首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Somogyi GT  de Groat WC 《Life sciences》1999,64(6-7):411-418
Presynaptic M1 muscarinic receptors on parasympathetic nerve terminals in rat urinary bladder strips are involved in an autofacilitatory mechanism that markedly enhances acetylcholine release during continuous electrical field stimulation. The facilitatory muscarinic mechanism is dependent upon a PKC mediated second messenger pathway and influx of extracellular Ca2+ into the parasympathetic nerve terminals via L and N-type Ca2+ channels. Prejunctional muscarinic facilitation has also been detected in human bladders. The muscarinic facilitatory mechanism is upregulated in hyperactive bladders from chronic spinal cord transected rats; and the facilitation in these preparations is primarily mediated by M3 muscarinic receptors. Presynaptic muscarinic receptors represent a new target for pharmacological treatment of bladder hyperactivity. If presynaptic facilitation is restricted to the bladder and not present in other tissues then drugs acting at this site might be expected to exhibit uroselectivity.  相似文献   

2.
Cui YY  Zhu L  Wang H  Advenier C  Chen HZ  Devillier P 《Life sciences》2008,82(17-18):949-955
Gastro-oesophageal acid reflux may cause airway responses such as cough, bronchoconstriction and inflammation in asthmatic patients. Studies in humans or in animals have suggested that these responses involve cholinergic nerves. The purpose of this study was to investigate the role of the efferent vagal component on airway microvascular leakage induced by instillation of hydrochloric acid (HCl) into the oesophagus of guinea-pigs and the subtype of muscarinic receptors involved. Airway microvascular leakage induced by intra-oesophageal HCl instillation was abolished by bilateral vagotomy or by the nicotinic receptor antagonist, hexamethonium. HCl-induced leakage was inhibited by pretreatment with atropine, a non-specific muscarinic receptor antagonist, and also by pretreatment with either pirenzepine, a muscarinic M(1) receptor antagonist, or 4-DAMP, a muscarinic M(3) receptor antagonist. Pirenzepine was more potent than atropine and 4-DAMP. These antagonists were also studied on airway microvascular leakage or bronchoconstriction induced by intravenous administration of acetylcholine (ACh). Atropine, pirenzepine and 4-DAMP inhibited ACh-induced airway microvascular leakage with similar potencies. In sharp contrast, 4-DAMP and atropine were more potent inhibitors of ACh-induced bronchoconstriction than pirenzepine. Methoctramine, a muscarinic M(2) receptor antagonist, was ineffective in all experimental conditions. These results suggest that airway microvascular leakage caused by HCl intra-oesophageal instillation involves ACh release from vagus nerve terminals and that M(1) and M(3) receptors play a major role in cholinergic-mediated microvascular leakage, whereas M(3) receptors are mainly involved in ACh-induced bronchoconstriction.  相似文献   

3.
Using intracellular recording and immunohistochemistry, we studied the presynaptic muscarinic autoreceptor subtypes controlling ACh release in the neuromuscular junctions of the newborn (3-6 days postnatal) and adult (30-40 days) rat. In the Levator auris longus muscles of both newborn and adult rats, acetylcholine release was modified by the M1-receptor selective antagonists pirenzepine (10 microM) and MT-7 (100 nM) and by the M2-receptor selective antagonists methoctramine (1 microM) and AF-DX 116 (10 microM). The M4-receptor selective antagonists tropicamide (1 microM) and MT-3 (100 nM) can also modify the neurotransmitter release in certain synapses of the newborn muscles. The neurotransmitter release was not altered by the M3-receptor selective antagonist 4-DAMP (1 microM) in the adult or newborn rats. However, we directly demonstrate by immunocytochemistry the presence of these receptors in the motor endplates and conclude that M1-, M2-, M3- and M4-type muscarinic receptors are present in all the neuromuscular junctions of the rat muscle both in newborn and adult animals. These receptors may be located in the perisynaptic glial cell as well as at the nerve terminals.  相似文献   

