首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Climate response among growth increments of fish and trees   总被引:2,自引:0,他引:2  
Significant correlations were found among the annual growth increments of stream fish, trees, and climate variables in the Ozark region of the United States. The variation in annual growth increments of rock bass (Ambloplites rupestris) from the Jacks Fork River was significantly correlated over 22 years with the ring width of four tree species: white oak (Quercus alba), post oak (Quercus stellata), shortleaf pine (Pinus echinata) and eastern red cedar (Juniperus virginiana). Rock bass growth and tree growth were both significantly correlated with July rainfall and stream discharge. Variations in annual growth of smallmouth bass (Micropterus dolomieu) from four streams were significantly correlated over 29 years (1939–1968) with mean May maximum air temperature but not with tree growth. The magnitude and significance of correlations among growth increments from fish and trees imply that conditions such as topography, stream gradient, organism age, and the distribution of a population relative to its geographic range can influence the climatic response of an organism. The timing and intensity of climatic variables may produce different responses among closely related species.  相似文献   

2.
Björn Söderbäck 《Oecologia》1994,100(3):229-235
Two freshwater crayfish species, Astacus astacus L. and Pacifastacus leniusculus Dana, co-occur in some Swedish lakes. Observational studies indicate that the introduced, North American species P. leniusculus may gradually replace the native A. astacus, but the mechanism behind the replacement is not known. This study examined the direct effects of interspecific competition between the crayfish, and indirect effects of competitive interactions and fish (European perch, Perca fluviatilis L.) predation. Three different experiments with young-of-the-year (YOY) crayfish were performed. P. leniusculus was strongly dominant over similar-sized A. astacus in interference competition for shelter in a laboratory experiment. However, in a 35-day experiment in outdoor pools, A. astacus growth and survival were about equally affected by interactions with conspecifics and P. leniusculus. In contrast, P. leniusculus was significantly more affected by intraspecific competition than by competition with A. astacus, suggesting asymmetric competition between the two species. The presence of perch in outdoor ponds with mixed-species groups of the two crayfish species resulted in considerably higher predation rates on A. astacus than on P. leniusculus. Both species showed strong antipredator responses to perch by increasing refuge use. I suggest that higher perch predation rates on A. astacus originate from P. leniusculus being the superior species in interspecific competition for shelter. Because of displacement from refuges, A. astacus individuals become more exposed to the predator. This indirect effect of interactions among the two cray-fish species and the predator may be important in the observed in situ replacement of A. astacus by P. leniusculus.  相似文献   

3.
1. Many interneurons in the crayfish (Procambarus clarkii) abdominal nervous system influence two behaviors, abdominal positioning and swimmeret movements. Such neurons are referred to as dual output cells. Other neurons which influence either one behavior or the other are single output cells. 2. Extensive synaptic interactions were observed between both dual and single output neurons involved in the control of abdominal positioning and swimmeret movements. Over 60% of all neuron pairs examined displayed interactions. Pairs of agonist neurons displayed excitatory interactions, while pairs of antagonists had inhibitory interactions. This pattern of interaction was observed in about 75% of interactive neuron pairs whether abdominal positioning or swimmeret outputs were considered. 3. Evidence for both serial and parallel connectivity, as well as, reciprocal or looping connections was observed. Looping connections can be found both between the abdominal positioning and swimmeret systems and within each system. 4. Most (28/34) single output neurons were not presynaptic to dual output neurons. No single output neurons were found to excite dual output neurons to spiking, although inhibitory interactions and weak excitations were observed. 5. Abdominal positioning inhibitors displayed properties consistent with a role in mediating some of the coordination between the swimmeret and abdominal positioning systems. 6. None of the dual output neurons examined influenced the swimmeret motoneurons directly.  相似文献   

