首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Delonix regia trypsin inhibitor (DrTI) consists of a single-polypeptide chain with a molecular mass of 22 kDa and containing two disulfide bonds (Cys44–Cys89 and Cys139–Cys149). Sequence comparison with other plant trypsin inhibitors of the Kunitz family reveals that DrTI contains a negatively charged residue (Glu68) at the reactive site rather than the conserved Arg or Lys found in other Kunitz-type trypsin inhibitors. Site-directed mutagenesis yielded five mutants containing substitutions at the reactive site and at one of the disulfide bonds. Assay of the recombinant proteins showed mutant Glu68Leu and Glu68Lys to have only 4–5% of the wild-type activity. These provide evidence that the Glu68 residue is the reactive site for DrTI and various other Kunitz-type trypsin inhibitors. The Cys139Gly mutant lost its inhibitory activity, whereas the Cys44Gly mutant did not, indicating that the second disulfide bond (Cys139–Cys149) is critical to DrTI inhibitory activity, while the first disulfide bond (Cys44–Cys89) is not required.  相似文献   

2.
We have demonstrated that the human eosinophil-derived neurotoxin (EDN, RNase 2), a rapidly evolving secretory protein derived from eosinophilic leukocytes, mediates the ribonucleolytic destruction of extracellular virions of the single-stranded RNA virus respiratory syncytial virus (RSV). While RNase activity is crucial to antiviral activity, it is clearly not sufficient, as our results suggest that EDN has unique structural features apart from RNase activity that are necessary to promote antiviral activity. We demonstrate here that the interaction between EDN and extracellular virions of RSV is both saturatable and specific. Increasing concentrations of the antivirally inactivated, ribonucleolytically inactivated point mutant form of recombinant human EDN, rhEDNdK38, inhibits rhEDN's antiviral activity, while increasing concentrations of the related RNase, recombinant human RNase k6, have no effect whatsoever. Interestingly, acquisition of antiviral activity parallels the evolutionary development of the primate EDN lineage, having emerged some time after the divergence of the Old World from the New World monkeys. Using this information, we created ribonucleolytically active chimeras of human and New World monkey orthologs of EDN and, by evaluating their antiviral activity, we have identified an N-terminal segment of human EDN that contains one or more of the sequence elements that mediate its specific interaction with RSV.  相似文献   

3.
Johnson RJ  Lavis LD  Raines RT 《Biochemistry》2007,46(45):13131-13140
The evolutionary rate of proteins involved in obligate protein-protein interactions is slower and the degree of coevolution higher than that for nonobligate protein-protein interactions. The coevolution of the proteins involved in certain nonobligate interactions is, however, essential to cell survival. To gain insight into the coevolution of one such nonobligate protein pair, the cytosolic ribonuclease inhibitor (RI) proteins and secretory pancreatic-type ribonucleases from cow (Bos taurus) and human (Homo sapiens) were produced in Escherichia coli and purified, and their physicochemical properties were analyzed. The two intraspecies complexes were found to be extremely tight (bovine Kd = 0.69 fM; human Kd = 0.34 fM). Human RI binds to its cognate ribonuclease (RNase 1) with 100-fold greater affinity than to the bovine homologue (RNase A). In contrast, bovine RI binds to RNase 1 and RNase A with nearly equal affinity. This broader specificity is consistent with there being more pancreatic-type ribonucleases in cows (20) than humans (13). Human RI (32 cysteine residues) also has 4-fold less resistance to oxidation by hydrogen peroxide than does bovine RI (29 cysteine residues). This decreased oxidative stability of human RI, which is caused largely by Cys74, implies a larger role for human RI as an antioxidant. The conformational and oxidative stabilities of both RIs increase upon complex formation with ribonucleases. Thus, RI has evolved to maintain its inhibition of invading ribonucleases, even when confronted with extreme environmental stress. That role appears to take precedence over its role in mediating oxidative damage.  相似文献   