4.
Acetylcholine (ACh), a major neurotransmitter from the autonomic nervous system, regulates the cholinergic stimulation of insulin secretion, through interactions with muscarinic receptors. The present study has characterised the individual involvement of muscarinic receptor subtypes in ACh-induced insulin secretion, using clonal beta cells and selective muscarinic receptor antagonists. BRIN BD11 cells clearly expressed mRNA encoding m1--m4 whereas m5 was not detected by RT-PCR. Insulin release was measured from BRIN BD11 cells treated with ACh in the presence of muscarinic receptor antagonists at concentrations ranging from 3 nM to 1 microM. 300 nM of muscarinic toxin-3 (M4 antagonist) and 1 microM of methoctramine (M2 antagonist) increased ACh (100 microM) stimulated insulin secretion by 168% and 50% respectively (ANOVA, P<0.05). The antagonists alone had no effect on insulin secretion. In contrast, 300 nM of pirenzepine (M1 antagonist) and 30 nM of hexahydro-sila-difenidol p-fluorohydrochloride (M3 antagonist) inhibited ACh stimulation by 91% and 84% respectively (ANOVA, P<0.01). It is concluded that ACh acts on different receptor subtypes producing both a stimulatory and an inhibitory action on insulin release.  相似文献   

5.
Acetylcholine (ACh), a major neurotransmitter from the autonomic nervous system, regulates the cholinergic stimulation of insulin secretion, through interactions with muscarinic receptors. The present study has characterised the individual involvement of muscarinic receptor subtypes in ACh-induced insulin secretion, using clonal β cells and selective muscarinic receptor antagonists. BRIN BD11 cells clearly expressed mRNA encoding m1–m4 whereas m5 was not detected by RT-PCR. Insulin release was measured from BRIN BD11 cells treated with ACh in the presence of muscarinic receptor antagonists at concentrations ranging from 3 nM to 1 μM. 300 nM of muscarinic toxin-3 (M4 antagonist) and 1 μM of methoctramine (M2 antagonist) increased ACh (100 μM) stimulated insulin secretion by 168% and 50% respectively (ANOVA, P<0.05). The antagonists alone had no effect on insulin secretion. In contrast, 300 nM of pirenzepine (M1 antagonist) and 30 nM of hexahydro-sila-difenidol p-fluorohydrochloride (M3 antagonist) inhibited ACh stimulation by 91% and 84% respectively (ANOVA, P<0.01). It is concluded that ACh acts on different receptor subtypes producing both a stimulatory and an inhibitory action on insulin release.  相似文献   

6.
We investigated the effect of preconditioning on ischemia-reperfusion injury in the rat bladder. Rat abdominal aorta was clamped with a small clip to induce ischemia-reperfusion injury in the bladder. Twelve-week-old male SD rats were divided into three groups; sham-operated control (Cont), 30 min ischemia-60 min reperfusion (IR) and three times of 5 min ischemia and then 30 min ischemia-60 min reperfusion (PC) groups. The bladder functions were estimated by cystometric and functional studies. Contractile response curves to increasing concentrations of carbachol were constructed in the absence and presence of various concentrations of subtype selective muscarinic antagonists, i.e. atropine (non-selective), pirenzepine (M1 selective), methoctramine (M2 selective), and 4-DAMP (M1/M3 selective). We also measured tissue levels of malonaldehyde (MDA) and examined possible histological changes in these rats' bladders. Preconditioning partially prevented the reduction of bladder dysfunction induced by ischemia-reperfusion. Estimation of the pA2 values for atropine, pirenzepine, methoctramine, and 4-DAMP indicates that the carbachol-induced contractile response in bladder dome is mediated through the M3 receptor subtype in all groups. The MDA concentration in the IR group was significantly larger than that of the control group, and preconditioning significantly reduced MDA production in the bladder. In histological studies, the ischemia-reperfusion with or without preconditioning caused infiltration of leukocytes and rupture of microcirculation in the regions of submucosa and smooth muscle without a corresponding sloughing of mucosal cells. Our data indicate that preconditioning has a beneficial effect on ischemia-reperfusion injury in the rat bladder.  相似文献   

