首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Four North American trees are becoming invasive species in Western Europe: Acer negundo, Prunus serotina, Quercus rubra, and Robinia pseudoacacia. However, their present and future potential risks of invasion have not been yet evaluated. Here, we assess niche shifts between the native and invasive ranges and the potential invasion risk of these four trees in Western Europe. We estimated niche conservatism in a multidimensional climate space using niche overlap Schoener's D, niche equivalence, and niche similarity tests. Niche unfilling and expansion were also estimated in analogous and nonanalogous climates. The capacity for predicting the opposite range between the native and invasive areas (transferability) was estimated by calibrating species distribution models (SDMs) on each range separately. Invasion risk was estimated using SDMs calibrated on both ranges and projected for 2050 climatic conditions. Our results showed that native and invasive niches were not equivalent with low niche overlap for all species. However, significant similarity was found between the invasive and native ranges of Q. rubra and R. pseudoacacia. Niche expansion was lower than 15% for all species, whereas unfilling ranged from 7 to 56% when it was measured using the entire climatic space and between 5 and 38% when it was measured using analogous climate only. Transferability was low for all species. SDMs calibrated over both ranges projected high habitat suitability in Western Europe under current and future climates. Thus, the North American and Western European ranges are not interchangeable irrespective of the studied species, suggesting that other environmental and/or biological characteristics are shaping their invasive niches. The current climatic risk of invasion is especially high for R. pseudoacacia and A. negundo. In the future, the highest risks of invasion for all species are located in Central and Northern Europe, whereas the risk is likely to decrease in the Mediterranean basin.  相似文献   

2.
Biological invasions and land‐use changes are two major causes of the global modifications of biodiversity. Habitat suitability models are the tools of choice to predict potential distributions of invasive species. Although land‐use is a key driver of alien species invasions, it is often assumed that land‐use is constant in time. Here we combine historical and present day information, to evaluate whether land‐use changes could explain the dynamic of invasion of the American bullfrog Rana catesbeiana (=Lithobathes catesbeianus) in Northern Italy, from the 1950s to present‐day. We used maxent to build habitat suitability models, on the basis of past (1960s, 1980s) and present‐day data on land‐uses and species distribution. For example, we used models built using the 1960s data to predict distribution in the 1980s, and so on. Furthermore, we used land‐use scenarios to project suitability in the future. Habitat suitability models predicted well the spread of bullfrogs in the subsequent temporal step. Models considering land‐use changes predicted invasion dynamics better than models assuming constant land‐use over the last 50 years. Scenarios of future land‐use suggest that suitability will remain similar in the next years. Habitat suitability models can help to understand and predict the dynamics of invasions; however, land‐use is not constant in time: land‐use modifications can strongly affect invasions; furthermore, both land management and the suitability of a given land‐use class may vary in time. An integration of land‐use changes in studies of biological invasions can help to improve management strategies.  相似文献   

3.
4.
Understanding the potential spread of invasive species is essential for land managers to prevent their establishment and restore impacted habitat. Habitat suitability modeling provides a tool for researchers and managers to understand the potential extent of invasive species spread. Our goal was to use habitat suitability modeling to map potential habitat of the riparian plant invader, Russian olive (Elaeagnus angustifolia). Russian olive has invaded riparian habitat across North America and is continuing to expand its range. We compiled 11 disparate datasets for Russian olive presence locations (n = 1,051 points and 139 polygons) in the western US and used Maximum entropy (Maxent) modeling to develop two habitat suitability maps for Russian olive in the western United States: one with coarse-scale water data and one with fine-scale water data. Our models were able to accurately predict current suitable Russian olive habitat (Coarse model: training AUC = 0.938, test AUC = 0.907; Fine model: training AUC = 0.923, test AUC = 0.885). Distance to water was the most important predictor for Russian olive presence in our coarse-scale water model, but it was only the fifth most important variable in the fine-scale model, suggesting that when water bodies are considered on a fine scale, Russian olive does not necessarily rely on water. Our model predicted that Russian olive has suitable habitat further west from its current distribution, expanding into the west coast and central North America. Our methodology proves useful for identifying potential future areas of invasion. Model results may be influenced by locations of cultivated individuals and sampling bias. Further study is needed to examine the potential for Russian olive to invade beyond its current range. Habitat suitability modeling provides an essential tool for enhancing our understanding of invasive species spread.  相似文献   