4.
5.
Basic fibroblast growth factor (bFGF) was inserted in the middle of human ribonuclease 1 (RNase1) sequence at an RNase inhibitor (RI)-binding site (Gly89) by a new gene fusion technique, insertional-fusion. The resultant insertional-fusion protein (CL-RFN89) was active both as bFGF and as RNase. Furthermore, it acquired an additional ability of evading RI through steric blockade of RI-binding caused by fused bFGF domain. As a result, CL-RFN89 showed stronger growth inhibition on B16/BL6 melanoma cells than an RI-sensitive tandem fusion protein. Thus, the insertional-fusion technique increases accessible positions for gene fusion on RNase, resulting in construction of a potent cytotoxic RNase.  相似文献   

6.
Several clones of human eosinophil-derived neurotoxin (EDN) cDNA have been isolated from a lambda gt10 cDNA library prepared from mRNA derived from noninduced HL-60 cells. The amino acid (aa) sequence deduced from the coding sequence of the EDN cDNA is identical to the aa sequence of urinary nonsecretory RNase. Comparison of the aa and/or nucleotide (nt) sequences of EDN and other proteins possessing ribonucleolytic activity, namely bovine seminal RNase, human and rat pancreatic RNases, eosinophil cationic protein (ECP), and human angiogenin, shows extensive identity at half-cystine residues and at aa of active sites. Differences in aa sequences at the active sites are often the result of single nt changes in the codons. The data presented here support the concept of a RNase gene superfamily containing secretory and nonsecretory RNases, angiogenin, EDN and ECP.  相似文献   

7.
Smirnova IN  Kaback HR 《Biochemistry》2003,42(10):3025-3031
Lactose permease with Cys154 --> Gly (helix V) binds substrate with high affinity but catalyzes little or no transport. The purified, detergent-solubilized mutant protein exhibits much greater thermal stability than the wild type and little tendency to aggregate. Stabilization is also observed in vivo with an unstable mutant that is expressed at significantly higher levels when the Cys154 --> Gly mutation is introduced. In addition, ligand-induced conformational changes are markedly reduced or abolished by the Cys154 --> Gly mutation: (i) Although the fluorescence of purified single Trp33 (helix I) permease is enhanced by ligand binding, introduction of the Cys154 --> Gly mutation abolishes the effect. (ii) The rate of 2-(4'-maleimidylanilino)naphthalene-6-sulfonic acid (MIANS) labeling of permease with a single Cys residue in place of Val331 (helix X) is increased in the presence of ligand but reduced when the Cys154 --> Gly mutation is present. (iii) Fluorescence emission intensity of MIANS-labeled single Cys331 permease is enhanced and blue shifted in the Cys154 --> Gly mutant background, indicating that the latter mutation causes position 331 to become exposed to a less polar environment. The results indicate that the Cys154 --> Gly mutation causes a more compact structure and decreased conformational flexibility, an alteration that specifically blocks the structural changes necessary for substrate translocation with little or no effect on ligand binding.  相似文献   

8.
Eosinophil cationic protein (ECP) is one of two RNase A-superfamily ribonucleases found in secretory granules of human eosinophilic leukocytes. Although the physiologic function of eosinophils [and thus of the two eosinophil ribonucleases, ECP and eosinophil-derived neurotoxin (EDN)] remains controversial, we have recently shown that isolated human eosinophils promote ribonuclease-dependent toxicity toward extracellular virions of the single-stranded RNA virus, respiratory syncytial virus, group B (RSV-B). We have also shown that recombinant human EDN (rhEDN) can act alone as a ribonuclease-dependent antiviral agent. In this work, we provide a biochemical characterization of recombinant human ECP (rhECP) prepared in baculovirus, and demonstrate that rhECP also promotes ribonuclease-dependent antiviral activity. The rhECP described here is N-glycosylated, as is native ECP, and has approximately 100-fold more ribonuclease activity than non-glycosylated rhECP prepared in bacteria. The enzymatic activity of rhECP was sensitive to inhibition by placental ribonuclease inhibitor (RI). Although rhECP was not as effective as rhEDN at reducing viral infectivity (500 nM rhECP reduced infectivity of RSV-B approximately 6 fold; 500 nM rhEDN, >50 fold), the antiviral activity appears to be unique to the eosinophil ribonucleases; no reduction in infectivity was promoted by bovine RNase A, by the amphibian ribonuclease, onconase, nor by the closely-related human ribonuclease, RNase k6. Interestingly, combinations of rhEDN and rhECP did not result in either a synergistic or even an additive antiviral effect. Taken together, these results suggest that that the interaction between the eosinophil ribonucleases and the extracellular virions of RSV-B may be specific and saturable.  相似文献   

