virulence and the ability to use a multitude of coreceptors.  相似文献   

10.
The infection of CD4-negative cells by variants of tissue culture-adapted human immunodeficiency virus type 1 (HIV-1) or HIV-2 strains has been shown to be mediated by the CXCR4 coreceptor. Here we show that two in vitro-established CD4(-)/CCR5(-)/CXCR4(+) human pre-T-cell lines (A3 and A5) can be productively infected by wild-type laboratory-adapted T-cell-tropic HIV-1 and HIV-2 strains in a CD4-independent, CXCR4-dependent fashion. Despite the absence of CCR5 expression, A3 and A5 cells were susceptible to infection by the simian immunodeficiency viruses SIVmac239 and SIVmac316. Thus, at least in A3 and A5 cells, one or more of the chemokine receptors can efficiently support the entry of HIV and SIV isolates in the absence of CD4. These findings suggest that to infect cells of different compartments, HIV and SIV could have evolved in vivo to bypass CD4 and to interact directly with an alternative receptor.  相似文献   

11.
Like human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus (SIV), HIV-2 requires a coreceptor in addition to CD4 for entry into cells. HIV and SIV coreceptor molecules belong to a family of seven-transmembrane-domain G-protein-coupled receptors. Here we show that primary HIV-2 isolates can use a broad range of coreceptor molecules, including CCR1, CCR2b, CCR3, CCR4, CCR5, and CXCR4. Despite broad coreceptor use, the chemokine ligand SDF-1 substantially blocked HIV-2 infectivity of peripheral blood mononuclear cells, indicating that its receptor, CXCR4, was the predominant coreceptor for infection of these cells. However, expression of CXCR4 together with CD4 on some cell types did not confer susceptibility to infection by all CXCR4-using virus isolates. These data therefore indicate that another factor(s) influences the ability of HIV-2 to replicate in human cell types that express the appropriate receptors for virus entry.  相似文献   

12.
Human immunodeficiency virus type 1 (HIV-1) infection in vivo is dependent upon the interaction of the viral envelope glycoprotein gp120 with CC chemokine receptor 5 (CCR5) or CXC chemokine receptor 4 (CXCR4). To study the determinants of the gp120-coreceptor association, we generated a set of chimeric HIV-1 coreceptors which express all possible combinations of the four extracellular domains of CCR5 and CXCR4. Stable U87 astroglioma cell lines expressing CD4 and individual chimeric coreceptor proteins were tested against a variety of R5, X4, and R5X4 envelope glycoproteins and virus strains for their ability to support HIV-1-mediated cell fusion and infection, respectively. Each of the cell lines promoted fusion with cells expressing an HIV envelope glycoprotein, except for U87.CD4.5455, which presents the first extracellular loop (ECL1) and flanking sequences of CXCR4 in the context of CCR5. However, all of the chimeric coreceptors allowed productive infection by one or more of the viral strains tested. Viral phenotype was a predictive factor for the observed activity of the chimeric molecules; X4 and R5X4 HIV strains utilized a majority of the chimeras, while R5 strains were limited in their ability to infect cells expressing these chimeric molecules. The expression of CCR5 ECL2 within the CXCR4 backbone supported infection by an R5 primary isolate, but no chimeras bearing the N terminus of CCR5 exhibited activity with R5 strains. Remarkably, the introduction of any CXCR4 domain into the CCR5 backbone was sufficient to allow utilization by multiple X4 strains. However, critical determinants within ECL2 and/or ECL3 of CXCR4 were apparent for all X4 viruses upon replacement of these domains in CXCR4 with CCR5 sequences. Unexpectedly, chimeric coreceptor-facilitated entry was blocked in all cases by the presence of the CXCR4-specific inhibitor AMD3100. Our data provide proof that CCR5 contains elements that support usage by X4 viral strains and demonstrate that the gp120 interaction sites of CCR5 and CXCR4 are structurally related.  相似文献   

13.
Mbemba E  Saffar L  Gattegno L 《FEBS letters》2002,514(2-3):209-213
CXCR4 is a coreceptor, along with CD4, for human immunodeficiency virus type 1 (HIV-1). Trimolecular complexes between HIV-1 glycoprotein (gp)120, CD4 and CXCR4 constitute a prerequisite for HIV entry. We studied whether CD4 is associated with CXCR4 on CD4+ CXCR4+ cells. Using the conformation-dependent anti-CXCR4 mAb 12G5, CD4 was coimmunoprecipitated with CXCR4 from the membrane of U937 cells which support HIV-1(LAI) efficient infection, and from that of peripheral blood lymphocytes (PBL). CD4 association with CXCR4 increased upon PBL coculture for 5 days with autologous monocytes, decreased upon treatment of the cells or the CD4-CXCR4 complex with either N-glycanase or stromal cell derived factor-1alpha (SDF-1alpha) and was abolished by incubation of the cells with both, N-glycanase and SDF-1alpha. This indicates that glycans are partly involved in CD4 association with CXCR4 and may partly explain the inhibitory effect of SDF-1alpha on HIV infection.  相似文献   

