首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have isolated a cDNA clone (pRcol 2) which is complementary to the 5'-terminal portion of the rat pro-alpha 1(II) chain mRNA. A synthetic oligonucleotide was used both as a primer for cDNA synthesis and as a probe for screening a cDNA library. The probe was a mixture of sixteen 14-mers deduced from an amino acid sequence present in the amino-terminal telopeptide of the rat cartilage alpha 1(II) chain. This primer was chosen so that the resulting cDNA would contain the sequence of the 5' end of the mRNA. The nucleotide sequences of the cDNA were determined and compared with that of three other interstitial procollagen chain mRNAs (pro-alpha 1(I), pro-alpha 2(I), and pro-alpha 1(III) chain mRNA). pRcol 2 contains a 521-base pair (bp) insert, including 153 bp of the 5' untranslated region plus 368 bp coding for the signal peptide, the amino-terminal propeptide, and a part of the telopeptide. The signal peptide of the type II collagen chain is composed of about 20 amino acids. There is little homology between the amino acid sequence of the signal peptide in the pro-alpha 1(II) chain and that of three other interstitial procollagen chains. The NH2-terminal propeptide is deduced to contain short nonhelical sequences at its amino and carboxyl ends and an internal helical collagenous domain comprising 25 repeats of Gly-X-Y with one interruption. There is a strong conservation of the amino acid sequence of the carboxyl-terminal part of the NH2-terminal propeptide in the pro-alpha 1(II), pro-alpha 1(I), and pro-alpha 2(I) chains. Type II collagen mRNA does not contain a sequence corresponding to a uniquely conserved nucleotide sequence around the translation initiation site which occurs in mRNA for other procollagen chains.  相似文献   

2.
The cause of the Ehlers-Danlos syndrome Type VII (EDS VII) is considered to be defective removal of the amino-terminal propeptide (N-propeptide) of Type I procollagen due to deficiency of procollagen N-proteinase, the enzyme responsible for the normal proteolytic excision of this precursor-specific domain. Molecules retaining the N-propeptide (pN-collagen molecules) are thought to cause defective fibrillogenesis and cross-linking which eventuate in dramatic joint laxity and joint dislocations, the clinical hallmark of this variety of EDS. Recent studies demonstrate that some EDS VII patients harbor small deletions of either the pro-alpha 1(I) or pro-alpha 2(I) chain of Type I procollagen. We have found an 18-amino acid deletion (due to exon outsplicing) in a mutant pro-alpha 2(I) chain from such a patient. The deleted peptide is the junctional segment (N-telopeptide) linking the alpha 2(I) N-propeptide and major triple helical domains; loss of this short segment results in union of these latter domains and produces a shortened pN alpha 2(I) chain. Directly extracted tissue collagen and pepsin-digested fibroblast collagen contain this mutant pN alpha 2(I) chain and normal alpha 1(I) chains, but not pN alpha 1(I) chains, indicating that the relatively larger alpha 1(I) N-propeptide is excised from the related alpha 1(I) chains. The fate of this alpha 1(I) N-propeptide was unclear and therefore whether or not the intact N-propeptide was, in fact, retained in native mutant collagen was also unclear. In this paper, we describe morphologic, chemical, and immunochemical studies which indicate that the alpha 1(I) N-propeptide is retained in noncovalent association with the mutant pN alpha 2(I) chain in native mutant collagen molecules both in vivo and in vitro. In both instances, the alpha 1(I) N-propeptides are proteolytically cleaved from the related alpha 1(I) chains. These data suggest that retention of a partially cleaved, but essentially intact N-propeptide in mutant collagen may play a role in the pathogenesis of this disease.  相似文献   