9.
Human RNase κ is an endoribonuclease expressed in almost all tissues and organs and belongs to a highly conserved protein family bearing representatives in all metazoans. To gain insight into the role of cysteine residues in the enzyme activity or structure, a recombinant active form of human RNase κ expressed in Pichia pastoris was treated with alkylating agents and dithiothreitol (DTT). Our results showed that the human enzyme is inactivated by DDT, while it remains fully active in the presence of alkylating agents. The unreduced recombinant protein migrates on SDS/PAGE faster than the reduced form. This observation in combination with the above findings indicated that human RNase κ does not form homodimers through disulfide bridges, and cysteine residues are not implicated in RNA catalysis but participate in the formation of intramolecular disulfide bond(s) essential for its ribonucleolytic activity. The role of the cysteine residues was further investigated by expression and study of Cys variants. Ribonucleolytic activity experiments and SDS/PAGE analysis of the wild-type and mutant proteins under reducing and non-reducing conditions demonstrated that Cys7, Cys14 and Cys85 are not essential for RNase activity. On the other hand, replacement of Cys6 or Cys69 with serine led to a complete loss of catalytic activity, indicating the necessity of these residues for maintaining an active conformation of human RNase κ by forming a disulfide bond. Due to the absolute conservation of these cysteine residues, the Cys6-Cys69 disulfide bond is likely to exist in all RNase κ family members.  相似文献   

10.
Teufel DP  Kao RY  Acharya KR  Shapiro R 《Biochemistry》2003,42(6):1451-1459
RNase inhibitor (RI) binds diverse proteins in the pancreatic RNase superfamily with extremely high avidity. Previous studies showed that tight binding of RNase A and angiogenin (Ang) is achieved primarily through interactions of hot spot residues in the 434-460 C-terminal segment of RI with the enzymatic active site; Asp435 of RI forms key hydrogen bonds with the catalytic lysine in both complexes, whereas the other contacts are largely distinctive. Here we have investigated the structural basis for recognition of a third ligand, eosinophil-derived neurotoxin (EDN), by single-site and multisite mutagenesis. Surprisingly, Ala replacement of Asp435 decreases affinity for EDN only by 14-fold, as compared to the several hundred-fold decreases with RNase A and Ang, and individual mutations of three other hot spot residues-Tyr434, Tyr437, and Ser460-have essentially no effect. Ala substitutions of nine additional residues, selected by examining a computational model of the RI.EDN complex, also have no marked impact. Overall, the losses in affinity for the single-residue variants examined account for only approximately 25% of the free energy of binding for the complex. However, multisite mutagenesis of RI reveals strong superadditivity of mutational effects, indicating that part of this shortfall reflects negative cooperativity. Replacement of Tyr434 together with Asp435 or Tyr437 increases K(i) by 540- and 290-fold, respectively. Thus, the C-terminal region of RI again plays an important role in ligand recognition, although probably smaller than for binding RNase A and Ang. Simultaneous substitutions of three neighboring tryptophans (261, 263, and 318) on RI attenuate affinity even more dramatically (by 4900-fold), indicating that the interactions of this RI region also contribute a considerable amount of the binding energy for the EDN complex. These findings highlight the potential importance of cooperativity in protein-protein interactions and the consequent limitations of single-site mutagenesis for assessing interface energetics.  相似文献   