14.
The NL4.3 T-cell-line-tropic human immunodeficiency virus type 1 strain is sensitive to the CXC chemokine stromal cell-derived factor 1α (SDF-1α), the natural ligand for CXC chemokine receptor 4 (CXCR4); the 50% inhibitory concentration (IC50) in MT-4 cells is 130 ng/ml. We generated resistant virus through passaging of the virus in the presence of increasing concentrations of SDF-1α. After 24 passages, the virus was no longer sensitive to SDF-1α (SDF-1αres virus) (IC50, >2 μg/ml) and became resistant to SDF-1β (IC50, >2 μg/ml) and to a specific CXCR4 monoclonal antibody (IC50, >20 μg/ml). The SDF-1αres virus was about 10-fold less sensitive than the wild-type virus to the bicyclam AMD3100, a specific CXCR4 antagonist. The SDF-1αres virus contained the following mutations in the gp120 molecule: N106K in the V1 loop; S134N and F145L in the V2 loop; F245I in the C2 loop; K269E, Q278H, I288V, and N293D in the V3 loop; a deletion of 5 amino acids (FNSTW) at positions 364 to 368 in the V4 loop; and R378T in the CD4 binding domain. Replication of the NL4.3 wild-type virus and the SDF-1αres virus was demonstrated in U87 cells that coexpressed CD4 and CXCR4 (U87.CD4.CXCR4) but not in U87.CD4.CCR5 cells. Thus, the resistant virus was not able to switch to the CC chemokine receptor 5 (CCR5) coreceptor (the main coreceptor for macrophage-tropic viruses). The SDF-1αres virus replicated in HOS.CD4 cells expressing CCR1, CCR2b, CCR3, CCR4, CCR5, and CXCR4 but also in HOS.CD4.pBABE cells. However, all HOS transfectant cells expressed a low level of CXCR4. Neither of the two virus strains was able to infect HOS.CXCR4 or HOS.CCR5 transfectants, demonstrating the necessity of the CD4 receptor. The T-cell-line-tropic SDF-1αres virus was thus able to overcome the inhibitory effect of SDF-1α through mutations in gp120 but still needed CXCR4 to enter the cells.  相似文献   

15.
Follicular dendritic cells (FDCs) represent a major reservoir of HIV, and active infection occurs surrounding these cells, suggesting that this microenvironment is highly conducive to virus transmission. Because CD4 T cells around FDCs in germinal centers express the HIV coreceptor, CXCR4, whereas CD4 lymphocytes in many other sites do not, it prompted the hypothesis that FDCs may increase CXCR4 expression on CD4 T cells, thereby facilitating infection. To test this, HIV receptor/coreceptor expression was determined on CD4 T cells cultured with or without FDCs, and its consequence to infection was assessed by measuring virus binding and entry. FDCs had little effect on CCR5 or CD4 expression but increased CXCR4 expression on CD4 T cells. FDC-mediated up-regulation of CXCR4 on CD4 T cells occurred by 24 h and was sustained for at least 96 h in vitro, and FDC-CD4 T cell contact was necessary. Importantly, increased CXCR4 expression directly correlated with increased binding and entry of HIV-1 X4 isolates. Furthermore, CD4(+)CD57(+) germinal center T cells expressed high levels of CXCR4 and supported enhanced entry of X4 HIV compared with other CD4 T cells from the same tissue. Thus, in addition to serving as a reservoir of infectious virus, FDCs render surrounding germinal center T cells highly susceptible to infection with X4 isolates of HIV-1.  相似文献   

16.
The interaction of the chemokine stromal cell-derived factor 1 (SDF-1) with its receptor CXCR4 is vital for cell trafficking during development, is capable of inhibiting human immunodeficiency virus type 1 (HIV-1) utilization of CXCR4 as a coreceptor, and has been implicated in delaying disease progression to AIDS in vivo. Because of the importance of this chemokine-chemokine receptor pair to both development and disease, we investigated the molecular basis of the interaction between CXCR4 and its ligands SDF-1 and HIV-1 envelope. Using CXCR4 chimeras and mutants, we determined that SDF-1 requires the CXCR4 amino terminus for binding and activates downstream signaling pathways by interacting with the second extracellular loop of CXCR4. SDF-1-mediated activation of CXCR4 required the Asp-Arg-Tyr motif in the second intracellular loop of CXCR4, was pertussis toxin sensitive, and did not require the distal C-terminal tail of CXCR4. Several CXCR4 mutants that were not capable of binding SDF-1 or signaling still supported HIV-1 infection, indicating that the ability of CXCR4 to function as a coreceptor is independent of its ability to signal. Direct binding studies using the X4 gp120s HXB, BH8, and MN demonstrated the ability of HIV-1 gp120 to bind directly and specifically to the chemokine receptor CXCR4 in a CD4-dependent manner, using a conformationally complex structure on CXCR4. Several CXCR4 variants that did not support binding of soluble gp120 could still function as viral coreceptors, indicating that detectable binding of monomeric gp120 is not always predictive of coreceptor function.  相似文献   

