首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During the initiation of endochondral ossification three events occur that are inextricably linked in time and space: chondrocytes undergo terminal differentiation and cell death, the skeletal vascular endothelium invades the hypertrophic cartilage matrix, and osteoblasts differentiate and begin to deposit a bony matrix. These developmental programs implicate three tissues, the cartilage, the perichondrium, and the vascular endothelium. Due to their intimate associations, the interactions among these three tissues are exceedingly difficult to distinguish and elucidate. We developed an ex vivo system to unlink the processes initiating endochondral ossification and establish more precisely the cellular and molecular contributions of the three tissues involved. In this ex vivo system, the renal capsule of adult mice was used as a host environment to grow skeletal elements. We first used a genetic strategy to follow the fate of cells derived from the perichondrium and from the vasculature. We found that the perichondrium, but not the host vasculature, is the source of both trabecular and cortical osteoblasts. Endothelial cells residing within the perichondrium are the first cells to participate in the invasion of the hypertrophic cartilage matrix, followed by endothelial cells derived from the host environment. We then combined these lineage analyses with a series of tissue manipulations to address how the absence of the perichondrium or the vascular endothelium affected skeletal development. We show that although the perichondrium influences the rate of chondrocytes maturation and hypertrophy, it is not essential for chondrocytes to undergo late hypertrophy. The perichondrium is crucial for the proper invasion of blood vessels into the hypertrophic cartilage and both the perichondrium and the vasculature are essential for endochondral ossification. Collectively, these studies clarify further the contributions of the cartilage, perichondrium, and vascular endothelium to long bone development.  相似文献   

2.
Differentiating cells interact with their extracellular environment over time. Chondrocytes embed themselves in a proteoglycan (PG)-rich matrix, then undergo a developmental transition, termed "maturation," when they express ihh to induce bone in the overlying tissue, the perichondrium. Here, we ask whether PGs regulate interactions between chondrocytes and perichondrium, using zebrafish mutants to reveal that cartilage PGs inhibit chondrocyte maturation, which ultimately dictates the timing of perichondral bone development. In a mutagenesis screen, we isolated a class of mutants with decreased cartilage matrix and increased perichondral bone. Positional cloning identified lesions in two genes, fam20b and xylosyltransferase1 (xylt1), both of which encode PG synthesis enzymes. Mutants failed to produce wild-type levels of chondroitin sulfate PGs, which are normally abundant in cartilage matrix, and initiated perichondral bone formation earlier than their wild-type siblings. Primary chondrocyte defects might induce the bone phenotype secondarily, because mutant chondrocytes precociously initiated maturation, showing increased and early expression of such markers as runx2b, collagen type 10a1, and ihh co-orthologs, and ihha mutation suppressed early perichondral bone in PG mutants. Ultrastructural analyses demonstrated aberrant matrix organization and also early cellular features of chondrocyte hypertrophy in mutants. Refining previous in vitro reports, which demonstrated that fam20b and xylt1 were involved in PG synthesis, our in vivo analyses reveal that these genes function in cartilage matrix production and ultimately regulate the timing of skeletal development.  相似文献   

3.
To date, studies on mesenchymal tissue stem cells (MSCs) in the perichondrium have focused on in vitro analysis, and the dynamics of cartilage regeneration from the perichondrium in vivo remain largely unknown. We have attempted to apply cell and tissue engineering methodology for ear reconstruction using cultured chondrocytes. We hypothesized that by inducing angiogenesis with basic fibroblast growth factor (bFGF), MSCs or cartilage precursor cells would proliferate and differentiate into cartilage in vivo and that the regenerated cartilage would maintain its morphology over an extended period. As a result of a single administration of bFGF to the perichondrium, cartilage tissue formed and proliferated while maintaining its morphology for at least 3 months. By day 3 post bFGF treatment, inflammatory cells, primarily comprising mononuclear cells, migrated to the perichondrial region, and the proliferation of matrix metalloproteinase 1 positive cells peaked. During week 1, the perichondrium thickened and proliferation of vascular endothelial cells was noted, along with an increase in the number of CD44-positive and CD90-positive cartilage MSCs/progenitor cells. Neocartilage was formed after 2 weeks, and hypertrophied mature cartilage was formed and maintained after 3 months. Proliferation of the perichondrium and cartilage was bFGF concentration-dependent and was inhibited by neutralizing antibodies. Angiogenesis induction by bFGF was blocked by the administration of an angiogenesis inhibitor, preventing perichondrium proliferation and neocartilage formation. These results suggested that angiogenesis may be important for the induction and differentiation of MSCs/cartilage precursor cells in vivo, and that morphological changes, once occurring, are maintained.  相似文献   