5.
Aim The assumption of equilibrium between organisms and their environment is a standard working postulate in species distribution models (SDMs). However, this assumption is typically violated in models of biological invasions where range expansions are highly constrained by dispersal and colonization processes. Here, we examined how stage of invasion affects the extent to which occurrence data represent the ecological niche of organisms and, in turn, influences spatial prediction of species’ potential distributions. Location Six ecoregions in western Oregon, USA. Methods We compiled occurrence data from 697 field plots collected over a 9‐year period (2001–09) of monitoring the spread of invasive forest pathogen Phytophthora ramorum. Using these data, we applied ecological‐niche factor analysis to calibrate models of potential distribution across different years of colonization. We accounted for natural variation and uncertainties in model evaluation by further investigating three hypothetical scenarios of varying equilibrium in a simulated virtual species, for which the ‘true’ potential distribution was known. Results We confirm our hypothesis that SDMs calibrated in early stages of invasion are less accurate than models calibrated under scenarios closer to equilibrium. SDMs that are developed in early stages of invasion tend to underpredict the potential range compared to models that are built in later stages of invasion. Main conclusions A full environmental niche of invasive species cannot be effectively captured with data from a realized distribution that is restricted by processes preventing full occupancy of suitable habitats. If SDMs are to be used effectively in conservation and management, stage of invasion needs to be considered to avoid underestimation of habitats at risk of invasion.  相似文献   

6.
Confidence in projections of the future distributions of species requires demonstration that recently-observed changes could have been predicted adequately. Here we use a dynamic model framework to demonstrate that recently-observed changes at the expanding northern boundaries of three British butterfly species can be predicted with good accuracy. Previous work established that the distributions of the study species currently lag behind climate change, and so we presumed that climate is not currently a major constraint at the northern range margins of our study species. We predicted 1970–2000 distribution changes using a colonisation model, MIGRATE, superimposed on a high-resolution map of habitat availability. Thirty-year rates and patterns of distribution change could be accurately predicted for each species (κ goodness-of-fit of models >0.64 for all three species, corresponding to >83% of grid cells correctly assigned), using a combination of individual species traits, species-specific habitat associations and distance-dependent dispersal. Sensitivity analyses showed that population productivity was the most important determinant of the rate of distribution expansion (variation in dispersal rate was not studied because the species are thought to be similar in dispersal capacity), and that each species' distribution prior to expansion was critical in determining the spatial pattern of the current distribution. In future, modelling approaches that combine climate suitability and spatially-explicit population models, incorporating demographic variables and habitat availability, are likely to be valuable tools in projecting species' responses to climatic change and hence in anticipating management to facilitate species' dispersal and persistence.  相似文献   

7.
Most previous attempts to model the geographical range expansion of an invading species assume random dispersal of organisms through a homogeneous environment. These models result in a series of uniformly increasing circles radiating out from the centre of origin over time. Although these models often give reasonable fits to available data, they do not typically include mechanisms of dispersal. Alternatively, models that include assumptions of non‐random dispersal and a heterogeneous environment inevitably result in an anisotropic or jagged invasion front. This front will include propagules of pioneer individuals for the expanding species. Existing data from biological invasions reveal that the spatial structure of an invading species usually exhibits these propagules. Using population data gathered from the past century, we investigated the propagules of two North American invading bird species: the European starling (Sturnus vulgaris Linnaeus), and the house finch (Carpodacus mexicanus Müller), and found a correlation between propagule location and habitat quality. These results suggest that dispersing individuals seek out favourable habitat and remain there, thus introducing a possible mechanism for explaining non‐uniform dispersal during invasions. When combined with results from other studies, our results suggest that propagules provide starting points for future population expansion of an invading species.  相似文献   

8.
The margins of an expanding range are predicted to be challenging environments for adaptation. Marginal populations should often experience low effective population sizes (Ne) where genetic drift is high due to demographic expansion and/or census population size is low due to unfavourable environmental conditions. Nevertheless, invasive species demonstrate increasing evidence of rapid evolution and potential adaptation to novel environments encountered during colonization, calling into question whether significant reductions in Ne are realized during range expansions in nature. Here we report one of the first empirical tests of the joint effects of expansion dynamics and environment on effective population size variation during invasive range expansion. We estimate contemporary values of Ne using rates of linkage disequilibrium among genome‐wide markers within introduced populations of the highly invasive plant Centaurea solstitialis (yellow starthistle) in North America (California, USA), and within native Eurasian populations. As predicted, we find that Ne within the invaded range is positively correlated with both expansion history (time since founding) and habitat quality (abiotic climate). History and climate had independent additive effects with similar effect sizes, indicating an important role for both factors in this invasion. These results support theoretical expectations for the population genetics of range expansion, though whether these processes can ultimately arrest the spread of an invasive species remains an unanswered question.  相似文献   