17.
Cell surface receptors exploited by human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) for infection are major determinants of tropism. HIV-1 usually requires two receptors to infect cells. Gp120 on HIV-1 virions binds CD4 on the cell surface, triggering conformational rearrangements that create or expose a binding site for a seven-transmembrane (7TM) coreceptor. Although HIV-2 and SIV strains also use CD4, several laboratory-adapted HIV-2 strains infect cells without CD4, via an interaction with the coreceptor CXCR4. Moreover, the envelope glycoproteins of SIV of macaques (SIV(MAC)) can bind to and initiate infection of CD4(-) cells via CCR5. Here, we show that most primary HIV-2 isolates can infect either CCR5(+) or CXCR4(+) cells without CD4. The efficiency of CD4-independent infection by HIV-2 was comparable to that of SIV, but markedly higher than that of HIV-1. CD4-independent HIV-2 strains that could use both CCR5 and CXCR4 to infect CD4(+) cells were only able to use one of these receptors in the absence of CD4. Our observations therefore indicate (i) that HIV-2 and SIV envelope glycoproteins form a distinct conformation that enables contact with a 7TM receptor without CD4, and (ii) the use of CD4 enables a wider range of 7TM receptors to be exploited for infection and may assist adaptation or switching to new coreceptors in vivo. Primary CD4(-) fetal astrocyte cultures expressed CXCR4 and supported replication by the T-cell-line-adapted ROD/B strain. Productive infection by primary X4 strains was only triggered upon treatment of virus with soluble CD4. Thus, many primary HIV-2 strains infect CCR5(+) or CXCR4(+) cell lines without CD4 in vitro. CD4(-) cells that express these coreceptors in vivo, however, may still resist HIV-2 entry due to insufficient coreceptor concentration on the cell surface to trigger fusion or their expression in a conformation nonfunctional as a coreceptor. Our study, however, emphasizes that primary HIV-2 strains carry the potential to infect CD4(-) cells expressing CCR5 or CXCR4 in vivo.  相似文献   

18.
19.
Human immunodeficiency virus type 1 (HIV-1) preferentially utilizes the CCR5 coreceptor for target cell entry in the acute phase of infection, while later in disease progression the virus switches to the CXCR4 coreceptor in approximately 50% of patients. In response to HIV-1 the adaptive immune response is triggered, and antibody (Ab) production is elicited to block HIV-1 entry. We recently determined that dendritic cells (DCs) can efficiently capture Ab-neutralized HIV-1, restore infectivity, and transmit infectious virus to target cells. Here, we tested the effect of Abs on trans transmission of CCR5 or CXCR4 HIV-1 variants. We observed that transmission of HIV-1 by immature as well as mature DCs was significantly higher for CXCR4- than CCR5-tropic viral strains. Additionally, neutralizing Abs directed against either the gp41 or gp120 region of the envelope such as 2F5, 4E10, and V3-directed Abs inhibited transmission of CCR5-tropic HIV-1, whereas Ab-treated CXCR4-tropic virus demonstrated unaltered or increased transmission. To further study the effects of coreceptor usage we tested molecularly cloned HIV-1 variants with modifications in the envelope that were based on longitudinal gp120 V1 and V3 variable loop sequences from a patient progressing to AIDS. We observed that DCs preferentially facilitated infection of CD4+ T lymphocytes of viral strains with an envelope phenotype found late in disease. Taken together, our results illustrate that DCs transmit CXCR4-tropic HIV-1 much more efficiently than CCR5 strains; we hypothesize that this discrimination could contribute to the in vivo coreceptor switch after seroconversion and could be responsible for the increase in viral load.  相似文献   

20.
CXCR4 (also termed fusin, LESTR, or HUMSTR) is a member of the G-protein-coupled chemokine receptor family with seven membrane-spanning domains. CXCR4 acts as a coreceptor for syncytium-inducing human immunodeficiency virus type 1 (HIV-1) strains, conferring entry into CD4+ cells. We show here that a novel mouse monoclonal antibody (12G5) that recognizes CXCR4 blocked cell-to-cell fusion and cell free-virus infection of CXCR4+ CD4+ RD rhabdomyosarcoma cells by seven HIV-1 and HIV-2 strains that had various cell tropisms for different CD4+ human cell types. Yet the majority of the members of the same virus panel resisted 12G5 inhibition on T-cell lines. When inhibition was observed on these cell types, it was both cell type and virus strain dependent. In at least one situation, 12G5 failed to block LAI infection of cells expressing CXCR4 as the only available coreceptor. Our observations suggest that CXCR4 could be processed or presented differently depending on the cell type, allowing some strains to evade 12G5 inhibition. Alternatively, since several of the viruses could infect certain CXCR4- CD4+ cell lines, it is conceivable that alternative coreceptors are active, enabling individual HIV strains to choose between compatible coreceptors during entry into cells. Moreover, the strain dependency of 12G5 inhibition implies that the interaction of different HIVs with CXCR4 varies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号