首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Closely related cellulolytic protozoa reside in the hindguts of extant woodroaches (Cryptocercidae) and termites (Isoptera). The evolutionary origin of these symbiotic relationships in the two lineages is uncertain. Transfer of protozoa between ancestors of modern Cryptocercus and termites remains a valid alternative theory to the established hypothesis of symbiont inheritance from a common ancestor. Nalepa's (Proc. R. Soc. Lond. B 246, 185 (1991] concerns regarding the protozoan transfer hypothesis focus on the biology of modern species, and neglect to consider the evolutionary framework of an ancestral dynamic postulated to occur among Palaeozoic insects. Legitimacy of the symbiont transfer theory removes the constraint of interpreting presence of cellulolytic protozoa as a synapomorphy between Cryptocercidae and Isoptera, with potential impact on objective resolution of dictyopteran phylogeny.  相似文献   

2.
A case for ancestral transfer of symbionts between cockroaches and termites   总被引:3,自引:0,他引:3  
Living species of the cockroach family Cryptocercidae have intestinal symbionts that are congeneric with some of the gut protozoa found in Isoptera. Presence of such closely related symbionts in cryptocercids and in termites has been frequently interpreted as a uniquely derived homologous character shared between the two xylophagous groups. This may not be the most parsimonious interpretation. Cryptocercus nymphs placed into Zootermopsis (dampwood termite) colonies were killed and eaten by the termites. Termites placed into a Cryptocercus nest box were also fully consumed. Modern Cryptocercus punctulatus and Zootermopsis are often found in the same decaying logs in the Pacific Northwest of the U.S.A., and it is likely that their ancestors also cohabited in at least a portion of their ranges. By occasionally killing and consuming an intruder from the other group, gut protozoa could have been acquired and exchanged between termites and Cryptocercus or their ancestors, under natural conditions and before the life histories of the protozoa became specialized within the host orders. Implications for assessing the phylogeny of the two dictyopteroid groups are also discussed.  相似文献   

3.
4.
Harold Kirby's brilliant principle of mastigont multiplicity is published here posthumously more than 40 years after it was written. He applies this principle to large multinucleate protist symbionts of termites in establishing the taxonomy of Calonymphids (Family Calonymphidae in Phylum Zoomastigina, Kingdom Protoctista). The nuclei and kinetosomes in these heterotrophic cells are organized into trichomonad-style mastigont units which reproduce independently of cytokinesis to generate nine new Calonympha and nineteen new Stephanonympha species. The total of six genera (Calonympha, Coronympha, Diplonympha, Metacoronympha, Snyderella and Stephanonympha, all symbionts of dry-wood-eating termites, Kalotermitidae) are recognized. With the aid of Michael Yamin, the distribution of all twenty-eight of Kirby's Calonympha and Stephanonympha species are tabulated. In italic type I have annotated this paper to be comprehensible to a wide readership of cell biologists, protistologists and those interested in insect symbionts. Although this extremely original and careful work was not finished when Kirby died suddenly in 1952, I deemed it important and complete enough to finally publish it so that it would not be lost to scientific posterity.  相似文献   

5.
Termites are instantly recognizable mound-builders and house-eaters: their complex social lifestyles have made them incredibly successful throughout the tropics. Although known as 'white ants', they are not ants and their relationships with other insects remain unclear. Our molecular phylogenetic analyses, the most comprehensive yet attempted, show that termites are social cockroaches, no longer meriting being classified as a separate order (Isoptera) from the cockroaches (Blattodea). Instead, we propose that they should be treated as a family (Termitidae) of cockroaches. It is surprising to find that a group of wood-feeding cockroaches has evolved full sociality, as other ecologically dominant fully social insects (e.g. ants, social bees and social wasps) have evolved from solitary predatory wasps.  相似文献   

6.
Crosses were made between the Asian cockroach,Blattella asahinai Mizukubo, and resistant strains of the German cockroach,B. germanica (L.), to assess the transfer of pyrethroid resistance to the progeny and to study the inheritance mechanism(s) involved. It was shown that the strain of Asian cockroaches studied was susceptible to four pyrethroids. F1 progeny were essentially susceptible to the same compounds. Tests with F2 progeny and those from backcrosses to the resistant parent indicated that the data for each pyrethroid fit an hypothesis of simple, autosomal, nearly completely recessive inheritance. The results are discussed from the standpoint of the impact of the Asian genome on the inheritance mechanism(s).  相似文献   