3.
Synthesis of procollagen was examined in skin fibroblasts from a patient with a moderately severe autosomal dominant form of osteogenesis imperfecta. Proteolytic removal of the propeptide regions of newly synthesized procollagen, followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis under nonreducing conditions, revealed the presence of type I collagen in which two alpha 1(I) chains were linked through interchain disulfide bonds. Fragmentation of the disulfide-bonded alpha 1(I) dimers with vertebrate collagenase and cyanogen bromide demonstrated the presence of a cysteine residue in alpha 1(I)CB8, a fragment containing amino acid residues 124-402 of the alpha 1(I) collagen chain. Cysteine residues are not normally found in the triple-helical domain of type I collagen chains. The heterozygous nature of the molecular defect resulted in the formation of three kinds of type I trimers: a normal type with normal pro-alpha(I) chains, a type I trimer with one mutant pro-alpha 1(I) chain and two normal chains, and a type I trimer containing two mutant pro-alpha 1(I) chains and one normal pro-alpha 2(I) chain. The presence of one or two mutant pro-alpha 1(I) chains in trimers of type I procollagen was found to reduce the thermal stability of the protein by 2.5 and 1 degree C, respectively. In addition to post-translational overmodification, procollagen containing one mutant pro-alpha 1(I) chain was also cleared more slowly from cultured fibroblasts. The most likely explanation for these disruptive changes in the physical stability and secretion of the mutant procollagen is that a cysteine residue is substituted for a glycine in half of the pro-alpha 1(I) chains synthesized by the patient's fibroblasts.  相似文献   

4.
The dermal type I collagen of a patient with Ehlers-Danlos type VIIB (EDS-VIIB) contained normal alpha 2(I) chains and mutant pN-alpha 2(I)' chains in which the amino-terminal propeptide (N-propeptide) remained attached to the alpha 2(I) chain. Similar alpha 2(I) chains were produced by cultured dermal fibroblasts. Amino acid sequencing of tryptic peptides, prepared from the mutant amino-terminal pN-alpha 2(I) CB1' peptide, indicated that five amino acids, including the N-proteinase (the specific proteinase that cleaves the procollagen N-propeptide) cleavage site, had been deleted from the junction of the N-propeptide and the N-telopeptide (the nonhelical domain at the amino-terminus of the alpha chains of fully processed type I polypeptide chains) of the mutant pro-alpha 2(I)' chain. The corresponding 15 nucleotides, which were deleted from approximately half of the alpha 2(I) cDNA polymerase chain reaction products, of the alpha 2(I) cDNA polymerase chain reaction products, were encoded by the +1 to +15 nucleotides of exon 6 of the normal alpha 2(I) gene (COL1A2). These 15 nucleotides were deleted in the splicing of alpha 2(I) pre-mRNA to mRNA as a result of inactivation of the 3' splice site of intron 5 by an AG to AC mutation and the activation of a cryptic AG splice acceptor site corresponding to positions +14 and +15 of exon 6. Loss of the N-proteinase cleavage site explained the persistence of the pN-alpha 2(I)' chains in the dermis and in fibroblast cultures. Collagen production by cultured dermal fibroblasts was doubled, possibly due to reduced feedback inhibition by the N-propeptides. In contrast to previously reported cases of EDS-VIIB, Lys5 of the N-telopeptide was not deleted and appeared to take part in the formation of intramolecular cross-linkages. However, increased collagen solubility and abnormal extraction profiles of the mutant type I collagen molecules indicated that collagen cross-linking was abnormal in the dermis. The proband and her son were heterozygous for the mutation. It is likely that the heterozygous loss of the N-proteinase cleavage site, with persistence of a shortened N-propeptide, was the major factor responsible for the EDS-VIIB phenotype.  相似文献   

5.
6.
A child with the type VII form of the Ehlers-Danlos syndrome was shown to have a structural defect in the amino terminus of the pro-alpha 1(I) chain of type I procollagen. Normal and mutant amino-terminal cyanogen bromide peptides (pN-alpha 1(I) CB0,1 peptides) were purified from the medium of the patient's cultured fibroblasts. Amino acid sequencing of tryptic peptides derived from the mutant pN-alpha 1(I) CB0,1 peptide showed that an expected sequence of 24 amino acids (positions 136-159 of the normal pN-alpha 1(I) CB0,1 peptide) was deleted. The segment deleted from the mutant pro-alpha 1(I) chain contains the small globular region of the NH2-propeptide, the procollagen N-proteinase cleavage site, the NH2-telopeptide, and first triplet of the helix of the alpha I(I) collagen chain (Chu, M.-L., de Wet, W., Bernard, M., Ding, J.F., Morabito, M., Myers, J., Williams, C., and Ramirez, F. (1984) Nature 310, 337-340). Loss of the procollagen N-proteinase cleavage site from the mutant pro-alpha 1(I) chain accounted for the persistence of its NH2-propeptide despite normal production of the N-proteinase by cultured mutant fibroblasts. Collagen production by mutant fibroblasts was doubled possibly due to reduced feedback inhibition by the NH2-propeptides. The child appeared to be heterozygous for the peptide deletion and, as the parents did not show any evidence of the deletion, it is likely that the child had a new mutation of one allele of the pro-alpha 1(I) gene. The deleted peptide corresponds precisely to the sequence coded by exon 46 of the normal pro-alpha 1(I) gene (Chu, M.-L., de Wet, W., Bernard, M., Ding, J.F., Morabito, M., Myers, J., Williams, C., and Ramirez, F. (1984) Nature 310, 337-340).  相似文献   