11.
A combination of five thermostabilizing mutations, Gly23-->Ala, His62-->Pro, Val74-->Leu, Lys95-->Gly, and Asp134-->His, has been shown to additively enhance the thermostability of Escherichia coli RNase HI [Akasako A, Haruki M, Oobatake M & Kanaya S (1995) Biochemistry34, 8115-8122]. In this study, we determined the crystal structure of the protein with these mutations (5H-RNase HI) to analyze the effects of the mutations on the structure in detail. The structures of the mutation sites were almost identical to those of the mutant proteins to which the mutations were individually introduced, except for G23A, for which the structure of the single mutant protein is not available. Moreover, only slight changes in the backbone conformation of the protein were observed, and the interactions of the side chains were almost conserved. These results indicate that these mutations almost independently affect the protein structure, and are consistent with the fact that the thermostabiling effects of the mutations are cumulative. We also determined the protein stability curve describing the temperature dependence of the free energy of unfolding of 5H-RNase HI to elucidate the thermostabilization mechanism. The maximal stability for 5H-RNase HI was as high as that for the cysteine-free variant of Thermus thermophilus RNase HI. In contrast, the heat capacity of unfolding for 5H-RNase H was similar to that for E. coli RNase HI, which is considerably higher than that for T. thermophilus RNase HI. These results suggest that 5H-RNase HI is stabilized, in part, by the thermostabilization mechanism adopted by T. thermophilus RNase HI.  相似文献   

12.
Human placental ribonuclease inhibitor (hRI) is an acidic protein of Mr∼50kDa with unusually high contents of leucine and cysteine residues. It is a cytosolic protein that protects cells from the adventitious invasion of pancreatic-type ribonuclease. hRI has 32 cysteine residues, and the oxidative formation of disulfide bonds from those cysteine residues is a rapid cooperative process that inactivates hRI. The most proximal cysteine residues in native hRI are two pairs that are adjacent in sequence. In the present aork, two molecules of alanine substituting for Cys328 and Cys329 were performed by site-directed mutagenesis. The site-mutated RI cDNA was constructed into plasmid pPIC9K and then transformed Pichia pastoris GS115 by electroporation. After colony screening, the bacterium was cultured and the product was purified with affinity chromatography. The affinity of the recombinant human RI with double site mutation was examined for RNase A and its anti-oxidative effect. Results indicated that there were not many changes in the affinity for RNase A detected when compared with the wild type of RI. But the capacity of anti-oxidative effect increased by 7∼9 times. The enhancement in anti-oxidative effect might be attributed to preventing the formation of disulfide bond between Cys328 and Cys329 and the three dimensional structure of RI was thereby maintained. __________ Translated from HEREDITAS, 2005, 27(2) [译自: 遗传,2005,27(2)]  相似文献   

13.
Human recombinant granulocyte-colony stimulating factor (rhG-CSF) has one free cysteine at position 17 and has two disulfide bridges (Cys36-Cys42 and Cys64-Cys74). The Cys17 of rhG-CSF was substituted with Gly, Ala, Ser, Ile, Tyr, Arg, and Pro, or deleted using site-directed mutagenesis in order to improve its thermostability. With the exception of Pro17-rhG-CSF, all mutant proteins retained biological activity which promotes the growth of mouse bone marrow cells in vitro. Among these mutant proteins, Ala17-rhG-CSF had more than 5 times higher stability than rhG-CSF. But Ser17-rhG-CSF had almost same stability as rhG-CSF and other mutant proteins had only lower stability.  相似文献   

14.
In vivo formation and stability of engineered disulfide bonds in subtilisin   总被引:9,自引:0,他引:9  
Computer modeling suggested that a disulfide bond could be built into Bacillus amyloliquefaciens subtilisin between positions 22 (wild-type, Thr) and 87 (Ser) or between positions 24 (Ser) and 87 (Ser). Single cysteines were introduced into this cysteine-free protease at positions 22, 24, or 87 by site-directed mutagenesis of the cloned subtilisin gene. The corresponding double-cysteine mutants were constructed, and recombinant plasmids were expressed in Bacillus subtilis. Double-cysteine mutant enzymes were secreted as efficiently as wild-type, and disulfide bonds were formed quantitatively in vivo. These disulfide bonds were introduced approximately 24 A away from the catalytic site and had no detectable effect on either the specific activities or the pH optima of the mutant enzymes. The equilibrium constants for the reduction of the mutant disulfide bonds by dithiothreitol were determined to be 82 +/- 22 and 20 +/- 5 for Cys22/Cys87 and Cys24/Cys87, respectively. Studies of autoproteolytic inactivation of wild-type subtilisin support a relationship between autolytic stability and conformational stability of the protein. The stabilities of Cys24/Cys87 and wild-type enzymes to autolysis were essentially the same; however, Cys22/Cys87 was actually less stable to autolysis. Reduction of the disulfide cross-bridge lowered the autolytic stability of both double-cysteine mutants relative to their disulfide forms. This correlates with a lowered autolytic stability for the Cys22 and Cys87 single-cysteine mutants, and the fact that an intramolecular hydrogen bond between the hydroxyl groups of Thr22 and Ser87 is likely to be disrupted in the Cys22 and Cys87 single-cysteine mutant proteins.  相似文献   