7.
Neurally intact (NI) rats and chronic spinal cord injured (SCI) rats were studied to determine how activation of mechanosensory or cholinergic receptors in the bladder urothelium evokes ATP release from afferent terminals in the bladder as well as in the spinal cord. Spinal cord transection was performed at the T(9)-T(10) level 2-3 weeks prior to the experiment and a microdialysis fiber was inserted in the L(6)-S(1) lumbosacral spinal cord one day before the experiments. Mechanically evoked (i.e. 10 cm/W bladder pressure) ATP release into the bladder lumen was approximately 6.5-fold higher in SCI compared to NI rats (p<0.05). Intravesical carbachol (CCh) induced a significantly greater release of ATP in the bladder from SCI as compared to NI rats (3424.32+/-1255.57 pmol/ml versus 613.74+/-470.44 pmol/ml, respectively, p<0.05). However, ATP release in NI or SCI rats to intravesical CCh was not affected by the muscarinic antagonist atropine (Atr). Spinal release of ATP to bladder stimulation with 10 cm/W pressure was five-fold higher in SCI compared to NI rats (p<0.05). CCh also induced a significantly greater release of spinal ATP in SCI rats compared to controls (4.3+/-0.9 pmol versus 0.90+/-0.15 pmol, p<0.05). Surprisingly, the percent inhibitory effect of Atr on CCh-induced ATP release was less pronounced in SCI as compared to NI rats (49% versus 89%, respectively). SCI induces a dramatic increase in intravesical pressure and cholinergic receptor evoked bladder and spinal ATP release. Muscarinic receptors do not mediate intravesical CCh-induced ATP release into the bladder lumen in NI or SCI rats. In NI rats sensory muscarinic receptors are the predominant mechanism by which CCh induces ATP release from primary afferents within the lumbosacral spinal cord. Following SCI, however, nicotinic or purinergic receptor mechanisms become active, as evidenced by the fact that Atr was only partially effective in inhibiting CCh-induced spinal ATP release.  相似文献   

8.
R Hammer  A Giachetti 《Life sciences》1982,31(26):2991-2998
The heterogeneity of muscarinic receptors was examined in sympathetic ganglia and atria by “in vitro” binding techniques and functional studies. As tools we have used the classical antagonist atropine, the selective antagonist pirenzepine and the unique muscarinic agonist McN-A-343. In binding studies atropine showed similar affinities to muscarinic sites in ganglionic and atrial membranes with dissociation constants of 1.1 and 3.2 nM, respectively. In contrast, pirenzepine displayed a distinctly different binding profile. In atria it bound to an homogenous population of low affinity sites (diss. const. 620 nM) while in ganglia it revealed the presence of two sites: a major population of high affinity sites (diss. const. 11 nM) and a minor one of lower affinity (diss. const. 280 nM). The functional correlate of the receptor properties in the two tissues was studied in the pithed rat by measuring A) the increase of arterial pressure evoked by McN-A-343 through selective activation of muscarinic receptors in ganglia and B) the bradycardia elicited by acetylcholine release in the heart through vagal stimulation. Mirroring the “in vitro” binding data atropine inhibited both muscarinic responses in the same narrow range of doses (2–30 μg/kg i.v.) whereas pirenzepine showed similar potency to atropine in inhibiting ganglionic stimulation (ED50 4.1 μg/kg i.v.) but was almost two orders of magnitude weaker in blocking vagal bradycardia (ED50 172 μg/kg i.v.). These data suggest that McN-A-343 and pirenzepine act selectively on a common muscarinic receptor subtype, a finding which agrees with the view that muscarinic receptors are heterogenous and that excitatory ganglionic receptors (Ml) are distinguishable from those (M2) present in effector organs like smooth muscle and heart.  相似文献   