4.
Parathyroid hormone-related peptide (PTHrP) has been shown to be essential for normal endochondral bone formation. Along with Indian hedgehog (Ihh), it forms a paracrine regulatory loop that governs the pace of chondrocyte differentiation. However, the source of PTHrP for this regulatory loop is not clear. While one hypothesis has suggested the periarticular perichondrium as the source of PTHrP for growth plate regulation, other data utilizing immunohistochemistry and in situ hybridization would indicate that growth plate chondrocytes themselves are the source of this peptide. The data described in this report supports the view that postnatal growth plate chondrocytes have the ability to synthesize this important regulatory peptide. Immunohistochemistry of tissue sections showed that PTHrP protein was evident throughout the chick epiphysis. PTHrP was seen in chondrocytes in the periarticular perichondrium, the perichondrium adjacent to the growth plate, the prehypertrophic zone of the growth plate, and the hypertrophic zone of the growth plate. However, cells in the proliferative zone, as well as some chondrocytes in the deeper layers of articular cartilage were predominantly negative for PTHrP. PTHrP was detected by Western blotting as a band of 16,400 Da in extracts from hypertrophic chondrocytes, but not from proliferative cells. RT-PCR detected PTHrP mRNA in both proliferative and hypertrophic growth plate chondrocytes, as well as in articular chondrocytes. PTH/PTHrP receptor mRNA was detected by Northern blotting in growth plate, but not articular chondrocytes. Thus, we conclude that most of the PTHrP present in the epiphyseal growth plate of the juvenile chick originates in the growth plate itself. Furthermore, the presence of large amounts of PTHrP protein in the hypertrophic zone supports the concept that PTHrP has other functions in addition to regulating chondrocyte differentiation.  相似文献   

5.
We examined bovine fetal epiphyseal and growth plate cartilages by immunofluorescence microscopy and immunoelectron microscopy using monospecific antibodies to a newly discovered cartilage-matrix calcium-binding protein that we now call chondrocalcin. Chondrocalcin was evenly distributed at relatively low concentration in resting fetal epiphyseal cartilage. In growth plate cartilage, it was absent from the extracellular matrix in the zone of proliferating chondrocytes but was present in intracellular vacuoles in proliferating, maturing and upper hypertrophic chondrocytes. The protein then disappeared from the lower hypertrophic chondrocytes and appeared in the adjoining extracellular matrix, where it was selectively concentrated in the longitudinal septa in precisely the same location where amorphous mineral was deposited in large amounts as demonstrated by von Kossa staining and electron microscopy. Mineral then spread out from these "nucleation sites" to occupy much of the surrounding matrix. Matrix vesicles were identified in this calcifying matrix but they bore no observable morphological relationship to these major sites of calcification where chondrocalcin was concentrated. Since chondrocalcin is a calcium-binding protein and has a strong affinity for hydroxyapatite, these observations suggest that chondrocalcin may play a fundamental role in the creation of nucleation sites for the calcification of cartilage matrix in endochondral bone formation.  相似文献   

6.
7.
Members of the TGF-β superfamily are important regulators of skeletal development. TGF-βs signal through heteromeric type I and type II receptor serine/threonine kinases. When over-expressed, a cytoplasmically truncated type II receptor can compete with the endogenous receptors for complex formation, thereby acting as a dominant-negative mutant (DNIIR). To determine the role of TGF-βs in the development and maintenance of the skeleton, we have generated transgenic mice (MT-DNIIR-4 and -27) that express the DNIIR in skeletal tissue. DNIIR mRNA expression was localized to the periosteum/perichondrium, syno-vium, and articular cartilage. Lower levels of DNIIR mRNA were detected in growth plate cartilage. Transgenic mice frequently showed bifurcation of the xiphoid process and sternum. They also developed progressive skeletal degeneration, resulting by 4 to 8 mo of age in kyphoscoliosis and stiff and torqued joints. The histology of affected joints strongly resembled human osteo-arthritis. The articular surface was replaced by bone or hypertrophic cartilage as judged by the expression of type X collagen, a marker of hypertrophic cartilage normally absent from articular cartilage. The synovium was hyperplastic, and cartilaginous metaplasia was observed in the joint space.