7.
Type V collagen was prepared from human amnionic/chorionic membranes and separated into alpha 1(V) and alpha 2(V) polypeptide chains. The alpha 1(V) chain was digested with cyanogen bromide and nine peptides were obtained and purified. Three of the peptides, alpha 1(V)CB1, CB4, and CB7 having molecular weights of 5000, 8000, and 6000, respectively, were further analyzed by amino acid sequence analysis and thermolytic or tryptic digestions. CB1 contained 54 amino acids and identification of its complete sequence was aided by thermolysin digestion and isolation of two peptides, Th1 and Th2. CB4 contained 81 amino acids and sequence analysis of intact CB4 and five tryptic peptides provided us with its complete amino acid sequence. The peptide CB7 contained 67 amino acids and was cleaved into four tryptic peptides that were used for complete sequence analysis. The above results represent the first available covalent structure information on the alpha 1(V) collagen chain. These data enabled us to establish the location of these peptides within the helical structure of other collagen chains. CB4 was homologous to residues 66-145 in the collagen chain while CB1 represented residues 146-200 and CB7 was homologous with residues 201-269. This alignment was facilitated by identification of a helical collagen crossing site consisting of Hyl-Gly-His-Arg located at positions 87-90 in all collagen chains of this size thus far identified. Seventy-one percent homology (excluding Gly residues) was found between amino acids in this region of the alpha 1(XI) and of alpha 1(V) collagen chains while only 21 and 19% identity was calculated for the same region of alpha 2(V) and alpha 1(I) collagen chains, respectively.  相似文献   

8.
We characterized a de novo 4.5 kilobase pair deletion in the paternally derived alpha 2(I) collagen allele (COL1A2) from a patient with perinatal lethal osteogenesis imperfecta. The intron-to-intron deletion removed the seven exons which encode residues 586-765 of the triple helical domain of the chain. Type I procollagen molecules that contain the mutant pro-alpha 2(I) chain have a lower than normal thermal stability, undergo increased post-translational modification amino-terminal to the deletion junction, and are retained within the rough endoplasmic reticulum. The block to secretion appears to result from improper assembly of the triple helix, apparently a consequence of a disruption of charge-charge interactions between the shortened pro-alpha 2(I) chain and normal pro-alpha 1(I) chains. The lethal effect may be due to decreased secretion of normal collagen and secretion of a small amount of abnormal collagen that disrupts matrix formation.  相似文献   

9.
10.
We have introduced two mutations into a full-length human pro-alpha 1(I) cDNA that delete 114 amino acids or the entire 139 amino acids of the N-propeptide domain. Wild-type and mutated versions of the cDNA were introduced into cultured Chinese hamster lung (CHL) cells, which do not produce endogenous type I collagen, and into Mov-13 mouse cells, which produce endogenous pro-alpha 2(I) chains but not pro-alpha 1(I) chains. As judged by resistance to proteases, neither mutation impaired intracellular triple helical assembly of human alpha 1(I) homotrimers in CHL cells, or of chimeric type I collagen comprised of human alpha 1(I) and mouse alpha 2(I) chains in Mov-13 cells. Thus, the N-propeptide is not necessary for intracellular assembly of the main helical collagen domain of type I collagen. In CHL cells the rate of secretion of the mutant homotrimers was greatly reduced as compared to wild type homotrimers, and by immunofluorescence and immunoelectron microscopy, the mutant chains were shown to be accumulated in large vesicular expansions of the rough endoplasmic reticulum. When such cells were retransfected with cDNA encoding wild-type human alpha 2(I) chains, mutant alpha 1(I) chains were not rescued and heterotrimers containing the mutant chains were also retained in the intracellular vesicles. By contrast, deletion of the N-propeptide did not affect secretion of heterotrimers containing mutant chains from Mov-13 cells. Thus, an intact N-propeptide appears necessary for efficient secretion of type I collagen from some but not all cell types.  相似文献   