9.
明确区域尺度上外来入侵种的潜在分布格局及其对气候变化的响应对入侵种的预防和控制具有重要意义。以外来入侵植物刺苍耳(Xanthium spinosum L.)为研究对象,以其扩散蔓延的新疆地区为研究区域,结合中国国家气候中心开发的BCC—CSM1—1模式下的将来气候条件,应用MaxEnt模型和ArcGIS空间分析技术构建了未来不同气候变化情景(RCP4.5,8.5)下2050s和2070s的刺苍耳适宜生境预测模型,定量的展示了气候变化情景下刺苍耳在新疆的扩散趋势及其适宜生境的面积空间变化和分布区中心移动轨迹。结果表明:年降雨量、下层土壤有机碳含量、上层土壤pH值、年温度变化范围、降雨量的季节性变化和年平均温度是影响刺苍耳地理分布的主导环境因子;博州、塔城、阿勒泰西北部、哈密中部、巴州北部、克州中部、阿克苏北部、奎屯市、克拉玛依市、五家渠市、喀什市等地为高危入侵风险区;两种气候模式下刺苍耳的各级适生区面积和总适生面积均呈持续增加的变化趋势,且在RCP8.5情景(最高温室气体排放情景)下响应更为敏感;总体上看,刺苍耳在新疆的分布未达到饱和,呈现以塔城中部为中心,向天山北麓和塔克拉玛干北缘方向辐射状扩散,且两种气候变化情景下至2070s分布区中心均向伊犁州奎屯方向移动。  相似文献   

10.
Before invasion, or in its early stages, information on the invader in target areas is generally extremely limited. In such situations, managers must select focal areas in which to concentrate control and mitigation efforts. Here, we discuss a rapid method for selecting areas in which to control invasive aquatic species based on limited information. We used a simple cellular automata model that does not require species-specific information, but simulates the process of invasive species expansion and includes observed expansion progress to detect keystone areas. As a case study, we simulated the expansion of an invasive aquatic mussel, Limnoperna fortunei, in Ibaraki Prefecture, Japan, and detected the areas in which control efforts should be concentrated. To some extent, our model was able to predict the expansion of L. fortunei from the initial detected invasion to the current distribution. We predicted areas with a high potential of spreading and areas that would suffer from high propagule pressure. Results revealed a mismatch between areas with high spread potential and those with high propagule pressure. Managers should concentrate their invasion prevention efforts in the former because these are likely to have a greater long-term influence. Additionally, we predicted future expansion from the current distribution and showed that current scattered populations could merge naturally. Our approach is useful for establishing a management plan before or in the early stages of invasion.  相似文献   

11.
Species distribution models (SDMs) have traditionally been founded on the assumption that species distributions are in equilibrium with environmental conditions and that these species–environment relationships can be used to estimate species responses to environmental changes. Insight into the validity of this assumption can be obtained from comparing the performance of correlative species distribution models with more complex hybrid approaches, i.e. correlative and process‐based models that explicitly include ecological processes, thereby accounting for mismatches between habitat suitability and species occupancy patterns. Here we compared the ability of correlative SDMs and hybrid models, which can accommodate non‐equilibrium situations arising from dispersal constraints, to reproduce the distribution dynamics of the ortolan bunting Emberiza hortulana in highly dynamic, early successional, fire driven Mediterranean landscapes. Whereas, habitat availability was derived from a correlative statistical SDM, occupancy was modeled using a hybrid approach combining a grid‐based, spatially‐explicit population model that explicitly included bird dispersal with the correlative model. We compared species occupancy patterns under the equilibrium assumption and different scenarios of species dispersal capabilities. To evaluate the predictive capability of the different models, we used independent species data collected in areas affected to different degree by fires. In accordance with the view that disturbance leads to a disparity between the suitable habitat and the occupancy patterns of the ortolan bunting, our results indicated that hybrid modeling approaches were superior to correlative models in predicting species spatial dynamics. Furthermore, hybrid models that incorporated short dispersal distances were more likely to reproduce the observed changes in ortolan bunting distribution patterns, suggesting that dispersal plays a key role in limiting the colonization of recently burnt areas. We conclude that SDMs used in a dynamic context can be significantly improved by using combined hybrid modeling approaches that explicitly account for interactions between key ecological constraints such as dispersal and habitat suitability that drive species response to environmental changes.  相似文献   