4.
In most shallow water marine systems, fluid movements vary on scales that may influence local community dynamics both directly, through changes in the abundance of species, and indirectly, by modifying important behaviors of organisms. We examined how differences in current speed affect the outcome of predator-prey interactions for two species of marine benthic predators (knobbed whelks, Busycon carica, and blue crabs, Callinectes sapidus) foraging on two common prey species (bay scallops, Argopecten irradians, and hard clams, Mercenaria mercenaria). The predators differ in their foraging strategies and prey in their potential escape responses. Predation by blue crabs, highly mobile predators/scavengers that rely upon chemical odors transported in the water column to locate prey, could be strongly affected by changes in current speed and turbulent mixing because their foraging strategy relies on a high degree of spatial integration of prey odor plumes. Whelks, slow moving, predatory gastropods that often forage with their bodies buried in the sediment, may be less susceptible to flow-induced distortion of prey odor plumes because their sluggish movements result in a high degree of temporal integration of prey odors. Bay scallops, relatively mobile bivalves capable of rapid short-distance swimming burst, and hard clams, sedentary bivalves, have been shown to respond to varying degrees to predator odors that are dispersed in the water column. Flow regime for the predator-prey experiments was manipulated in situ using large channels. Predation by blue crabs on both juvenile hard clams and bay scallops decreased with increases in water flow (0-12 vs. 0-30 cm s−1). Whelk predation on bay scallops increased with increases in water flow, whereas predation by whelks on hard clams did not differ between flow regimes. For blue crabs movement decreased at periods of high water flow. Because blue crabs locate prey through chemolocation of water-borne cues, which are diluted rapidly at higher flows, decreases in foraging may result from the inability to successfully detect prey at enhanced flows. Differences in predation by whelks could not be explained by a similar mechanism. Visual observations of foraging whelks revealed no differences in whelk behavior between the two flow regimes. The pattern of higher whelk predation on scallops at enhanced flow is likely to be related to a flow-inhibiting ability of scallops to detect predator approach. Thus, flow enhancement interferes with three of the predator-prey systems but the effect on predator success depends on whether the predator or prey is most affected.  相似文献   

5.
Synopsis Aggression by nest-guarding male johnny darters, Etheostoma nigrum, against intruding crayfish was investigated in laboratoy experiments and field observations. In the laboratory, darter success in chasing crayfish, Orconectes rusticus, from the nest site was inversely related to crayfish size. Small crayfish (less than 15 mm carapace length) were routinely evicted from the nest area by nips directed at the posterior end of the abdomen. Although such aggressive behavior was less successful against larger crayfish, even the largest crayfish tested (carapace length 30–32 mm) were chased from the nest area in 33% of the trials. Those large crayfish that entered nests often remained despite repeated attacks by the male johnny darter and egg predation was observed. In a small Ohio stream, openings to johnny darter nests were generally between 7 and 13 mm. Thus crayfish with a carapace height greater than 13 mm (corresponding to a carapace length greater than 29 mm) would not be able to enter johnny darter nests. In field observations, male Johnny darters successfully defended nests against another crayfish species (Orconectes sanborni, carapace length 12–29 mm). Together, aggressive behavior and small size of nest entrances allow the johnny darter to successfully reproduce in areas with abundant crayfish. The Unit is sponsored jointly by the United States Fish and Wildlife Service, The Ohio Department of NaturalResources, and The Ohio State University.  相似文献   

6.
Hughes AR  Grabowski JH 《Oecologia》2006,149(2):256-264
Despite increasing evidence that habitat structure can shape predator–prey interactions, few studies have examined the impact of habitat context on interactions among multiple predators and the consequences for combined foraging rates. We investigated the individual and combined effects of stone crabs (Menippe mercenaria) and knobbed whelks (Busycon carica) when foraging on two common bivalves, the hard clam (Mercenaria mercenaria) and the ribbed mussel (Geukensia demissa) in oyster reef and sand flat habitats. Because these species co-occur across these and other estuarine habitats of varying physical complexity, this system is ideal for examining how habitat context influences foraging rates and the generality of predator interactions. Consistent with results from previous studies, consumption rates of each predator in isolation from the other were higher in the sand flat than in the more structurally complex oyster reef habitat. However, consumption by the two predators when combined surprisingly did not differ between the two habitats. This counterintuitive result probably stems from the influence of habitat structure on predator–predator interactions. In the sand-flat habitat, whelks significantly reduced their consumption of their less preferred prey when crabs were present. However, the structurally more complex oyster reef habitat appeared to reduce interference interactions among predators, such that consumption rates when the predators co-occurred did not differ from predation rates when alone. In addition, both habitat context and predator–predator interactions increased resource partitioning by strengthening predator dietary selectivity. Thus, an understanding of how habitat characteristics such as physical complexity influence interactions among predators may be critical to predicting the effects of modifying predator populations on their shared prey.  相似文献   

7.
The interactions between the higher trophic levels in a shallow eutrophic lake were studied during the course of a year. Three fish species determined the main pathways of organic matter flow within the system: the predominantly planktivorous bream (Abramis brama), the obligate planktivorous smelt (Osmerus eperlanus), and the piscivorous pikeperch (Stizostedion lucioperca). Of the thirteen common zooplankton taxa Daphnia hyalina and cyclopoid copepods were utilized most by the planktivorous fish, while the large production of small cladocerans is almost left unutilized.The seasonal variations of production and consumption are large. This is mainly affected by seasonal variation of the water temperature. The production of O + smelt is efficiently utilized by the pikeperch. Being the most important zooplankton consumer, as well as the most important prey group, O + fish plays a key role in the Tjeukemeer food web.  相似文献   