7.
Symbiotic interactions between macrotermitine termites and their fungal symbionts have a moderate degree of specificity. Consistent with horizontal symbiont transmission, host switching has been frequent over evolutionary time so that single termite species can often be associated with several fungal symbionts. However, even in the few termite lineages that secondarily adopted vertical symbiont transmission, the fungal symbionts are not monophyletic. We addressed this paradox by studying differential transmission of fungal symbionts by alate male and female reproductives, and the genetic population structure of Termitomyces fungus gardens across 74 colonies of Macrotermes bellicosus in four west and central African countries. We confirm earlier, more limited, studies showing that the Termitomyces symbionts of M. bellicosus are normally transmitted vertically and clonally by dispersing males. We also document that the symbionts associated with this termite species belong to three main lineages that do not constitute a monophyletic group. The most common lineage occurs over the entire geographical region that we studied, including west, central and southern Africa, where it is also associated with the alternative termite hosts Macrotermes subhyalinus and Macrotermes natalensis. While Termitomyces associated with these alternative hosts are horizontally transmitted and recombine freely, the genetic population structure of the same Termitomyces associated with M. bellicosus is consistent with predominantly clonal reproduction and only occasional recombination. This implies that the genetic population structure of Termitomyces is controlled by the termite host and not by the Termitomyces symbiont.  相似文献   

8.
Theoretically it seems highly unlikely that relatively small peptides could mimic functionally discontinuous epitopes of antigens. Nevertheless various recent reports show this to be the case. Peptide mimics of protein-, polysaccharide- and DNA-epitopes have been shown to be able to replace the native epitope. Moreover, some of them are able to induce, when used in a vaccine, antibodies with the same activity as that of the antibody used as a template. These mimics, called mimotopes, can be used in vaccines and diagnostics and can be developed more or less systematically using solely antibodies and random, semi-random and dedicated peptide arrays or libraries. Furthermore, the mimotope concept which seems to have proven itself for antibody and antigen interaction can be applied equally well to many receptor ligand interactions and thus may form a new generic approach to the development of drugs. Ltd.  相似文献   

9.
Rosendahl  L.  Mouritzen  P.  Rudbeck  A. 《Plant and Soil》2001,230(1):31-37
Transport mechanisms for transfer of nitrogen from the bacteroid side across the symbiosome membrane of pea (Pisum sativum L.) root nodules were identified by the use of energised bacteroid side-out symbiosome membrane vesicles. Such membrane vesicles were used to study a mechanism with high capacity for transport of ammonium and another mechanism capable of transporting aspartate. Both transport mechanisms are voltage driven and the rate of transport relates positively to the magnitude of the imposed membrane potentials. Competition for transport between ammonium and aspartate was not observed. The ammonium transporter has been identified as a voltage-driven channel whereas the symbiosome membrane aspartate transporter appears to be a H+/aspartate symport. The results suggest that nitrogen transfer between the symbionts in pea root nodules involves transfer of amino acids as well as ammonium. In the symbiosome subfraction, which represents the interface between the symbionts, specific aspartate aminotransferase activity was more than four times as high as in the bacteroid cytosol. This finding supports a hypothesis that transamination cycles operating between the symbionts may constitute a component of the transfer of nitrogen between the symbionts.  相似文献   

10.
An important requirement for the management of invasive species is to identify the biological and ecological factors that influence the ability of such species to become established and spread within a new environment. Although competition is one of the key interactions determining the coexistence of species and exclusion, few studies directly examine the mechanism of competitive interactions within invasive communities. This study focused on putative competition in a social insect invader, R. flavipes, an American termite introduced into France, and an indigenous European termite, R. grassei. We first characterized and mapped a zone of sympatry between these two species. We then evaluated the degree of direct and indirect competition by comparing several life-history traits: behavioral aggression, chemical recognition and dispersion modes. Interspecific competition revealed that R. flavipes was dominant over R. grassei. Intraspecific competition was not found in R. flavipes while it appeared in varying degrees in R. grassei. These findings seemed to be correlated with the remarkable chemical homogeneity found in R. flavipes in comparison with R. grassei. Genetic analyses revealed that R. flavipes foraged over a greater distance than R. grassei colonies and might suggest a difference in the capacity to produce secondary reproductives. These findings suggest that R. flavipes has a significant advantage owing to competitive asymmetry that may enable the species to become dominant. The interspecific superiority, lack of intraspecific aggression and large extensive colonies, seem to be some of the reasons for its invasive success.  相似文献   