11.
A full-length cDNA of the Type I procollagen alpha1 [pro-alpha1(I)] chain (4388 bp), coding for 1463 amino acid residues in the total length, was determined by RACE PCR using a cDNA library constructed from 4-week embryo of the skate Raja kenojei. The helical region of the skate pro-alpha1(I) chain consisted of 1014 amino acid residues - the same as other fibrillar collagen alpha chains from higher vertebrates. Comparison on denaturation temperatures of Type I collagens from the skate, rainbow trout (Oncorhynchus mykiss) and rat (Rattus norvegicus) revealed that the number of Gly-Pro-Pro and Gly-Gly in the alpha1(I) chains could be directly related to the thermal stability of the helix. The expression property of the skate pro-alpha1(I) chain mRNA and phylogenetic analysis with other vertebrate pro-alpha1(I) chains suggested that skate pro-alpha1(I) chain could be a precursor form of the skate Type I collagen alpha1 chain. The present study is the first evidence for the primary structure of full-length pro-alpha1(I) chain in an elasmobranch.  相似文献   

12.
The biosynthesis and proteolytic processing of type XI procollagen was examined using pulse-chase labelling of 17-day embryonic chick sterna in organ culture with [3H]proline. Products of biosynthesis were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis with and without prior reduction of disulfide bonds. Pro-alpha chains, intermediates, and matrix forms were identified by cyanogen bromide or Staphylococcus aureus V8 protease digestion. The results show that type XI pro-alpha chains assemble into trimeric molecules with interchain disulfide bonds. Proteolytic processing begins at least 40 min after the start of labeling which is later than that of type II procollagen (25 min). This first processing step involves the loss of the domain containing the interchain disulfide bonds which most likely is the carboxyl propeptide. In the case of the pro-alpha 3 chain, this generates the matrix form, m alpha 3, which retains its amino propeptide. For the pro-alpha 1 and pro-alpha 2 chains, this step generates intermediate forms, p alpha 1 and p alpha 2, which undergo a second proteolytic conversion to m alpha 1 and m alpha 2, and yet retain a pepsin-labile domain. The conversion of p alpha 2 to m alpha 2 is largely complete 2 h after labeling. p alpha 1 is converted to m alpha 1 very slowly and is 50% complete after 18 h of chase in organ culture. The apparent proteolytic processing within the amino propeptide, and the differential rate of processing between two chains in the same molecule are unusual and distinguish type XI from collagen types I, II, and III. It is possible that the extremely slow processing of p alpha 1 affects the formation of the heterotypic cartilage collagen fibrils and may be related to the function of type XI collagen.  相似文献   

13.
Partial covalent structure of the human alpha 2 type V collagen chain   总被引:5,自引:0,他引:5  
Human cDNA libraries were screened with a cDNA fragment presumably encoding the 3' terminus of a procollagen carboxyl propeptide not identifiable as types I, II, III, or IV by protein sequence or Northern blot hybridization. One clone contained a 1350-base pair insert coding in part for 55 uninterrupted Gly-X-Y triplets. Comparison with the amino acid composition of the COOH-terminal cyanogen bromide (CB) peptides of the alpha 1 and alpha 2 type V collagen chains showed similarity only to the alpha 2(V)CB fragment. To identify the NH2 terminus of the peptide designated by methionine, an additional isolate was sequenced and found to contain a Gly-Met-Pro triplet. Thirty-one amino acids from the NH2 terminus of the alpha 2(V)CB9 fragment were then determined by Edman degradation and found to be identical to those derived from the cDNA clone. The DNA sequence encoding part of the triple helical region establishes for the first time the partial structure of a type V collagen chain. Although comparison of residues 796-1020 of the alpha 2(V) collagenous region with alpha 1 (III), alpha 1(I), and alpha 2(I) shows strong conservation of charged positions, the latter three chains appear considerably more similar to each other than to alpha 2(V). A striking feature of the alpha 2(V) sequence between 918-944 is the absence of proline residues. In the analogous region of alpha 1(I) where this amino acid is also lacking, a flexible site in the rigid triple helical structure of type I collagen has been observed (Hofmann, H., Voss, T., Kuhn, K. and Engel, J. (1984) J. Mol. Biol. 172, 325-343).  相似文献   