We then tested the hypothesis that TGF-β is required for normal differentiation of cartilage in vivo. By 4 and 8 wk of age, the level of type X collagen was increased in growth plate cartilage of transgenic mice relative to wild-type controls. Less proteoglycan staining was detected in the growth plate and articular cartilage matrix of transgenic mice. Mice that express DNIIR in skeletal tissue also demonstrated increased Indian hedgehog (IHH) expression. IHH is a secreted protein that is expressed in chondrocytes that are committed to becoming hypertrophic. It is thought to be involved in a feedback loop that signals through the periosteum/ perichondrium to inhibit cartilage differentiation. The data suggest that TGF-β may be critical for multifaceted maintenance of synovial joints. Loss of responsiveness to TGF-β promotes chondrocyte terminal differentiation and results in development of degenerative joint disease resembling osteoarthritis in humans.

  相似文献   

8.
We report here a comparative study of the development and behavior of chondrocytes isolated from normal growth plate tissue, tibial dyschondroplasic lesions, and from articular cartilage. The objective of these studies was to determine whether the properties exhibited by chondrocytes in dysplasic lesions or in articular cartilage were due to their cellular phenotype, their environment, or both. We had previously analyzed the electrolytes and amino acid levels in the extracellular fluid of avian growth plate chondrocytes. Using these data, we constructed a culture medium (DATP5) in which growth plate cells essentially recapitulate their normal behavior in vivo. Here, we used DATP5 to examine the behavior of chondrocytes isolated from lesions of tibial dyschondroplasia (TD). We found that once isolated from lesion and grown in this supportive medium, dysplasic chondrocytes behaved essentially like normal growth plate cells. These findings suggest that the cause of TD is local factors operating in vivo to prevent these cells from developing normally. With respect to articular chondrocytes, our data indicate that they more closely retain normal protein and proteoglycan synthesis when grown in serum-free media. These cells readily induced mineral formation in vitro, both in the presence and absence of serum. However, in serum-containing media, mineralization was significantly enhanced when the cells were exposed to retinoic acid (RA) or osteogenic protein-1 (OP-1). Our studies support previous work indicating the presence of autocrine factors produced by articular chondrocytes in vivo that prevent mineralization and preserve matrix integrity. The lack of inhibitory factors and the presence of supporting factors are likely reasons for the induction of mineralization by articular chondrocytes in vitro.  相似文献   

9.
The tissue localization was analysed of collagen X during human fetal and juvenile articular cartilage-bone metamorphosis. This unique collagen type was found in the hypertrophic cartilage zone peri- and extracellularly and in cartilage residues within bone trabeculae. In addition, occasionally a slight intracellular staining reaction was found in prehypertrophic proliferating chondrocytes and in chondrocytes surrounding vascular channels. A slight staining was also seen in the zone of periosteal ossification and occasionally at the transition zone of the perichondrium to resting cartilage. Our data provide evidence that the appearance of collagen X is mainly associated with cartilage hypertrophy, analogous to the reported tissue distribution of this collagen type in animals. In addition, we observed an increased and often "spotty" distribution of collagen X with increasing cartilage "degeneration" associated with the closure of the growth plate. In basal hypertrophic cartilage areas, a co-distribution of collagens II and X was found with very little and "spotty" collagen III. In juvenile cartilage areas around single hypertrophic chondrocytes, co-localization of collagens X and I was also detected.  相似文献   