12.
The wool carder bee, Anthidium manicatum, is the most widely distributed unmanaged bee in the world. It was unintentionally introduced to North America in the late 1960s from Europe, and subsequently, into South America, New Zealand and the Canary Islands. We provide information on the local distribution, seasonal abundance and sex ratio of A. manicatum from samples collected in an intensive two-year survey across Utah, USA. Anthidium manicatum was detected in 10 of the 29 Utah counties, largely in urban and suburban settings. Combining presence-only and MaxEnt background data from literature, museum databases and new records from Utah, we constructed three species distribution models to examine the potential distribution of A. manicatum in its native Eurasian range as well as invaded ranges of North and South America. The A. manicatum model based on locality and background data from the species’ native range predicted 50% of the invasive records associated with high habitat suitability (HS ≥ 0.90). The invasive North American model predicted a much broader distribution of A. manicatum (214% increase); whereas, the South American model predicted a narrower distribution (88% decrease). The poor predictive power of the latter model in estimating suitable habitats in the invasive South American range of A. manicatum suggests that the bee may still be limited by the bioclimatic constraints associated with a novel environment. Estimates of niche similarity (D) between the native and invasive models find that the North America bioclimatic niche is more similar to the bioclimatic niche of the native model (D = 0.78), whereas the bioclimatic niche of the South America invasion is relatively dissimilar (D = 0.69). We discuss the naturalization of A. manicatum in North America, possibly through punctuated dispersal, the probability of suitable habitats across the globe and the synanthropy exhibited by this invasive species.  相似文献   

13.
Biological invasions are a major conservation threat for biodiversity worldwide. Islands are particularly vulnerable to invasive species, especially Mediterranean islands which have suffered human pressure since ancient times. In the Balearic archipelago, reptiles represent an outstanding case with more alien than native species. Moreover, in the last decade a new wave of alien snakes landed in the main islands of the archipelago, some of which were originally snake-free. The identification of the origin and colonization pathways of alien species, as well as the prediction of their expansion, is crucial to develop effective conservation strategies. In this study, we used molecular markers to assess the allochthonous status and the putative origin of the four introduced snake species (Hemorrhois hippocrepis, Malpolon monspessulanus, Macroprotodon mauritanicus and Rhinechis scalaris) as well as ecological niche models to infer their patterns of invasion and expansion based on current and future habitat suitability. For most species, DNA sequence data suggested the Iberian Peninsula as the potential origin of the allochthonous populations, although the shallow phylogeographic structure of these species prevented the identification of a restricted source-area. For all of them, the ecological niche models showed a current low habitat suitability in the Balearic, which is however predicted to increase significantly in the next few decades under climate change scenarios. Evidence from direct observations and spatial distribution of the first-occurrence records of alien snakes (but also lizards and worm lizards) suggest the nursery trade, and in particular olive tree importation from Iberian Peninsula, as the main pathway of introduction of alien reptiles in the Balearic islands. This trend has been reported also for recent invasions in NE Spain, thus showing that olive trees transplantation may be an effective vector for bioinvasion across the Mediterranean. The combination of molecular and ecological tools used in this study reveals a promising approach for the understanding of the complex invasion process, hence guiding conservation management actions.  相似文献   

14.
Whether or not species track native climatic conditions during invasions (i.e., climate match hypothesis) is fundamental to understand and prevent potential impacts of invasive species. Recent empirical work suggests that climatic mismatches between native and invasive ranges are pervasive. Whether these differences are due to adaptation to new climatic spaces in the invasive range or due to partial filling of the potential climatic space are still subject to debate. Here, we analyze climatic niche dynamics associated with the invasion of the two most common invasive plants in Brazilian semi-arid areas, Prosopis juliflora and Prosopis pallida. These species have been simultaneously introduced in the region, which creates a unique opportunity to compare their niche dynamics during invasion. Given that P. juliflora have a much wider native range size, we expect these species would present different dispersal potentials, which might translate into different unfilling levels. Using an ordination method with kernel smoother and null models, we contrasted climate spaces occupied by each species in both native and invasive ranges. We further used ecological niche models (ENMs) to compare reciprocal predictions of potentially suitable areas. Against our expectation based on differences in native range sizes, climatic niches of P. juliflora and P. pallida overlapped greatly, both in their native and invasive ranges. Our results support niche conservatism during the invasion process. Climatic mismatches among native and invaded ranges were exclusively attributed to unfilling of native climates in the invasive range. Both species showed similar unfilling levels. Likewise, ENMs predicted regions not yet occupied in the invasive range, revealing a potential for further expansion. We discuss colonization time lag and founder effect as potential mechanisms that may have prevented these species to fully occupy their native niches in the invasive range.  相似文献   