15.
Human placental ribonuclease inhibitor(hRI)is an acidic protein of Mr-50kDa with unusually high contents of leucine and cysteine residues.It is a cytosolic protein that protects cells from the adventitious invasion of pancreatic-type ribonuclease.hRI has 32 cysteine residues,and the oxidative formation of disulfide bonds from those cysteine residues is a rapid cooperative process that inactivates hRI.The most proximal cysteine residues in native hRI are two pairs that are adjacent in sequence.In the present aork,two molecules of alanine substituting for Cys328 and Cys329 were performed by site-directed mutagenesis.The site-mutated RI cDNA was constructed into plasmid pPIC9K and then transformed Pichia pastoris GS115 by electroporation.After colony screening,the bacterium was cultured and the product Was purified with affinity chromatography.The affinity of the recombinant human RI with double site mutation was examined for RNase A and its anti-oxidative effect.Results indicated that there were not many changes in the affinity for RNase A detected when compared with the wild type of RI.But the capacity of anti-oxidative effect increased by 7~9 times.The enhancement in anti-oxidative efrect might be attributed to preventing the formation of disulfide bond between Cys328 and Cys329 and the three dimensional structure of RI was thereby maintained.  相似文献   

16.
A specialized class of RNases shows a high cytotoxicity toward tumor cell lines, which is critically dependent on their ability to reach the cytosol and to evade the action of the ribonuclease inhibitor (RI). The cytotoxicity and antitumor activity of bovine seminal ribonuclease (BSRNase), which exists in the native state as an equilibrium mixture of a swapped and an unswapped dimer, are peculiar properties of the swapped form. A dimeric variant (HHP2‐RNase) of human pancreatic RNase, in which the enzyme has been engineered to reproduce the sequence of BSRNase helix‐II (Gln28→Leu, Arg31→Cys, Arg32→Cys, and Asn34→Lys) and to eliminate a negative charge on the surface (Glu111→Gly), is also extremely cytotoxic. Surprisingly, this activity is associated also to the unswapped form of the protein. The crystal structure reveals that on this molecule the hinge regions, which are highly disordered in the unswapped form of BSRNase, adopt a very well‐defined conformation in both subunits. The results suggest that the two hinge peptides and the two Leu28 side chains may provide an anchorage to a transient noncovalent dimer, which maintains Cys31 and Cys32 of the two subunits in proximity, thus stabilizing a quaternary structure, similar to that found for the noncovalent swapped dimer of BSRNase, that allows the molecule to escape RI and/or to enhance the formation of the interchain disulfides.  相似文献   

17.
The thermodynamic effects of the disulfide bond of the fragment protein of the starch-binding domain of Aspergillus niger glucoamylase was investigated by measuring the thermal unfolding of the wild-type protein and its two mutant forms, Cys3Gly/Cys98Gly and Cys3Ser/Cys98Ser. The circular dichroism spectra and the thermodynamic parameters of binding with beta-cyclodextrin at 25 degrees C suggested that the native structures of the three proteins are essentially the same. Differential scanning calorimetry of the thermal unfolding of the proteins showed that the unfolding temperature t1/2 of the two mutant proteins decreased by about 10 degrees C as compared to the wild-type protein at pH 7.0. At t1/2 of the wild-type protein (52.7 degrees C), the mutant proteins destabilized by about 10 kJ mol(-1) in terms of the Gibbs energy change. It was found that the mutant proteins were quite stabilized in terms of enthalpy, but that a higher entropy change overwhelmed the enthalpic effect, resulting in destabilization.  相似文献   