8.
Summary We used sonar to measure relative abundance, location, and depth of prey fish schools (primarily Anchoa and Ammodytes) in the ocean near Fire Island Inlet, New York from May to August for 4 years to examine predatorprey interactions. Prey fish numbers built through May, peaked in June, and thereafter declined coincident with the arrival of predatory bluefish. Bluefish abundance and feeding behavior correlated inversely with prey fish abundance and depth. Bluefish may drive seasonal patterns of prey abundance and distribution in this area through direct predation and by causing prey to flee.  相似文献   

9.
Three benthic predators Coris julis, Symphodus cinereus and Mullus surmuletus in a Posidonia oceanica reef lagoon of the Tyrrhenian coast had a broad diet, including hard-bodied invertebrates such as crustaceans and molluscs, but revealed consistent interspecific differences. Diet overlap was greater between C. julis and M. surmuletus in comparison to other combinations. All three species were diurnal feeders, but with diVerent daily patterns of foraging based on diVerent prey availability. There was a general spatio-temporal correlation in non-foraging activity among the three species, but foraging activity was correlated only between C. julis and the other two species, but not between S. cinereus and M. surmuletus .There was heterospecific aggregation during foraging between C. julis and M. surmuletus , and possibly a scrounger–producer relationship between them. Fights between C. julis specimens related to foraging activity were common, but not between species. These results support the view that diVerences in spatio-temporal organization of activity, and interactions during foraging, can contribute to resource partitioning among syntopic populations of fish belonging to the same trophic group.  相似文献   

10.
The golden apple snail (Pomacea canaliculata), a native of freshwater wetlands of South America, has invaded many Asian countries and grazed heavily in agricultural and wild areas. Common carp (Cyprinus carpio) has been proposed as a biological control agent against this snail, but little is known about its impact on non-target aquatic plants and animals. In a 8-week enclosure experiment, we quantified the impact of common carp on three species of aquatic macrophytes and nine species of snails, including the apple snail, in a shallow pond. The results showed that the apple snail or carp alone significantly reduced the plant biomass, although the apple snail had a stronger overall herbivorous effect than the carp. The carp completely removed juvenile apple snails, but had only a weak predatory effect on larger apple snails and no effect on the adults’ oviposition frequency. Furthermore, the carp significantly reduced the populations of most species of other snails that occurred naturally in the pond. Our results thus indicate that common carp can be an effective biological control agent against the invasive apple snail, but caution should be taken about its potential to reduce wetland floral and faunal diversity.  相似文献   

11.
Intraguild predation (IGP) occurs when one species preys on a competitor species that shares a common resource. Modifying a prey–predator model with prey infection, we propose a model of IG interactions among host, parasitoid, and predator, in which the predator eats parasitized and unparasitized hosts, and the adult parasitoid density is explicitly expressed. Parameter dependences of community structure, including stability of the system, were analytically obtained. Depending on interaction strength (parasitization and predation on unparasitized and parasitized hosts), the model provides six types of community structure: (1) only the host exists, (2) the host and predator coexist stably, (3) the host and parasitoid coexist stably, (4) the host–parasitoid population dynamics are unstable, (5) the three species coexist stably, and (6) the population dynamics of the three species are unstable. In contrast to a traditional prey–predator model with prey infection, which predicts that population dynamics are always locally stable, our model predicts that they are unstable when the parasitization rate is high.  相似文献   

12.
Conservation biological control programs seek to increase natural enemy densities through the adoption of more benign farming practices, under the assumption that higher predator densities will lead to more effective pest suppression. However, predator–predator interference may lead to diminishing returns in improved pest control as predator densities increase. We examined the relationship between predator density and predation rates on Colorado potato beetle eggs in production potato fields. These potato fields naturally spanned a 10-fold range in predator density, due to differences in management practices. Periodically through the growing season we simultaneously measured predator densities and subjected sentinel eggs masses to predation, allowing us to correlate predator density and egg predation for each field on each sample date. Egg predation rates were significantly positively correlated with total predator densities, a correlation that was not improved when predator densities were scaled to reflect differences in feeding rates on potato beetle eggs of the constituent predator taxa. There was no correlation between per-capita egg predation rates and predator density, and so no evidence that predator interference increased with increasing predator density. We divided predators into six dominant taxa—dwarf spiders, crab spiders, minute pirate bugs, big-eyed bugs, damsel bugs, and Lygus bugs (together constituting 93% of all predators collected), and a seventh group, “other predators” that included all other, less common, taxa—and examined correlations between all predator combinations and egg predation rates. The highest correlation was between combined densities of the six most common predator taxa, excluding only the “other predators” grouping. This suggests that predators may be largely equivalent in their impact on Colorado potato beetle eggs, and that field scouts might be able to ignore uncommon predator taxa when sampling for natural enemies.  相似文献   