15.
Climate change and invasive species pose important conservation issues separately, and should be examined together. We used existing long term climate datasets for the US to project potential climate change into the future at a finer spatial and temporal resolution than the climate change scenarios generally available. These fine scale projections, along with new species distribution modeling techniques to forecast the potential extent of invasive species, can provide useful information to aide conservation and invasive species management efforts. We created habitat suitability maps for Pueraria montana (kudzu) under current climatic conditions and potential average conditions up to 30 years in the future. We examined how the potential distribution of this species will be affected by changing climate, and the management implications associated with these changes. Our models indicated that P. montana may increase its distribution particularly in the Northeast with climate change and may decrease in other areas.  相似文献   

16.
Aim We demonstrate how to integrate two widely used tools for modelling the spread of invasive plants, and compare the performance of the combined model with that of its individual components using the recent range dynamics of the invasive annual weed Ambrosia artemisiifolia L. Location Austria. Methods Species distribution models, which deliver habitat‐based information on potential distributions, and interacting particle systems, which simulate spatio‐temporal range dynamics as dependent on neighbourhood configurations, were combined into a common framework. We then used the combined model to simulate the invasion of A. artemisiifolia in Austria between 1990 and 2005. For comparison, simulations were also performed with models that accounted only for habitat suitability or neighbourhood configurations. The fit of the three models to the data was assessed by likelihood ratio tests, and simulated invasion patterns were evaluated against observed ones in terms of predictive discrimination ability (area under the receiver operating characteristic curve, AUC) and spatial autocorrelation (Moran’s I). Results The combined model fitted the data significantly better than the single‐component alternatives. Simulations relying solely on parameterized spread kernels performed worst in terms of both AUC and spatial pattern formation. Simulations based only on habitat information correctly predicted infestation of susceptible areas but reproduced the autocorrelated patterns of A. artemisiifolia expansion less adequately than did the integrated model. Main conclusions Our integrated modelling approach offers a flexible tool for forecasts of spatio‐temporal invasion patterns from landscape to regional scales. As a further advantage, scenarios of environmental change can be incorporated consistently by appropriately updating habitat suitability layers. Given the susceptibility of many alien plants, including A. artemisiifolia, to both land use and climate changes, taking such scenarios into account will increasingly become relevant for the design of proactive management strategies.  相似文献   

17.
Studies investigating the genetic variation of invasive species render opportunities to better understand the dynamics of biological invasions from an ecological and evolutionary perspective. In this study, we investigate fine-scale population genetic structure of invasive Senecio madagascariensis (fireweed) using microsatellite markers to determine levels of genetic diversity and how it pertains to introduction history of this species within and among the Hawaiian Islands. Dispersal patterns were interpreted and, together with a habitat suitability analysis, we aim to describe the potential range expansion of S. madgascariensis within the islands. Bayesian and frequency-based analyses revealed genetic structure with two major genetic demes corresponding to the two fireweed-infested islands of Maui and Hawaii. Both these demes showed further genetic sub-structure, each consisting of three genetically distinct subgroups. Overall, fireweed showed significant levels of inbreeding. Major genetic demes (Maui and Hawaii) differed in observed heterozygosities, inbreeding and genetic structure, each harbouring a large proportion of private alleles. In contrast to the current understanding of fireweed’s introduction history between the Hawaiian Islands, fine-scale population genetic parameters suggest that this species has been introduced at least twice, possibly even more, to the archipelago. Spatial analyses also revealed high correlation between genetic similarity and geographical proximity (>2 km apart) followed by a sharp decline. In addition, a single population was identified that likely resulted from a rare human- or animal-mediated extreme long-distance dispersal event from Maui to Hawaii. Bayesian and likelihood estimates of ‘first generation migrants’ also concurred that contemporary dispersal occurs more frequently over smaller spatial scales than larger scales. These findings indicate that spread in this species occurs primarily via a stratified strategy. Predictions from habitat suitability models indicate all Hawaiian Islands as highly suitable for fireweed invasion and the movement of propagules to currently uninfested islands and outlying suitable habitats should be avoided to circumvent further expansions of the invasion.  相似文献   