18.
Mammalian ribonucleases interact very strongly with the intracellular ribonuclease inhibitor (RI). Eukaryotic cells exposed to mammalian ribonucleases are protected from their cytotoxic action by the intracellular inhibition of ribonucleases by RI. Human pancreatic ribonuclease (HPR) is structurally and functionally very similar to bovine RNase A and interacts with human RI with a high affinity. In the current study, we have investigated the involvement of Lys-7, Gln-11, Asn-71, Asn-88, Gly-89, Ser-90, and Glu-111 in HPR in its interaction with human ribonuclease inhibitor. These contact residues were mutated either individually or in combination to generate mutants K7A, Q11A, N71A, E111A, N88R, G89R, S90R, K7A/E111A, Q11A/E111A, N71A/E111A, K7A/N71A/E111A, Q11A/N71A/E111A, and K7A/Q11A/N71A/E111A. Out of these, eight mutants, K7A, Q11A, N71A, S90R, E111A, Q11A/E111A, N71A/E111A, and K7A/N71A/E111A, showed an ability to evade RI more than the wild type HPR, with the triple mutant K7A/N71A/E111A having the maximum RI resistance. As a result, these variants exhibited higher cytotoxic activity than wild type HPR. The mutation of Gly-89 in HPR produced no change in the sensitivity of HPR for RI, whereas it has been reported that mutating the equivalent residue Gly-88 in RNase A yielded a variant with increased RI resistance and cytotoxicity. Hence, despite its considerable homology with RNase A, HPR shows differences in its interaction with RI. We demonstrate that interaction between human pancreatic ribonuclease and RI can be disrupted by mutating residues that are involved in HPR-RI binding. The inhibitor-resistant cytotoxic HPR mutants should be useful in developing therapeutic molecules.  相似文献   

19.
The eosinophil granule contains a series of basic proteins, including major basic protein, eosinophil peroxidase, eosinophil-derived neurotoxin (EDN), and eosinophil cationic protein (ECP). Both EDN and ECP are neurotoxins and helminthotoxins. Comparison of the partial N-terminal amino acid sequences of EDN and ECP showed 67% identity; surprisingly, they also showed structural homology to pancreatic ribonuclease (RNase). Therefore, we determined whether EDN and ECP possess RNase enzymatic activity. By spectrophotometric assay of acid soluble nucleotides formed from yeast RNA, purified EDN showed RNase activity similar to bovine pancreatic RNase, whereas ECP was 50 to 100 times less active. The RNase activity associated with ECP was not significantly inhibited after exposure of ECP to polyclonal or monoclonal antibody to EDN. These results indicate that EDN and ECP both possess RNase activity, the RNase activity of EDN and ECP is specific, and EDN and ECP have maintained not only structural but also functional homology to pancreatic RNase.  相似文献   

20.
Eosinophil-derived neurotoxin (EDN), a basic ribonuclease found in the large specific granules of eosinophils, belongs to the pancreatic RNase A family. Although its physiological function is still unclear, it has been shown that EDN is a neurotoxin capable of inducing the Gordon phenomenon in rabbits. EDN is also a potent helminthotoxin and can mediate antiviral activity of eosinophils against isolated virions of the respiratory syncytial virus. EDN is a catalytically efficient RNase sharing similar substrate specificity with pancreatic RNase A with its ribonucleolytic activity being absolutely essential for its neurotoxic, helminthotoxic, and antiviral activities. The crystal structure of recombinant human EDN in the unliganded form has been determined previously (Mosimann, S. C., Newton, D. L., Youle, R. J., and James, M. N. G. (1996) J. Mol. Biol. 260, 540-552). We have now determined high resolution (1.8 A) crystal structures for EDN in complex with adenosine-3',5'-diphosphate (3',5'-ADP), adenosine-2',5'-di-phosphate (2',5'-ADP), adenosine-5'-diphosphate (5'-ADP) as well as for a native structure in the presence of sulfate refined at 1.6 A. The inhibition constant of these mononucleotides for EDN has been determined. The structures present the first detailed picture of differences between EDN and RNase A in substrate recognition at the ribonucleolytic active site. They also provide a starting point for the design of tight-binding inhibitors, which may be used to restrain the RNase activity of EDN.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号