9.
Isolated mouse islets were used to identify the muscarinic receptor subtype present in pancreatic B-cells. We thus compared the inhibitory potencies of atropine (non-specific), of pirenzepine (specific for M1 receptors) and of compound AF-DX 116 (specific for cardiac M2 receptors) on acetylcholine-induced insulin release, 86Rb+ efflux and 45Ca2+ efflux. The three antagonists inhibited all effects of acetylcholine, but EC50 values were markedly different: atropine = 1.5-5 nM, pirenzepine = 0.6-1.7 microM and AF-DX 116 = 1.7-11 microM. The results did not suggest that the various effects of ACh could result from the activation of different subtypes of receptors. It is concluded that muscarinic receptors of pancreatic B-cells belong to an M2 subtype distinct from the cardiac M2 receptors.  相似文献   

10.
The effect of McN-A-343 and oxotremorine on acetylcholine (ACh) release and choline (Ch) transport was studied in corticocerebral synaptosomes of the guinea pig. The synaptosomes were preloaded with [3H]Ch after treatment with the irreversible cholinesterase inhibitor, diisopropyl fluorophosphate, and then tested for their ability to release isotope-labeled ACh and Ch in the presence and absence of these agents. The kinetics of release were determined at the resting state (basal release) and in the presence of 50 mM K+. Under either condition, McN-A-343 enhanced the release of isotope-labeled ACh, whereas oxotremorine inhibited the K(+)-evoked release but had no effect on the basal release. The enhancing effect of McN-A-343 on basal ACh release was fully blocked by the selective M1 muscarinic antagonist, pirenzepine (100 nM). In contrast to its enhancing effect on ACh release, McN-A-343 potently inhibited Ch efflux as well as Ch influx. These effects were not blocked by atropine, a nonselective muscarinic antagonist. Oxotremorine had no effect on Ch transport. Binding studies showed that McN-A-343 was 3.6-fold more potent in displacing radiolabeled quinuclidinyl benzilate from cerebral cortex muscarinic receptors (mostly M1 subtype) than from cerebellar receptors (mostly M2 subtype), whereas oxotremorine was 2.6-fold more potent in the cerebellum. The displacements of radio-labeled pirenzepine and cis-dioxolane confirmed the M1 subtype preference of McN-A-343 and the M2 subtype preference of oxotremorine.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Mucus glycoproteins (MGP) are high-molecular-weight glycoconjugates that are released from submucosal glands and epithelial goblet cells in the respiratory tract. Muscarinic receptors have an important role in the regulation of human nasal glandular secretion and mucus production, but it is not known which of the five muscarinic receptor subtypes are involved. The effect of nonselective and M1-, M2-, and M3-selective muscarinic antagonists on methacholine (MCh)-induced MGP secretion from human nasal mucosal explants was tested in vitro. MGP was assayed by enzyme-linked immunosorbent assay using a specific anti-MGP monoclonal antibody (7F10). MCh (100 microM) induced MGP secretion up to 127% compared with controls. MCh-induced MGP release was significantly inhibited by atropine (100 microM), the M, receptor antagonist pirenzepine (10-100 microM), and the M3 receptor antagonist 4-diphenylacetoxy-N-methylpiperidine methiodide (4-DAMP; 1-100 microM). 4-DAMP significantly inhibited MCh-induced MGP release at a lower concentration (1 microM) than pirenzepine (10 microM). The M2 receptor antagonists AF-DX 116 and gallamine (both at 100 microM) had no effect. No antagonist alone had a significant effect on MGP release. These results indicate that the M1 and M3 muscarinic receptor subtypes regulate MGP secretion from human nasal mucosa and suggest that the M3 receptor has the predominant effect.  相似文献   