14.
Cultured skin fibroblasts from a proband with an autosomal dominant variant of osteogenesis inperfecta were found to synthesize approximately equal amounts of normal pro-alpha 2(I) chains of type I procollagen and pro-alpha 2(I) chains which migrated more rapidly when examined by polyacrylamide gel electrophoresis in sodium dodecyl sulfate. The structural alteration was present in alpha 2(I)-CB4, a cyanogen bromide fragment containing amino acid residues 7-327 of the alpha 2 chain, and it appeared to be a deletion of about 30 amino acids. The pro-alpha 2(I) chains with the apparent deletion associated with normal pro-alpha 1(I) chains synthesized by the same fibroblasts and formed triple-helical type I procollagen. The presence of the altered pro-alpha 2 chains in trimers of procollagen had two consequences in terms of the physical properties of the molecule. One was to decrease the thermal stability of the protein as judged by resistance to proteolysis at 37 degrees C and by the helix to coil transition as assayed by circular dichroism. The second consequence was to make type I procollagen containing the shortened pro-alpha 2(I) chains resistant to digestion by procollagen N-proteinase. The simplest explanation for the data is that the apparent deletion in half the pro-alpha 2(I) chains produced a partial unfolding of the N-terminal region of type I procollagen which prevented processing of the protein by procollagen N-proteinase.  相似文献   

15.
Recent biochemical studies have shown that the fibroblasts from a patient with Ehlers-Danlos Syndrome Type VIIB produce nearly equal amounts of normal and shortened pro-alpha 2(I) collagen chains (Wirtz, M.K., Glanville, R. W., Steinmann, B., Rao, V. H., and Hollister, D. (1987) J. Biol. Chem. 262, 16376-16385). Compositional and sequencing studies of the abnormal pro-alpha 2(I) chain identified an interstitial deletion of 18 residues corresponding to the N-telopeptide of the collagen molecule. Since this region is encoded by a 54-base pair exon, number 6, the protein defect could have been caused by gene deletion, abnormal pre-mRNA splicing, or both. Here, in order to elucidate the molecular nature of this mutation we have analyzed the sequences of pro-alpha 2(I) collagen cDNA and genomic clones obtained from RNA and DNA of the patient's fibroblasts. Using oligomer-specific cloning we identified a cDNA that contains a 54-base pair deletion corresponding precisely to the sequence of exon 6. Identification of the normal gene was based on the finding of an identical sequence polymorphism in a normal cDNA and in the genomic clone derived from one of the two collagen alleles. The other gene, instead, displayed a base substitution (T to C) in the obligatory GT dinucleotide of the 5' splice-site sequence of intron 6. Analysis of nearly 100 base pairs immediately 5' to exons 5, 6, and 7, and 3' to exons 5 and 7 did not reveal any additional change. Therefore, the data strongly suggest that the observed GT-to-GC transition at the splice donor site of intron 6 generates an abnormally spliced mRNA in which the sequence of exon 5 is joined to the sequence of exon 7. Since skipping of exon 6 does not interfere with the coding frame of the mRNA, the resulting shortened polypeptide, albeit utilized in the assembly of a procollagen trimer, ultimately causes the Ehlers-Danlos Syndrome Type VII phenotype.  相似文献   

16.
Recently we presented the partial covalent structure of a type V collagen chain. Analysis of amino acids 796-1020 in the human alpha 2(V) Gly-X-Y region showed strong conservation of charged positions with the interstitial collagens but also revealed substitutions unique to type V. To gain more information about this procollagen and primarily to resolve the ambiguous nature of the 3' noncollagenous propeptide, we sequenced several cDNA clones coding for amino acids adjacent to the carboxyl end of the alpha chain. Here we report the complete primary structure of the alpha 2(V) COOH-terminal propeptide. In general, the latter sequence (270 residues) bears a greater degree of similarity to those of the interstitial rather than the basement membrane procollagens. Compared to the interstitial procollagens, however, more divergence has occurred in alpha 2(V) surrounding the conserved N-asparaginyl-linked carbohydrate attachment site at residues 171-173, and alpha 2(V) possesses an additional potential glycosylation site (Asn-Lys-Thr) located in a hypervariable region near the NH2 terminus. Although certainly premature to form any rigid hypothesis, a pattern emerges that may be characteristic of alpha 2 versus alpha 1 chains. Both the alpha 2(I) and alpha 2(V) telopeptides are devoid of a lysine, which in alpha 1 chains forms an interchain cross-link with residue 87 of the collagenous region. Also in contrast to the interstitial alpha 1 carboxyl propeptides is the absence in alpha 2(I) and alpha 2(V) of a cysteine that probably participates in an interchain disulfide bond. Therefore, one can speculate that those alpha 2 chains, represented only once in procollagen trimers, may not be under the same selective pressure as alpha 1 chains to maintain certain residues responsible for stabilizing the triple helical molecules.  相似文献   