13.
Little is known about the impact of ocean acidification on predator-prey dynamics. Herein, we examined the effect of carbon dioxide (CO(2)) on both prey and predator by letting one predatory reef fish interact for 24 h with eight small or large juvenile damselfishes from four congeneric species. Both prey and predator were exposed to control or elevated levels of CO(2). Mortality rate and predator selectivity were compared across CO(2) treatments, prey size and species. Small juveniles of all species sustained greater mortality at high CO(2) levels, while large recruits were not affected. For large prey, the pattern of prey selectivity by predators was reversed under elevated CO(2). Our results demonstrate both quantitative and qualitative consumptive effects of CO(2) on small and larger damselfish recruits respectively, resulting from CO(2)-induced behavioural changes likely mediated by impaired neurological function. This study highlights the complexity of predicting the effects of climate change on coral reef ecosystems.  相似文献   

14.
Food webs are networks of species that feed on each other. The role that within-population phenotypic and genetic variation plays in food web structure is largely unknown. Here, I show via simulation how variation in two key traits, growth rates and phenology, by influencing the variability of body sizes present through time, can potentially affect several structural parameters in the direction of enhancing food web persistence: increased connectance, decreased interaction strengths, increased variation among interaction strengths and increased degree of omnivory. I discuss other relevant traits whose variation could affect the structure of food webs, such as morphological and additional life-history traits, as well as animal personalities. Furthermore, trait variation could also contribute to the stability of food web modules through metacommunity dynamics. I propose future research to help establish a link between within-population variation and food web structure. If appropriately established, such a link could have important consequences for biological conservation, as it would imply that preserving (functional) genetic variation within populations could ensure the preservation of entire communities.  相似文献   

15.
Synopsis Food consumption of perch larvae and the impact of this on zooplankton were examined in two adjacent shallow Scottish lochs. Maximum annual abundance of zooplankton occurred in mid-May at L. Kinord with minimum values in mid-June. Copepods were prominent in spring but were followed by a multi-species community of cladocerans and rotifers in summer. At L. Davan zooplankton biomass remained high through summer with cladocerans dominating andDaphnia longispina the most frequent species. Availability of food items was a principal factor governing feeding behaviour of larvae. Copepodite stages were initially the most common item in the diet in L. Kinord in 1976 and 1977 and rotifers the principal food in June 1977, reflecting the dominance of these items in the zooplankton. Cladocerans were dominant in the plankton community in L. Davan and constituted the greater part of food intake. Overlying this general pattern there was an increase in the size of food items taken by larvae with time and also a definite pattern of food selection for copepods, with initially selection for smaller copepodite stages and later for larger stages and adults. On most occasions larvae selected forCyclops strenuus abyssorum andPolphemus pediculus and selected againstDaphnia longispina. The reduction in the total zooplankton biomass attributed to perch larvae was minimal, with the exception of mid-June at L. Kinord in 1976. However, predation on particular species and copepodite stages was occasionally intense and may have impacted the zooplankton populations.  相似文献   

16.
In some systems, the identity of a prey species' dominant predator(s) may not be constant over time. In cases in which a prey species exhibits different responses to various predator species, such changes in predator identity may have population-wide consequences. Our goals were to determine (1) whether mortality of and refuge use by the grass shrimp, Palaemonetes pugio, were predator-specific, and (2) how effects of prey size and habitat interacted with predator type. Striped bass (Morone saxatilis) exerted twice as much predation pressure as mummichog (Fundulus heteroclitus), although not equally as great on large (female) and small (male) shrimp. Mummichog, which fed preferentially on large shrimp, forced a partitioning of habitat between the two shrimp size classes. In contrast, large and small shrimp occupied similar habitats when subjected to striped bass, which fed on both size classes equally. Refuge use of grass shrimp depended on predator type. In the presence of mummichog, which occupied shallower depths in the water column than striped bass, shrimp stayed deep and close to structural habitat. Striped bass, which were deeper, caused shrimp to move high in the water column away from structural habitat. When both predators were present, shrimp distribution was similar to that when only striped bass were present, striped bass predation rate was enhanced, and overall mortality was higher than with either predator alone. Results suggest that at times when mummichogs are the dominant predators, large (female) shrimp experience higher predation than small (male) shrimp and are physically separated from their potential mates. When striped bass are more abundant, male and female shrimp may share a similar, shallow, less structure-oriented distribution and be subjected to higher mortality. When both predators are present, mortality rates may be higher still. This predator-, size-, and habitat-specificity of grass shrimp behavior suggests significant population and distribution consequences of fluctuating predator guilds and fluctuating cover of structural habitats in the field.  相似文献   