12.
Muscarinic receptors in brain membranes from honey bees, houseflies, and the American cockroach were identified by their specific binding of the non-selective muscarinic receptor antagonist [3H]quinuclidinyl benzilate ([3H]QNB) and the displacement of this binding by agonists as well as subtype-selective antagonists, using filtration assays. The binding parameters, obtained from Scatchard analysis, indicated that insect muscarinic receptors, like those of mammalian brains, had high affinities for [3H]QNB (KD = 0.47 nM in honey bees, 0.17 nM in houseflies and 0.13 nM in the cockroach). However, the receptor concentration was low (108, 64.7, and 108 fmol/mg protein for the three species, respectively). The association and dissociation rates of [3H]QNB binding to honey bee brain membranes, sensitivity of [3H]QNB binding to muscarinic agonists, and high affinity for atropine were also features generally similar to muscarinic receptors of mammalian brains. In order to further characterize the three insect brain muscarinic receptors, the displacement of [3H]QNB binding by subtype-selective antagonists was studied. The rank order of potency of pirenzepine (PZ), the M1 selective antagonist, 11-[2-[dimethylamino)-methyl)1-piperidinyl)acetyl)-5,11- dihydro-6H-pyrido(2,3-b)-(1,4)-benzodiazepin-6 one (AF-DX 116), the M2-selective antagonist, and 4-DAMP (4-diphenylacetoxy-N-methylpiperidine methiodide) the M3-selective antagonist, was also the same as that of mammalian brains, i.e., 4-DAMP greater than PZ greater than AF-DX 116. The three insect brain receptors had 27-50-fold lower affinity for PZ (Ki 484-900 nM) than did the mammalian brain receptor (Ki 16 nM), but similar to that reported for the muscarinic receptor subtype cloned from Drosophila. Also, the affinity of insect receptors for 4-DAMP (Ki 18.9-56.6 nM) was much lower than that of the M3 receptor, which predominates in rat submaxillary gland (Ki of 0.37 nM on [3H]QNB binding). These drug specificities of muscarinic receptors of brains from three insect species suggest that insect brains may be predominantly of a unique subtype that is close to, though significantly different from, the mammalian M3 subtype.  相似文献   

13.
The effects of mechanoreceptor stimulation and subsequent ATP release in spinal cord injured and normal bladders was examined to demonstrate if spinal cord injury (SCI) modulates the basal or evoked release of ATP from bladder urothelium and whether intravesical botulinum toxin A (BTX-A) administration inhibits urothelial ATP release, a measure of sensory nerve activation. A Ussing chamber was used to isolate and separately measure resting and mechanoreceptor evoked (e.g. hypoosmotic stimulation) ATP release from urothelial and serosal sides of the bladder. Following spinal cord injury, resting urothelial release of ATP was ninefold higher than that of normal rats. Botulinum toxin A instillation did not significantly affect the resting release of ATP after spinal cord injury. Evoked ATP release following hypoosmotic stimulation was significantly higher in chronic spinal cord injured compared to normal rat bladders. However, botulinum toxin A treatment markedly reduced ATP release in spinal cord injured bladders by 53% suggesting that ATP release by mechanoreceptor stimulation, as opposed to basal release, occurs by exocytotic mechanisms. In contrast, there was no significant difference in basal or evoked ATP release from bladder serosa following spinal cord injury. Moreover, intravesical instillation of botulinum toxin A did not affect ATP release from the serosal side after spinal cord injury, suggesting that its effects were confined to the urothelial side of the bladder preparation. In summary: (1) increased release of ATP from the urothelium of spinal cord injured bladders may contribute to the development of bladder hyperactivity and, (2) mechanoreceptor stimulated vesicular ATP release, as opposed to basal non-vesicular release of ATP, is significantly inhibited in spinal cord injured bladders by intravesical instillation of botulinum toxin A. These results may have important relevance in our understanding of the mechanisms underlying plasticity of bladder afferent pathways following SCI.  相似文献   