10.
Immunolocation analysis of glycosaminoglycans in the human growth plate.   总被引:4,自引:0,他引:4  
Monoclonal antibodies were used in this study to immunolocate glycosaminoglycans throughout the human growth plate. Chondroitin-4-sulfate, chondroitin-6-sulfate, and keratan sulfate were observed in the extracellular matrix of all zones of the growth plate and persisted into the cartilage trabeculae of newly formed metaphyseal bone. Also present in the extracellular matrix was an oversulfated chondroitin/dermatan sulfate glycosaminoglycan which appeared to be specific to the proliferative and hypertrophic zones of the growth plate. As with the other extracellular matrix molecules, this epitope persisted into the cartilage trabeculae of the metaphyseal bone. Zonal differences between the extracellular and pericellular or lacunae matrix were also observed. The hypertrophic chondrocytes appeared to synthesize chondroitin sulfate chains containing a non-reducing terminal 6-sulfated disaccharide, which were located in areas immediately adjacent to the cells. This epitope was not found to any significant extent in the other zones. The pericellular region around hypertrophic chondrocytes also contained a keratan sulfate epitope which was also observed in the resting zone but not in the proliferative zone. These cell-associated glycosaminoglycans were not found in the cartilage trabeculae of metaphyseal bone, indicating their removal as the terminal hypertrophic chondrocytes and their lacunae are removed by invading blood vessels. These changes in matrix glycosaminoglycan content, both in the different zones and within zones, indicate constant subtle alterations in chondrocyte metabolic products as they proceed through their life cycle of proliferation, maturation, and hypertrophy.  相似文献   

11.
Previously, we showed that expression of a dominant-negative form of the transforming growth factor beta (TGF-beta) type II receptor in skeletal tissue resulted in increased hypertrophic differentiation in growth plate and articular chondrocytes, suggesting a role for TGF-beta in limiting terminal differentiation in vivo. Parathyroid hormone-related peptide (PTHrP) has also been demonstrated to regulate chondrocyte differentiation in vivo. Mice with targeted deletion of the PTHrP gene demonstrate increased endochondral bone formation, and misexpression of PTHrP in cartilage results in delayed bone formation due to slowed conversion of proliferative chondrocytes into hypertrophic chondrocytes. Since the development of skeletal elements requires the coordination of signals from several sources, this report tests the hypothesis that TGF-beta and PTHrP act in a common signal cascade to regulate endochondral bone formation. Mouse embryonic metatarsal bone rudiments grown in organ culture were used to demonstrate that TGF-beta inhibits several stages of endochondral bone formation, including chondrocyte proliferation, hypertrophic differentiation, and matrix mineralization. Treatment with TGF-beta1 also stimulated the expression of PTHrP mRNA. PTHrP added to cultures inhibited hypertrophic differentiation and matrix mineralization but did not affect cell proliferation. Furthermore, terminal differentiation was not inhibited by TGF-beta in metatarsal rudiments from PTHrP-null embryos; however, growth and matrix mineralization were still inhibited. The data support the model that TGF-beta acts upstream of PTHrP to regulate the rate of hypertrophic differentiation and suggest that TGF-beta has both PTHrP-dependent and PTHrP-independent effects on endochondral bone formation.  相似文献   

12.
Perlecan (Hspg2) is a heparan sulfate proteoglycan expressed in basement membranes and cartilage. Perlecan deficiency (Hspg2(-/-)) in mice and humans causes lethal chondrodysplasia, which indicates that perlecan is essential for cartilage development. However, the function of perlecan in endochondral ossification is not clear. Here, we report the critical role of perlecan in VEGF signaling and angiogenesis in growth plate formation. The Hspg2(-/-) growth plate was significantly wider but shorter due to severely impaired endochondral bone formation. Hypertrophic chondrocytes were differentiated in Hspg2(-/-) growth plates; however, removal of the hypertrophic matrix and calcified cartilage was inhibited. Although the expression of MMP-13, CTGF, and VEGFA was significantly upregulated in Hspg2(-/-) growth plates, vascular invasion into the hypertrophic zone was impaired, which resulted in an almost complete lack of bone marrow and trabecular bone. We demonstrated that cartilage perlecan promoted activation of VEGF/VEGFR by binding to the VEGFR of endothelial cells. Expression of the perlecan transgene specific to the cartilage of Hspg2(-/-) mice rescued their perinatal lethality and growth plate abnormalities, and vascularization into the growth plate was restored, indicating that perlecan in the growth plate, not in endothelial cells, is critical in this process. These results suggest that perlecan in cartilage is required for activating VEGFR signaling of endothelial cells for vascular invasion and for osteoblast migration into the growth plate. Thus, perlecan in cartilage plays a critical role in endochondral bone formation by promoting angiogenesis essential for cartilage matrix remodeling and subsequent endochondral bone formation.  相似文献   