11.
Symbiosis is a process that can generate evolutionary novelties and can extend the phenotypic niche space of organisms. Symbionts can act together with their hosts to co-construct host organs, within which symbionts are housed. Once established within hosts, symbionts can also influence various aspects of host phenotype, such as resource acquisition, protection from predation by acquisition of toxicity, as well as behaviour. Once symbiosis is established, its fidelity between generations must be ensured. Hosts evolve various mechanisms to screen unwanted symbionts and to facilitate faithful transmission of mutualistic partners between generations. Microbes are the most important symbionts that have influenced plant and animal phenotypes; multicellular organisms engage in developmental symbioses with microbes at many stages in ontogeny. The co-construction of niches may result in composite organisms that are physically nested within each other. While it has been advocated that these composite organisms need new evolutionary theories and perspectives to describe their properties and evolutionary trajectories, it appears that standard evolutionary theories are adequate to explore selection pressures on their composite or individual traits. Recent advances in our understanding of composite organisms open up many important questions regarding the stability and transmission of these units.  相似文献   

12.
The foraging behavior and survivorship of termites are modified by the presence of wood-inhabiting fungi. Nonetheless, it is not clear if these interactions are beneficial, negative, or neutral for termites. We conducted a meta-analytical review to determine if the presence of wood-inhabiting fungi affects the foraging behavior and survivorship of termites. Overall, the presence of wood-inhabiting fungi in a resource used by termites was positive, increasing resource consumption by 120%, and aggregation behavior by 81%. The presence of fungi also increased termite trail-following by approximately 200% and increased survival by 136%. The results varied, however, according to the type of fungi evaluated. Decay fungi and sap-stain fungi elicited positive responses in termites, whereas molds did not affect the consumption of cellulose by termites. Amongst the decay fungi group, white-rot fungi caused the strongest and most positive response in all termite behaviors evaluated, although brown-rot fungi is known to be preferred by termites. The results of our study, therefore, suggest that wood-inhabiting fungi are potential facilitators of the foraging behavior and survivorship of termites. These results have great implications for termite biocontrol, as well as for knowledge of the ecological aspects of termite–fungi interactions.  相似文献   

13.
Subterranean termites (Reticulitermes sp.) exposed to whole cultures of Metarhizium anisopliae for 4, 8, 12, or 48 hr transfer disease to previously healthy termites. Healthy termites concentrate grooming activity on diseased individuals and thereby become infected. Termites which have been killed by the fungus are avoided by healthy individuals and are less effective in spreading disease than are exposed living termites.  相似文献   

14.
Molecular interactions between bacterial symbionts and their hosts   总被引:3,自引:0,他引:3  
Dale C  Moran NA 《Cell》2006,126(3):453-465
Symbiotic bacteria are important in animal hosts, but have been largely overlooked as they have proved difficult to culture in the laboratory. Approaches such as comparative genomics and real-time PCR have provided insights into the molecular mechanisms that underpin symbiont-host interactions. Studies on the heritable symbionts of insects have yielded valuable information about how bacteria infect host cells, avoid immune responses, and manipulate host physiology. Furthermore, some symbionts use many of the same mechanisms as pathogens to infect hosts and evade immune responses. Here we discuss what is currently known about the interactions between bacterial symbionts and their hosts.  相似文献   

15.
Knowledge of the relative insensitivity of Campylobacter jejuni to moderately acid environments prompted us to study its survival in different batches of yoghurt of pH range 4.2-5.3 and the role of organic or inorganic acid in the die-off of this pathogen. None of the 11 strains of C. jejuni or C. coli survived more than 25 min in yoghurt. Suspecting that this rapid die-off cannot be accounted for by the pH of the yoghurt we compared the survival rates of C. jejuni in milk, whose pH had been adjusted by lactic, propionic and hydrochloric acid respectively, with that of yoghurt. Even for an inoculum of 10(5)-10(8) cfu/ml propionic acid was bactericidal in minutes. Lactic acid reduced the bacterial populations by 3-5 logs in 30 min. Strong inorganic acid HCl, by contrast, had little or no effect on the populations. Although lactic acid is quite bactericidal for C. jejuni, it is apparently not the only factor to which the prompt elimination of this pathogen from yoghurt could be attributed.  相似文献   

16.
Knowledge of the relative insensitivity of Campylobacter jejuni to moderately acid environments prompted us to study its survival in different batches of yoghurt of pH range 4.2–5.3 and the role of organic or inorganic acid in the die-off of this pathogen. None of the 11 strains of C. jejuni or C. coli survived more than 25 min in yoghurt. Suspecting that this rapid die-off cannot be accounted for by the pH of the yoghurt we compared the survival rates of C. jejuni in milk, whose pH had been adjusted by lactic, propionic and hydrochloric acid respectively, with that of yoghurt. Even for an inoculum of 105–108 cfu/ml propionic acid was bactericidal in minutes. Lactic acid reduced the bacterial populations by 3–5 logs in 30 min. Strong inorganic acid HC1, by contrast, had little or no effect on the populations. Although lactic acid is quite bactericidal for C. jejuni , it is apparently not the only factor to which the prompt elimination of this pathogen from yoghurt could be attributed.  相似文献   