14.
In vitro bladder contractions in response to cumulative carbachol doses were measured in the presence of selective muscarinic antagonists from rats which had their major pelvic ganglion bilaterally removed (denervation, DEN) or from rats in which the spinal cord was injured (SCI) via compression. DEN induced both hypertrophy (505+/-51 mg bladder weight) and a supersensitivity of the bladders to carbachol (EC50=0.7+/-0.1 uM). Some of the SCI rats regained the ability to void spontaneously (SPV). The bladders of these animals weighed 184+/-17 mg, significantly less than the bladders of non voiding rats (NV, 644+/-92 mg). The potency of carbachol was greater in bladder strips from NV SCI animals (EC50=0.54+/-0.1 uM) than either bladder strips from SPV SCI (EC50=0.93+/-0.3 microM), DEN or control (EC50=1.2+/-0.1 microM) animals. Antagonist affinities in control bladders for antagonism of carbachol induced contractions were consistent with M3 mediated contractions. Antagonist affinities in DEN bladders for 4-diphenlacetoxy-N-methylpiperidine methiodide (4-DAMP, 8.5) and para fluoro hexahydrosilodifenidol (p-F-HHSiD, 6.6); were consistent with M2 mediated contractions, although the methoctramine affinity (6.5) was consistent with M3 mediated contractions. p-F-HHSiD inhibited carbachol induced contraction with an affinity consistent with M2 receptors in bladders from NV SCI (pKb=6.4) animals and M3 receptors in bladders from SPV SCI animals (pKb=7.9). Subtype selective immunoprecipitation of muscarinic receptors revealed an increase in total and an increase in M2 receptor density with no change in M3 receptor density in bladders from DEN and NV SCI animals compared to normal or sham operated controls. M3 receptor density was lower in bladders from SPV SCI animals while the M2 receptor density was not different from control. This increase in M2 receptor density is consistent with the change in affinity of the antagonists for inhibition of carbachol induced contractions and may indicate that M2 receptors or a combination of M2 and M3 receptors directly mediate smooth muscle contraction in bladders from DEN and NV SCI rats.  相似文献   

15.
M(3) muscarinic receptors mediate cholinergic-induced contraction in most smooth muscles. However, in the denervated rat bladder, M(2) receptors participate in contraction because M(3)-selective antagonists [para-fluoro-hexahydro-sila-diphenidol (p-F-HHSiD) and 4-DAMP] have low affinities. However, the affinity of the M(2)-selective antagonist methoctramine in the denervated bladder is consistent with M(3) receptor mediating contraction. It is possible that two pathways interact to mediate contraction: one mediated by the M(2) receptor and one by the M(3) receptor. To determine whether an interaction exists, the inhibitory potencies of combinations of methoctramine and p-F-HHSiD for reversing cholinergic contractions were measured. In normal bladders, all combinations gave additive effects. In denervated bladders, synergistic effects were seen with the 10:1 and 1:1 (methoctramine:p-F-HHSiD wt/wt) combinations. After application of the sarcoplasmic reticulum ATPase inhibitor thapsigargin to normal tissue, the 10:1 and 1:1 ratios became synergistic, mimicking denervated tissue. Thus in normal bladders both M(2) and M(3) receptors can induce contraction. In the denervated bladder, the M(2) and the M(3) receptors interact in a facilitatory manner to mediate contraction.  相似文献   