13.
Skeletal tissues develop either by intramembranous ossification, where bone is formed within a soft connective tissue, or by endochondral ossification. The latter proceeds via cartilage anlagen, which through hypertrophy, mineralization, and partial resorption ultimately provides scaffolding for bone formation. Here, we describe a novel and essential mechanism governing remodeling of unmineralized cartilage anlagen into membranous bone, as well as tendons and ligaments. Membrane-type 1 matrix metalloproteinase (MT1-MMP)-dependent dissolution of unmineralized cartilages, coupled with apoptosis of nonhypertrophic chondrocytes, mediates remodeling of these cartilages into other tissues. The MT1-MMP deficiency disrupts this process and uncouples apoptotic demise of chondrocytes and cartilage degradation, resulting in the persistence of "ghost" cartilages with adverse effects on skeletal integrity. Some cells entrapped in these ghost cartilages escape apoptosis, maintain DNA synthesis, and assume phenotypes normally found in the tissues replacing unmineralized cartilages. The coordinated apoptosis and matrix metalloproteinase-directed cartilage dissolution is akin to metamorphosis and may thus represent its evolutionary legacy in mammals.  相似文献   

14.
The fate of hypertrophic chondrocytes during endochondral ossification remains controversial. It has long been thought that the calcified cartilage is invaded by blood vessels and that new bone is deposited on the surface of the eroded cartilage by newly arrived cells. The present study was designed to determine whether hypertrophic chondrocytes were destined to die or could survive to participate in new bone formation. In a rabbit experiment, a membrane filter with a pore size of 1 µm was inserted in the middle of the hypertrophic zone of the distal growth plate of ulna. In 33 of 37 animals, vascular invasion was successfully interposed by the membrane filter. During 8 days, the cartilage growth plate was enlarged, making the thickness 3-fold greater than that of the nonoperated control side. Histological examination demonstrated that the hypertrophic zone was exclusively elongated. At the terminal end of the growth plate, hypertrophic chondrocytes extruded from their territorial matrix into the open cavity on the surface of the membrane filter. The progenies of hypertrophic chondrocytes (PHCs) were PCNA positive and caspase-3 negative. In situ hybridization studies demonstrated that PHCs did not express cartilage matrix proteins anymore but expressed bone matrix proteins. Immunohistochemical studies also demonstrated that the new matrix produced by PHCs contained type I collagen, osteonectin, and osteocalcin. Based on these results, we concluded that hypertrophic chondrocytes switched into bone-forming cells after vascular invasion was interposed in the normal growth plate.  相似文献   

15.
For a large part, skeletal development, growth, and repair occur by endochondral ossification which comprises an orderly sequence of consecutive steps of proliferation and late differentiation of chondrocytes. After vascular invasion into hypertrophic cartilage, the tissue is remodelled into bone. At all stages, the process is under tight environmental control exerted by a combination of regulators, including nutritional supply and signalling through growth factors, hormones, and cell-matrix-interactions. Therefore, genetic elimination of collagen IX, a stabilizing component of the periphery of thin cartilage fibrils, is expected to compromise extracellular matrix properties and, hence, the chondrocyte environment required for normal cartilage development and homeostasis. Here, we have shown that growth plate cartilage morphology is markedly disturbed in mice lacking collagen IX. Abnormalities were most prominent in late proliferative, pre-hypertrophic, and hypertrophic zones whereas resting and early proliferative zones were less affected. In central epiphyseal regions of long bones, newborn animals show grossly abnormal areas with strongly reduced cell numbers, irregular distribution of glycosaminoglycans in the extracellular matrix, and a profoundly disturbed columnar arrangement of chondrocytes with an irregular beta1 integrin immunostaining. As a result, all long bones are shorter and broader in newborn Col9a1-/- mice. Remarkably, these abnormalities are attenuated in adult mice, but the number of cells per area still is too low due to reduced cell proliferation.  相似文献   