17.
Hidden cellulases in termites: revision of an old hypothesis   总被引:1,自引:0,他引:1  
The intestinal flagellates of termites produce cellulases that contribute to cellulose digestion of their host termites. However, 75% of all termite species do not harbour the cellulolytic flagellates; the endogenous cellulase secreted from the midgut tissue has been considered a sole source of cellulases in these termites. Using the xylophagous flagellate-free termites Nasutitermes takasagoensis and Nasutitermes walkeri, we successfully solubilized cellulases present in the hindgut pellets. Zymograms showed that the hindguts of these termites possessed several cellulases and contained up to 59% cellulase activity against crystalline cellulose when compared with the midgut. Antibiotic treatment administered to N. takasagoensis significantly reduced cellulase activity in the hindgut, suggesting that these cellulases were produced by symbiotic bacteria.  相似文献   

18.
Members of several bacterial lineages are known only as symbionts of insects and move among hosts through maternal transmission. Such vertical transfer promotes strong fidelity within these associations, favoring the evolution of microbially mediated effects that improve host fitness. However, phylogenetic evidence indicates occasional horizontal transfer among different insect species, suggesting that some microbial symbionts retain a generalized ability to infect multiple hosts. Here we examine the abilities of three vertically transmitted bacteria from the Gammaproteobacteria to infect and spread within a novel host species, the pea aphid, Acyrthosiphon pisum. Using microinjection, we transferred symbionts from three species of natural aphid hosts into a common host background, comparing transmission efficiencies between novel symbionts and those naturally infecting A. pisum. We also examined the fitness effects of two novel symbionts to determine whether they should persist under natural selection acting at the host level. Our results reveal that these heritable bacteria vary in their capacities to utilize A. pisum as a host. One of three novel symbionts failed to undergo efficient maternal transmission in A. pisum, and one of the two efficiently transmitted bacteria depressed aphid growth rates. Although these findings reveal that negative fitness effects and low transmission efficiency can prevent the establishment of a new infection following horizontal transmission, they also indicate that some symbionts can overcome these obstacles, accounting for their widespread distributions across aphids and related insects.  相似文献   

19.
Termites and cockroaches are closely related, with molecular phylogenetic analyses even placing termites within the radiation of cockroaches. The intestinal tract of wood-feeding termites harbors a remarkably diverse microbial community that is essential for the digestion of lignocellulose. However, surprisingly little is known about the gut microbiota of their closest relatives, the omnivorous cockroaches. Here, we present a combined characterization of physiological parameters, metabolic activities, and bacterial microbiota in the gut of Shelfordella lateralis, a representative of the cockroach family Blattidae, the sister group of termites. We compared the bacterial communities within each gut compartment using terminal-restriction fragment length polymorphism (T-RFLP) analysis and made a 16S rRNA gene clone library of the microbiota in the colon-the dilated part of the hindgut with the highest density and diversity of bacteria. The colonic community was dominated by members of the Bacteroidetes, Firmicutes (mainly Clostridia), and some Deltaproteobacteria. Spirochaetes and Fibrobacteres, which are abundant members of termite gut communities, were conspicuously absent. Nevertheless, detailed phylogenetic analysis revealed that many of the clones from the cockroach colon clustered with sequences previously obtained from the termite gut, which indicated that the composition of the bacterial community reflects at least in part the phylogeny of the host.  相似文献   

20.
二氧化硫对地衣中共生藻菌营养关系影响研究   总被引:5,自引:1,他引:5  
为探讨地衣对大气污染特别敏感的原因 ,分离淡腹黄梅衣 (Xanthoparmelliamexicana)的共生藻和共生真菌 ,并重新合成地衣 .研究了地衣及纯化培养的藻和菌在SO2 污染短期胁迫下的生理反应 .结果表明 ,叶绿素a比叶绿素b易受伤害 ;叶绿素对 0 .5mg·L-1的熏气最敏感 ,水溶液暴露时叶绿素PQa值的下降与SO2 的吸收量有相关性 .地衣中酸性磷酸酶活性主要由共生藻所决定 .丙二醇含量在共生藻和菌以及地衣样品中无显著差异 ;还原型谷胱甘肽GSH含量在共生菌中明显高于共生藻 ,并与SO2 胁迫强度密切相关 .可以作为地衣过氧化状态和受损的生物标志物 .共生真菌承担了地衣主要的抗氧化任务 ,由于物质与能量的消耗 ,共生藻比共生菌更容易受到伤害 .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号