16.
Caveolin-1 (Cav1), a structural protein of caveolae, plays cell- and context-dependent roles in signal transduction pathway regulation. We have generated a knockout mouse homozygous for a null mutation of the Cav1 gene. Cav1 knockout mice exhibited impaired urinary bladder contractions in vivo during cystometry. Contractions of male bladder strips were evoked with electric and pharmacologic stimulation (5–40 Hz, 1–10 μM carbachol, 10 mM ,β-methylene ATP, 100 mM KCl). Acetylcholine (ACh) and norepinephrine (NE) release from bladder strips were measured with a radiochemical method by incubating the strips with 14C-choline and 3H-NE prior to electric stimulation, whereas ATP release was measured using the luciferin-luciferase assay with a luminometer. A 60–75% decline in contractility was observed when Cav1 knockout muscle strips were stimulated with electric current or carbachol, compared to wildtype muscle strips. No difference in contractility was noted when contractions were evoked either by the purinergic agonist ,β-methylene ATP, or by extracellular potassium. To investigate the relative contribution of non-cholinergic activity to bladder contractility, the amplitude of the electric stimulation-evoked contractions was compared in the presence of the muscarinic antagonist atropine (1 μM). While the non-muscarinic (purinergic) response was unaltered, muscarinic cholinergic response was principally disrupted in Cav1 knockout mice. The loss of Cav1 gene expression was also associated with a 70% reduction in ACh release. NE and ATP release was not altered. It is concluded that the loss of caveolin-1 is associated with disruption of M3 muscarinic cholinergic activity in the bladder. Both pre-junctional (acetylcholine neurotransmitter release from neuromuscular junctions) and post-junctional (M3 receptor-mediated signal transduction in bladder smooth muscles) mechanisms are disrupted, resulting in impaired bladder contraction.  相似文献   

17.
The vascular response to the muscarinic receptor agonist acetylcholine (ACh) in the presence of selected antagonists was examined in the isolated blood-perfused canine left lower lung lobe under conditions of normal (resting) and elevated vascular tone. At normal vascular tone, ACh (1-5 mumol) produced a dose-dependent increase in pulmonary arterial pressure (Ppa), total pulmonary vascular resistance (PVR), and downstream resistance (Rds) without altering upstream resistance (Rus). Pirenzepine (50 and 100 nM), the prototype M1-selective antagonist, and gallamine, an M2-selective antagonist, as well as atropine (50 nM) and secoverine (100 nM), nonselective antagonists, attenuated (P less than 0.05) the ACh-induced increase in Ppa and Rds. With elevated vascular tone induced by serotonin infusion, ACh produced a dose-dependent increase in Ppa in 19 of 25 lobes, although Rus decreased while Rds increased in all lobes. At high vascular tone, pirenzepine or gallamine attenuated the ACh-induced increase in Rds, whereas Rus was not affected. Secoverine and atropine antagonized ACh-induced increases in both Rds and Rus. The pA2 values (i.e., the negative log antagonist concentration requiring a doubling of ACh dose for an equivalent increase in Rds) for gallamine, pirenzepine, secoverine, and atropine were 6.1 +/- 0.1, 7.4 +/- 0.1, 8.3 +/- 0.2, and 10.2 +/- 0.3, respectively. These results suggest that 1) ACh increases PVR in the dog by constricting the venous segments (downstream) of the pulmonary circulation via activation of pulmonary vascular muscarinic receptors under conditions of both normal and elevated vascular tone, 2) both M1- and non-M1-muscarinic receptor subtypes appear to participate in mediating the ACh-induced increase in Rds, and 3) ACh moderately relaxes the upstream (arterial) vessels, especially under conditions of elevated tone.  相似文献   