18.
This study explored the determinants of spread of four alien Pinus species and the ability of models to predict invasion dynamics in a complex fragmented landscape. The role of environmental factors, natural and anthropogenic disturbance in relation to invasion history was assessed for different stages in the invasion process using a Geographic Information System. Pines escaped from plantations over the past 30 years and spread into the natural semi-arid shrubland (renosterveld). The pattern of spread was compared with a simulated random distribution using two different techniques, a standard logistic regression, and a new recursive modelling approach (Formal Inference-based Recursive Modelling; FIRM). FIRM analysis improved the accuracy of predictions and revealed interactive effects of variables hidden by the logistic regression analysis. More than 80% of isolated pine individuals were found in 20% of the habitat classified as suitable by the models. Soil pH was the most important predictor for the distribution of isolated trees, whereas the establishment of dense pine stands was largely determined by fire history. Differences in invasive behaviour could be explained by species attributes such as limited dispersal for P. canariensis, and better drought-tolerance for P. halepensis. Sixty-five percent of the current pine distribution was accurately predicted by the spatial distribution of the first trees to have invaded. Such models could be used to predict potential spread of invasive plants and gain a better understanding of the main factors driving the invasion process. However, the spread of invasive species in fragmented landscapes, strongly modified by human activities, is very complicated, and the spread remains difficult to predict in the long term. The dynamics of invasion are discussed in relation to changes in land use and disturbance regime.  相似文献   

19.
Successful management of an invasive species requires in depth knowledge of the invader, the invaded ecosystem, and their interactions. The complexity of the species-system interactions can be reduced and represented in ecological models for better comprehension. In this study, a spatially explicit population model was created using the RAMAS software package to simulate the past and future invasion dynamics of the eastern grey squirrel (Sciurus carolinensis) in the fragmented habitat in case study areas in Ireland. This invasive squirrel species causes economic damage by bark stripping forest crops and is associated with the decline of its native congener (S. vulgaris). Three combinations of demographic and dispersal parameters, which best matched the distribution of the species shortly after introduction, were used to simulate invasion dynamics. Future population expansion was modeled under scenarios of no control and two different management strategies: fatal culls and immunocontraceptive vaccination programmes. In the absence of control, the grey squirrel range is predicted to expand to the south and southwest of Ireland endangering internationally important habitats, vulnerable forest crops, and the native red squirrel. The model revealed that region-wide intensive and coordinated culls would have the greatest impact on grey squirrel populations. Control strategies consisting solely of immunocontraceptive vaccines, often preferred by public interest groups, are predicted to be less effective. Complete eradication of the grey squirrel from Ireland is not economically feasible and strategic evidence-based management is required to limit further range expansion. Ecological models can be used to choose between informed management strategies based on predicted outcomes.  相似文献   

20.
Abstract La Réunion Island has the largest area of intact vegetation of the islands in the Mascarene archipelago. Biological invasions are the primary threat to biodiversity in the intact habitats of the island (those not already transformed by agriculture and urbanization). Our study aimed to identify areas to prioritize in managing invasive alien plants for biodiversity conservation. We used extensive surveys of 238 distinct untransformed areas on La Réunion to define the current distribution patterns of all invasive species. Using expert knowledge, we compiled maps of the current distribution of the 46 most widespread/important invasive plants at the habitat scale (identified according to vegetation structure). Data from 440 botanical relevés for the 20 most threatening invasive alien plant species across the island and climatic envelope models were used to derive climatic suitability surfaces; these were used to map potential distributions for these species. More than 10 species invade 16.7% of the remaining habitat. Five habitat types are invaded by 25 or more species, and eight have fewer than 10 invasive alien plant species. Cluster analysis based on presence/absence of species in the 18 habitat types produced eight groups of species that invade particular habitats. Potential distribution models show that some species have invaded large parts of their potential range (e.g. Fuchsia magellanica, Furcraea foetida, Hiptage benghalensis), whereas others have the potential to increase their range substantially (e.g. Clidemia hirta, Strobilanthes hamiltonianus, Ulex europaeus). Management implications are identified for both groups. Three broad groups of habitats were identified: (i) intact habitats with a low level of invasion (e.g. subalpine shrubland); (ii) moderately invaded habitats with varying levels of intactness (ranging from windward submountain rainforest to the Acacia heterophylla forest); and (iii) habitats with little remaining intact area and high levels of invasion (e.g. lowland rainforest). Different management interventions are appropriate for these three groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号