16.
Fibromodulin, a keratan-sulfate proteoglycan, was first isolated in articular cartilage and tendons. We have identified fibromodulin as a gene regulated during BMP-2-induced differentiation of a mouse prechondroblastic cell line. Because expression of fibromodulin during endochondral bone formation has not been studied, we examined whether selected cells of the chondrocytic and osteoblastic lineage expressed fibromodulin. Fibromodulin mRNA was detected in conditionally immortalized murine bone marrow stromal cells, osteoblasts, and growth plate chondrocytes, as well as in primary murine calvarial osteoblasts. We, therefore, investigated the temporo-spatial expression of fibromodulin in vivo during endochondral bone formation by in situ hybridization. Fibromodulin was first detected at 15.5 days post coitus (dpc) in the perichondrium and proliferating chondrocytes. Fibromodulin mRNA was also detected at 15.5 dpc in the bone collar and periosteum. At later time points fibromodulin was expressed in the primary spongiosa and the endosteum. To determine whether fibromodulin was expressed during intramembranous bone formation as well, in situ hybridization was performed on calvariae. Fibromodulin mRNA was present in calvarial osteoblasts from 15.5 dpc. These results demonstrate that fibromodulin is developmentally expressed in cartilage and bone cells during endochondral and intramembranous ossification. These findings suggest that this extracellular matrix protein plays a role in both endochondral and intramembranous bone formation.  相似文献   

17.
Injuries to the articular cartilage and growth plate are significant clinical problems due to their limited ability to regenerate themselves. Despite progress in orthopedic surgery and some success in development of chondrocyte transplantation treatment and in early tissue-engineering work, cartilage regeneration using a biological approach still remains a great challenge. In the last 15 years, researchers have made significant advances and tremendous progress in exploring the potentials of mesenchymal stem cells (MSCs) in cartilage repair. These include (a) identifying readily available sources of and devising appropriate techniques for isolation and culture expansion of MSCs that have good chondrogenic differentiation capability, (b) discovering appropriate growth factors (such as TGF-beta, IGF-I, BMPs, and FGF-2) that promote MSC chondrogenic differentiation, (c) identifying or engineering biological or artificial matrix scaffolds as carriers for MSCs and growth factors for their transplantation and defect filling. In addition, representing another new perspective for cartilage repair is the successful demonstration of gene therapy with chondrogenic growth factors or inflammatory inhibitors (either individually or in combination), either directly to the cartilage tissue or mediated through transducing and transplanting cultured chondrocytes, MSCs or other mesenchymal cells. However, despite these rapid pre-clinical advances and some success in engineering cartilage-like tissue and in repairing articular and growth plate cartilage, challenges of their clinical translation remain. To achieve clinical effectiveness, safety, and practicality of using MSCs for cartilage repair, one critical investigation will be to examine the optimal combination of MSC sources, growth factor cocktails, and supporting carrier matrixes. As more insights are acquired into the critical factors regulating MSC migration, proliferation and chondrogenic differentiation both ex vivo and in vivo, it will be possible clinically to orchestrate desirable repair of injured articular and growth plate cartilage, either by transplanting ex vivo expanded MSCs or MSCs with genetic modifications, or by mobilising endogenous MSCs from adjacent source tissues such as synovium, bone marrow, or trabecular bone.  相似文献   