17.
Skin fibroblasts from a patient with a lethal form of osteogenesis imprefecta were found to synthesize equal amounts of normal pro-alpha 1(I) chains and pro-alpha 1(I) chains which are about 10% shorter because of a deletion of about 100 amino acids in the middle of the alpha chain domain. The pro-alpha 1(I) chains were incorporated into three different kinds of trimers: a normal type I trimer with normal length pro-alpha 1(I) chains; a type Is trimer with one shortened pro-alpha 1(I) chain and two normal length chains; and a type Iss trimer containing two shortened pro-alpha 1(I) chains and one normal length pro-alpha 2(I) chain. As judged by resistance to digestion by chymotrypsin and trypsin, the type Is and Iss trimers denatured at a temperature at least 3 degrees C lower than normal type I procollagen. Procollagen containing the shortened pro-alpha 1(I) chains was slowly secreted by the cells but was degraded by extracellular proteinases within 6 h of chase into the medium. The results indicated that the presence of the shortened pro-alpha 1(I) chains in procollagen trimers produces a delay in rate of helix formation, overmodification of the polypeptides by post-translational enzymes, a decrease in the thermal stability of the trimers, and increased susceptibility of the protein to endogenous proteinases. Additionally, the fibroblasts of this patient synthesized and secreted a type III-like species of procollagen with unusual chromatographic properties.  相似文献   

18.
A structural defect in the alpha 2(I) chain of type I collagen was characterized in a new case of the Ehlers-Danlos syndrome type VII. The patient's skin, fascia, and bone collagens all showed an abnormal additional chain, pN-alpha 2(I)s, running slower than the alpha 2(I) chain on electrophoresis. The extension was shown to be on the amino-terminal fragment of pN-alpha (I)s by cleavage with human collagenase, but pepsin was unable to convert pN-alpha 2(I)s to alpha 2(I). Skin collagen was 4-fold more extractable and contained fewer beta-dimers and a lower concentration of cross-linking amino acids than control skin collagen. Electron micrographs of both dermis and bone showed markedly irregular ragged outlines of the collagen fibrils in cross-section, although the patient had no clinical signs of bone disease. Procollagen secreted by her skin fibroblasts in culture showed equal amounts of the normal and abnormal alpha 2(I) chains on pepsin digestion. Before pepsin, the pN-alpha 2(I) component ran as a doublet on electrophoresis; pepsin removed only the normal slower chain. The suspected deletion in pN-alpha 2(I)s was traced by CNBr peptide analysis to the N-propeptide fragment, which behaved on electrophoresis about 15-20 residues smaller than that from the normal pN-alpha 2(I) chain. The simplest genetic explanation is a spontaneous heterozygote in which one normal and one abnormal allele for the pro-alpha 2(I) gene are expressed, the protein defect being a deletion of the junction domain that spans the N-propeptidase cleavage site and the N-telopeptide cross-linking sequence.  相似文献   

19.
A baby with the lethal perinatal form of osteogenesis imperfecta was shown to have a structural defect in the alpha 1(I) chain of type I procollagen. Normal and mutant alpha 1(I) CB8 cyanogen bromide peptides, from the helical part of the alpha 1(I) chains, were purified from bone. Amino acid sequencing of tryptic peptides derived from the mutant alpha 1(I) CB8 peptide showed that the glycine residue at position 391 of the alpha 1(I) chain had been replaced by an arginine residue. This substitution accounted for the more basic charged form of this peptide that was observed on two-dimensional electrophoresis of the collagen peptides obtained from the tissues. The substitution was associated with increased enzymatic hydroxylation of lysine residues in the alpha 1(I) CB8 and the adjoining CB3 peptides but not in the carboxyl-terminal CB6 and CB7 peptides. This finding suggested that the sequence abnormality had interfered with the propagation of the triple helix across the mutant region. The abnormal collagen was not incorporated into the more insoluble fraction of bone collagen. The baby appeared to be heterozygous for the sequence abnormality and as the parents did not show any evidence of the defect it is likely that the baby had a new mutation of one allele of the pro-alpha 1(I) gene. The amino acid substitution could result from a single nucleotide mutation in the codon GGC (glycine) to produce the codon CGC (arginine).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号