18.
An in vitro preparation was developed to study vagus nerve-stimulated (preganglionic) and field-stimulated (post-ganglionic) contraction of the rabbit main stem bronchus and to compare the inhibitory effects of muscarinic antagonists on that contraction. The maximal contractile responses (20 V, 0.5 ms, 64 Hz) for either field or vagal stimulation were completely abolished by atropine (60 nM). Hexamethonium (0.1 mM) abolished the response to vagal stimulation but did not affect the field-stimulated response. To compare the effectiveness of atropine and pirenzepine as antagonists at the nerve-smooth muscle junction, inhibition studies of field-stimulated contractions were performed. Pirenzepine was 102- to 178-fold less potent than atropine when compared at the inhibitory concentration of antagonist that produced 25, 50, and 75% inhibition (IC25, IC50, and IC75, respectively), indicating that the muscarinic receptor at the nerve-smooth muscle junction is a muscarinic receptor with low affinity for pirenzepine (M2 subtype). Atropine had similar inhibitory effects on vagal- and field-stimulated contractions. In contrast, pirenzepine was more potent in inhibiting vagally stimulated contraction than field-stimulated contraction, especially at the IC25 where pirenzepine was only 8- to 22-fold less potent than atropine in inhibiting vagally stimulated contraction. These data suggest that an M1 subtype of muscarinic receptor modulates excitatory neurotransmission through bronchial parasympathetic ganglia.  相似文献   

19.
The effects of the organophosphorus anticholinesterase paraoxon on the binding of radioactive ligands to the M3 subtype of the muscarinic receptor and receptor-coupled synthesis of second messengers in intact rat submaxillary gland (SMG) cells were investigated. The binding of [3H]quinuclidinyl benzilate ([3H]QNB) was most sensitive to atropine and the M3-specific antagonist 4-DAMP followed by pirenzepine and least sensitive to the cardioselective M2 antagonist AFDX116. This, and the binding characteristics of [3H]4-DAMP, confirmed that the muscarinic receptors in this preparation are of the M3 subtype. Activation of these muscarinic receptors by carbamylcholine (CBC) produced both stimulation of phosphoinositide (PI) hydrolysis and inhibition of cAMP synthesis, suggesting that this receptor subtype couples to both effector systems. Paraoxon (100 μM) reduced Bmax of [3H]4-DAMP binding from 27 ± 4 to 13 ± 3 fmol/mg protein with nonsignificant change in affinity, suggesting noncompetitive inhibition of binding by paraoxon. Like the agonist CBC, paraoxon inhibited the forskolininduced cAMP formation in SMG cells with an EC50 of 200 nM, but paraoxon was > 500 fold more potent than CBC. However, while the inhibition by CBC was counteracted by 2 μM atropine, that by paraoxon was unaffected by up to 100 μM atropine. It suggested that this effect of paraoxon was not via binding to the muscarinic receptor. Paraoxon did not affect β-adrenoreceptor function in the preparation, since it did not affect the 10 μM isoproterenol-induced cAMP synthesis, which was inhibited totally by 10 μM propranolol and partially by CBC. Paraoxon had a small but significant effect on CBC-stimulated PI metabolism in the SMG cells. It is suggested that paraoxon binds to two different sites in these SMG cells. One is an allosteric site on the M3 muscarinic receptor which affects ligand binding and may modulate receptor function. The other site may be on the Gi proteinadenylyl cyclase system, and produces CBC-like action, that is, inhibition of the forskolin-stimulated [3H]cAMP synthesis, and is unaffected by atropine inhibition of the muscarinic receptor. This adds to the complexity of paraoxon actions on muscarinic receptors and their effector systems.  相似文献   

20.
The muscarinic agonist oxotremorine-M produced a concentration-dependent increase in phosphoinositide hydrolysis in bovine pial arteries. The maximal effect was 5.9 +/- 0.89 fold over basal levels, and the EC50 for oxotremorine-M was 8.9 x 10(-6) M. The phosphoinositide response in arteries with the luminal endothelium removed was similar to the response in intact arteries. The specific muscarinic antagonists pirenzepine, 4-DAMP and methoctramine produced parallel shifts of the concentration-response curve to oxotremorine-M, with the following order of potency (pKB): 4-DAMP (8.59 +/- 0.10) greater than pirenzepine (8.12 +/- 0.11) greater than methoctramine (6.77 +/- 0.20). These results indicate that muscarinic stimulation activates phosphoinositide hydrolysis in cerebral arteries, and that the muscarinic receptors mediating this increase are similar to the M1 subtype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号