18.
Cartilage destruction is a central pathological feature of osteoarthritis, a leading cause of disability in the US. Cartilage in the adult does not regenerate very efficiently in vivo; and as a result, osteoarthritis leads to irreversible cartilage loss and is accompanied by chronic pain and immobility (1,2). Cartilage tissue engineering offers promising potential to regenerate and restore tissue function. This technology typically involves seeding chondrocytes into natural or synthetic scaffolds and culturing the resulting 3D construct in a balanced medium over a period of time with a goal of engineering a biochemically and biomechanically mature tissue that can be transplanted into a defect site in vivo (3-6). Achieving an optimal condition for chondrocyte growth and matrix deposition is essential for the success of cartilage tissue engineering. In the native joint cavity, cartilage at the articular surface of the bone is bathed in synovial fluid. This clear and viscous fluid provides nutrients to the avascular articular cartilage and contains growth factors, cytokines and enzymes that are important for chondrocyte metabolism (7,8). Furthermore, synovial fluid facilitates low-friction movement between cartilaginous surfaces mainly through secreting two key components, hyaluronan and lubricin (9 10). In contrast, tissue engineered cartilage is most often cultured in artificial media. While these media are likely able to provide more defined conditions for studying chondrocyte metabolism, synovial fluid most accurately reflects the natural environment of which articular chondrocytes reside in. Indeed, synovial fluid has the advantage of being easy to obtain and store, and can often be regularly replenished by the body. Several groups have supplemented the culture medium with synovial fluid in growing human, bovine, rabbit and dog chondrocytes, but mostly used only low levels of synovial fluid (below 20%) (11-25). While chicken, horse and human chondrocytes have been cultured in the medium with higher percentage of synovial fluid, these culture systems were two-dimensional (26-28). Here we present our method of culturing human articular chondrocytes in a 3D system with a high percentage of synovial fluid (up to 100%) over a period of 21 days. In doing so, we overcame a major hurdle presented by the high viscosity of the synovial fluid. This system provides the possibility of studying human chondrocytes in synovial fluid in a 3D setting, which can be further combined with two other important factors (oxygen tension and mechanical loading) (29,30) that constitute the natural environment for cartilage to mimic the natural milieu for cartilage growth. Furthermore, This system may also be used for assaying synovial fluid activity on chondrocytes and provide a platform for developing cartilage regeneration technologies and therapeutic options for arthritis.  相似文献   

19.
Endocrine regulation of the growth plate   总被引:8,自引:0,他引:8  
Longitudinal bone growth occurs at the growth plate by endochondral ossification. Within the growth plate, chondrocyte proliferation, hypertrophy, and cartilage matrix secretion result in chondrogenesis. The newly formed cartilage is invaded by blood vessels and bone cells that remodel the newly formed cartilage into bone tissue. This process of longitudinal bone growth is governed by a complex network of endocrine signals, including growth hormone, insulin-like growth factor I, glucocorticoid, thyroid hormone, estrogen, androgen, vitamin D, and leptin. Many of these signals regulate growth plate function, both by acting locally on growth plate chondrocytes and also indirectly by modulating other endocrine signals in the network. Some of the local effects of hormones are mediated by changes in paracrine factors that control chondrocyte proliferation and differentiation. Many human skeletal growth disorders are caused by abnormalities in the endocrine regulation of the growth plate. This review provides an overview of the endocrine signals that regulate longitudinal bone growth, their interactions, and the mechanisms by which they affect growth plate chondrogenesis.  相似文献   

20.
Hypertrophic chondrocytes in the epiphyseal growth plate express the angiogenic protein vascular endothelial growth factor (VEGF). To determine the role of VEGF in endochondral bone formation, we inactivated this factor through the systemic administration of a soluble receptor chimeric protein (Flt-(1-3)-IgG) to 24-day-old mice. Blood vessel invasion was almost completely suppressed, concomitant with impaired trabecular bone formation and expansion of hypertrophic chondrocyte zone. Recruitment and/or differentiation of chondroclasts, which express gelatinase B/matrix metalloproteinase-9, and resorption of terminal chondrocytes decreased. Although proliferation, differentiation and maturation of chondrocytes were apparently normal, resorption was inhibited. Cessation of the anti-VEGF treatment was followed by capillary invasion, restoration of bone growth, resorption of the hypertrophic cartilage and normalization of the growth plate architecture. These findings indicate that VEGF-mediated capillary invasion is an essential signal that regulates growth plate morphogenesis and triggers cartilage remodeling. Thus, VEGF is an essential coordinator of chondrocyte death, chondroclast function, extracellular matrix remodeling, angiogenesis and bone formation in the growth plate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号