17.
We recorded electrical activity from three different classes of broad-spectrum, multiglomerular neurons in the crayfish (Procambarus clarkii, P. blandingi) olfactory midbrain. Responses were obtained to odorants and electrical stimuli applied to the antennules of isolated, perfused head preparations. All three neuronal types responded to a complex mixture of five amino acids as well as to solutions of a commercial fish food. At least two classes also responded to individual amino acids and to sugars. The response properties and the morphologies of the neurons were unique to each type. Responses of Type I cells were stimulus-dependent excitatory postsynaptic potentials and superimposed impulse trains; those in Type II were stimulus-dependent inhibitory postsynaptic potentials; those in Type III were compound responses consisting of short latency hyperpolarizations, followed by depolarizing post-synaptic potentials and impulses. All three cell types had extensive, multiglomerular dendritic arbors in the olfactory lobe, but each of their respective branching pattern morphologies was distinctive. Two types had additional dendrite branches in the lateral antennular neuropil and the olfactory-globular tract neuropil. We conclude that these broad-spectrum neurons are part of a parallel olfactory pathway that is separate from the putative quality coding circuitry in the crayfish olfactory system.Abbreviations AL accessory lobe - LAN lateral antennular neuropil - OGT olfactory globular tract - OGTN olfactory globular tract neuropil - OL olfactory lobe  相似文献   

18.
Using extracellular and intracellular stimulation, recording and dye-filling, we identified and studied the superficial extensor motor neurons of the crayfish, Cherax destructor. Functional associations of each neuron were characterised by recording its responses to sensory and abdominal cord inputs, its extensor muscle innervation pattern and its relationships with other neurons. Two clear associations were found among the six neurons of each segment. A medium-sized excitor (no. 3), that innervates a substantial percentage of extensor muscle fibres, and the largest excitor (no. 6), recruited during peak, excitation, were inhibited by input from unknown interneurons that excited the common inhibitor (no. 5). Likewise, these excitors received excitatory input when the inhibitor was silent. Another medium-sized neuron (no. 4) that innervates many muscle fibres was co-active with one of the small excitors (no. 2). The two medium-sized neurons were never active at the same time, and these two groupings may be determined by pre-motor interneurons. The implications of these findings for our understanding of motor control in this system are discussed. Accepted: 21 June 1998  相似文献   

19.
Most antipredator strategies increase survival of individuals by signaling to predators, by reducing the chances of being recognized as prey, or by bewildering a predator''s perception. In fish, bobbing and fin‐flicking are commonly considered as pursuit‐deterrent behaviors that signal a predator that it has been detected and thus lost its surprise‐attack advantage. Yet, very few studies assessed whether such behavioral traits are restricted to the visual presence of a predator. In this study, we used the yellow black‐headed triplefin Tripterygion delaisi to investigate the association between these behaviors and the visual exposure to (a) a black scorpionfish predator (Scorpaena porcus), (b) a stone of a size similar to that of S. porcus, (c) a conspecific, and (d) a harmless heterospecific combtooth blenny (Parablennius sanguinolentus). We used a laboratory‐controlled experiment with freshly caught fish designed to test for differences in visual cues only. Distance kept by the focal fish to each stimulus and frequency of bobbing and fin‐flicking were recorded. Triplefins kept greater distance from the stimulus compartment when a scorpionfish predator was visible. Bobbing was more frequent in the visual presence of a scorpionfish, but also shown toward the other stimuli. However, fin flicks were equally abundant across all stimuli. Both behaviors decreased in frequency over time suggesting that triplefin become gradually comfortable in a nonchanging new environment. We discuss why bobbing and fin‐flicking are not exclusive pursuit‐deterrent behaviors in this species, and propose additional nonexclusive functions such as enhancing depth perception by parallax motion (bobbing) or signaling vigilance (fin‐flicking).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号